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Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing
immersed boundary–thermal lattice Boltzmann method
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In this study, the immersed boundary–thermal lattice Boltzmann method has been used to simulate non-
Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple
the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different
diffuse interface schemes are considered to interpolate the velocity and temperature between the boundary and
computational grid points. The lattice Boltzmann equation with split-forcing term is applied to consider the
effects of the discrete lattice and the body force to the momentum flux, simultaneously. A method for calculating
the Nusselt number based on diffuse interface schemes is developed. The rheological and thermal properties of
non-Newtonian fluids are investigated under the different power-law indices and Reynolds numbers. The effect
of numerical parameters on the accuracy of the proposed method has been investigated in detail. Results show
that the rheological and thermal properties of non-Newtonian fluids in the presence of a heated immersed body
can be suitably captured using the immersed boundary thermal lattice Boltzmann method.
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I. INTRODUCTION

Non-Newtonian fluid flow and heat transfer have many
practical applications. Multiphase mixtures such as foams,
high molecular weight substances (e.g., soap solutions), and
polymer melts are some industrial examples of non-Newtonian
fluids [1]. The thermal non-Newtonian flow and corresponding
hydrodynamic forces over a cylinder play an important role in
the formation of weld lines in polymer processing operations
[2], and in designing the support structures located in non-
Newtonian fluids.

Although the problem of Newtonian fluid flow over a
cylinder and its phenomena has been investigated by numerous
authors over the years [3–7], the non-Newtonian properties of
this problem are much less known with respect to their wide
occurrence. Recently, some new types of methods based on the
immersed boundary idea of Peskin [8] have been developed
that can simplify the solution of complex geometries. The
immersed boundary method (IBM) was primarily developed
by Peskin [8] to simulate cardiac mechanics and associated
blood flow. He indicated that complex flow simulations could
be carried out without a body fitted mesh. Nonetheless, in this
last decade, the interest in IBMs has grown to a great extent by
the introduction of some modifications that overcome most of
the original limitations [9,10]. In general, IBM can be defined
as a non-body-conformal grid method that satisfies the no-slip
boundary condition by implementing a force density (or an
energy source density) term to the flow governing equation (or
the energy equation). Simplicity, Cartesian frame, reduction
of the required amount of memory and CPU time, and simple
grid generation process (even for complex geometry) have
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been introduced in the IBMs as a preferred method with
respect to the structured and unstructured body-conformal grid
methods. Two general methods exist to evaluate the boundary
force density in the IBM. The first method uses the feedback
process based on the position (and/or velocity) on the boundary
points (feedback-forcing method) [8,11–15] and the second
one uses a flow equation to determine the boundary force
density (direct-forcing method) [16–19]. The direct-forcing
IBM is more common for the assessment of the forcing
term [18]. Two important advantages of the direct-forcing
algorithm with respect to the feedback algorithm are (i) the
forcing term is assessed based on the conventional calculation
methods without a stability problem, and (ii) the direct-forcing
algorithm does not need arbitrary parameters to be fine-tuned
as in the feedback-forcing IBM. The direct-forcing IBM
was introduced by Mohd-Yusof [16]. Afterwards, the direct-
forcing IBM has been coupled with various numerical frames
such as finite-difference [10] or finite-volume method [17].
Given the mismatch between boundary points and computa-
tional off-lattice nodes, an interface scheme must be used to
couple the boundary and flow field nodes. As for the location
of forcing points, the interface schemes can be categorized
as sharp and diffuse interface schemes which the forcing
points evaluate in the computational and boundary nodes,
respectively. In the diffuse interface scheme, the location of
boundary points is traced directly while in the sharp interface
scheme, one has to determine the distance of off-lattice points
with respect to the boundary curve of the immersed boundary
(IB). Because of the simplicity and flexibility of application,
the diffuse interface scheme is preferred in the present study. In
the diffuse interface scheme, the boundary is considered as a set
of the off-lattice forcing points on the boundary, and the flow
field is taken as on-lattice computational nodes. The effects of
the boundary force must be distributed across the neighboring
fluid domain by implementing discrete delta functions. The
diffuse interface scheme in the direct-forcing method was first
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introduced by Silva et al. [18]. They applied a second-order
Lagrange polynomial approximation to calculate the boundary
force.

Because of simplicity, computational efficiency, and high
accuracy, the lattice Boltzmann method (LBM) has been used
to evaluate the velocity of off-lattice flow nodes. Besides,
this method takes advantage of a Cartesian frame. Unlike
conventional numerical methods that used the Navier-Stokes
equation (NSE) based on the macroscopic continuum system,
the LBM is a mesoscopic approach based on the kinetic theory
of gases [19,20]. With its roots in kinetic theory and high level
of scalability on parallel simulation, LBM is getting more and
more popular compared with Navier-Stokes equation solvers.
The basic concepts of theory of the lattice Boltzmann equation
and its application are presented by Benzi et al. [21]. The
use of the LBM for solving Newtonian flows has increased
considerably in recent years [19,20,22,23]. In the case of non-
Newtonian flows, the viscosity is not constant which can cause
instability in the solution process [24,25]. However, due to the
kinetic nature of LBM, it allows straightforward calculations
of the local shear rate to second-order accuracy independent of
the velocity field [26,27]. Aharonov and Rothman [28] were
the first researchers who demonstrated the feasibility of solving
the power-law model of non-Newtonian flows using the LBM
method. The accuracy of the LBM method for simulating the
shear-thinning and shear-thickening power-law fluids has been
investigated by Gabbanelli et al. [26]. Melchionna et al. [29]
have presented the ability of the lattice Boltzmann method
for the computational study of large-scale cardiovascular
blood flow. They exhibit the practicality of their numerical
method through a set of large-scale simulations of the flow
patterns related to the arterial tree of a patient. They employ
200 000 000 computational cells and compute endothelial
shear stress with high accuracy. Nejat et al. [30] used the
LBM method to investigate the effects of Reynolds number,
power-law index, and the distance between the cylinders
in the non-Newtonian flows past confined cylinders. Fallah
et al. [31] used the multiple-relaxation-time method to
simulate the non-Newtonian fluid flow over a rotating
cylinder. They claim that the local calculation of viscous
stresses is one of the advantages of the LBM method for
simulating the non-Newtonian fluid flows. Pontrelli et al.
[32] introduced an unstructured grid lattice Boltzmann
method to simulate the non-Newtonian flows in straight
and stenosed channels. They affirm that this method can
enhance the accuracy of solution by clustering the lattice
nodes in the critical regions of the flow. Malaspinas et al. [33]
have investigated the behavior of a generalized Newtonian
fluid by means of a lattice Boltzmann method. They used
two non-Newtonian models consisting of power-law and
Carreau-law models and show that their second-order accurate
method is well suited in complicated geometries. The results
of LBM for power-law non-Newtonian fluids have been
successfully tested by several researchers [34–36].

There are several LBM simulations of fluid flows in
geometries which include curved boundaries [37,38]. Mei
et al. [37] have presented a second-order boundary treatment
of the boundary condition for curved boundaries in the LBM.
Also, Guo et al. [38] proposed an alternative treatment for
curved walls in LBM by decomposing the distribution function

at the wall into the equilibrium and the non-equilibrium parts.
The LBM method can be utilized for curved boundaries;
however, due to uniform Cartesian lattices, the implementa-
tion of LBM for curved boundaries requires rather lengthy
calculation and procedures. Unlike the modified LBM, in
the immersed boundary LBM (IB-LBM), the fluid Cartesian
domain is solved by lattice Boltzmann equations, while curved
boundaries are treated via a completely separate procedure.
The implementation of a curved body in each desired boundary
is very simple in the IB-LBM and the extension of this
method to thermal cases does not need any extra or new
procedure. The application of the immersed boundary method
is independent of the specific lattice Boltzmann equation
and can be adapted to both single relaxation and multiple-
relaxation-time lattice Boltzmann equations (LBEs). In fact,
the IB-LBM combines the advantages of both immersed
boundary and lattice Boltzmann methods.

In comparison with the works done in the field of
non-Newtonian fluids in the presence of IB, the thermal
investigation of this problem is rather rare. In fact, the few
studies in this area are performed with FLUENT software (finite-
volume method) [39–41] or finite-difference method [42].
The immersed boundary–thermal lattice Boltzmann method
(IB-TLBM) has been used before for investigating flow [43,44]
and heat transfer [45,46] of Newtonian fluids.

For this reason, the direct-forcing immersed boundary–
thermal lattice Boltzmann method was used to simulate the
non-Newtonian unconfined flows over a heated cylinder.
Diffuse interface schemes have been used to distribute the
velocity and temperature between the off-lattice obstacle nodes
and computational on-lattice nodes. In order to investigate the
influence of the sharpness of the boundary on the accuracy of
the method, two-point and four-point schemes are used. Devel-
oping a simple technique for calculating the Nusselt number in
steady and unsteady flows based on the predetermined parame-
ters of direct-forcing IB-TLBM with diffuse interface schemes
is another unique aspect of this paper. Our technique is used for
investigating Nusselt number and heat transfer from immersed
body in shear-thinning and shear-thickening non-Newtonian
fluids. The adoption of the structured non-body-conformal
grid immersed boundary lattice Boltzmann method relieves
the burden of meshing and reduces the amount of memory and
CPU time used compared with unstructured body-conformal
grids. The power-law non-Newtonian model has been used to
investigate the shear-thinning and shear-thickening behaviors
of the non-Newtonian flow around the cylinder at different
regimes. The split-forcing lattice Boltzmann method proposed
by Guo et al. [47] has been employed to apply the effect
of the immersed body on non-Newtonian flow field. In the
LBE with the proposed forcing term, both discrete lattice
effect and influences of the body force on the momentum flux
are taken into account and the exact Navier-Stokes equations
are satisfied [47]. The validation of the employed approach
is performed in three cases by considering a non-Newtonian
pressure driven flow, the Newtonian flow past an unconfined
cylinder in steady and unsteady states, and non-Newtonian
fluid flow over a heated cylinder. The effects of the power-law
indices and Reynolds numbers on the drag coefficient and
recirculation length are studied in steady flows. The drag coef-
ficient, lift coefficient, and Strouhal number in unsteady flows
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FIG. 1. (Color online) Schematic of an immersed body in the fluid field.

are also studied completely. Also, the effect of shear-thinning
and shear-thickening behavior on heat transfer is investigated
in both steady and unsteady cases. In addition, the effects
of numerical parameters have been investigated in detail. In
general, three different states consist of steady flow with no
wake; steady flow with axisymmetric wakes and unsteady flow
with asymmetric wakes are investigated in the present paper.

II. NON-NEWTONIAN FLUID MODEL

In the Newtonian fluid, the coefficient of viscosity is
constant at all rates of shear, whereas the non-Newtonian fluid
exhibits a nonlinear relationship between the shear stress and
the rate of shear strain, especially at low shear rate. One of the
most commonly employed non-Newtonian fluid models for
describing the non-Newtonian characteristics of flows is the
power-law model. The rheological relationship of the model
is as below [48–50]:

μ = m(γ̇ )n−1, (1)

where m and n are the consistency index and non-Newtonian
behavior index, respectively. m and n are parameters that
are determined by curve fitting the equation to physical
viscometric data. The viscosity of the fluid increases with
the growth of the index m. When n < 1, apparent viscosity
decreases with the increase of stain rate; the fluid with this
character is known as the pseudoplastic or shear-thinning fluid.
On the other hand if n > 1, apparent viscosity enhances with
the increase of stain rate; the fluid with this behavior is called
a dilatant or shear-thickening fluid. In the special case which
n = 1 and m = μ0, the Newtonian fluid behavior with apparent
viscosity of μ0 will be achieved.

III. NUMERICAL METHODS

In this section, the numerical methods applied for the
current study are explained. Here the direct-forcing immersed
boundary–thermal lattice Boltzmann method, along with the

split-forcing thermal lattice Boltzmann equation (TLBE), is
used for the evaluation of boundary force and energy source
densities. Also, the interface schemes which are coupled with
the numerical method are discussed.

A. Non-Newtonian direct-forcing IB-TLBM based on the
split-forcing TLBE

1. Split-forcing lattice Boltzmann method

The lattice Boltzmann equation for the fluid flow (in space
�x and time t) reads as follows (according to the Bhatnagar-
Gross-Krook (BGK) model [51]):

fi(�x + �ei�t, t+�t)

= fi(�x,t) − 1

τ

[
fi(�x,t) − f

(eq)
i (�x,t)

]
+ Fi(�x,t)�t, (2)

where �ei is the particle velocity vector in the ith velocity
direction of the lattice. Here, we applied the two-dimensional
nine-velocity (D2Q9) model so i will be evaluated from zero
to 8 (as shown in Fig. 1) [30]. Local particle velocities can be
introduced as follows:

�ei = c

[
1 0 −1 0 1 −1 −1 1 0
0 1 0 −1 1 1 −1 −1 0

]
, (3)

where c = �x/�t is the lattice speed and �x and �t are the
lattice size and the time step size, respectively. fi(�x,t) and
Fi(�x,t) are the particle density distribution and the discrete
external force distribution function of the ith direction, re-
spectively. The dimensionless relaxation time of velocity field
(τ ) expresses the rate at which the local particle distribution re-
laxes to the local equilibrium state f

(eq)
i (�x,t). The equilibrium

distribution function, f
(eq)
i (�x,t), can be expressed as

f
(eq)
i = wiρ

[
1 + 3

c2
(�ei · �u) + 9

2c4
(�ei · �u)2 − 3

2c2
�u2

]
, (4)

where w0 = 4/9, w1 = w2 = w3 = w4 = 1/9, and
w5 = w6 = w7 = w8 = 1/36. The discrete force distribution
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function, Fi(�x,t), can be written as

Fi(�x,t)

=
(

1 − 1

2τ

)
wi

[
3
�ei − �u(�x,t)

c2
+ 9

�ei · �u(�x,t)

c4
�ei

]
· �F (�x,t).

(5)

Based on particle velocity moments of distribution function,
the density ρ and the momentum density ρ �u can be expressed
as

ρ =
∑

i

fi =
∑

i

f
(eq)
i , ρ �u =

∑
i

�eifi + �t

2
�F . (6)

When a particle moves from point 1 to 2 during one time
step, it experiences two different force fields, Fi(�x1,t)
and Fi(�x2,t + �t). In the split-forcing LBE, Fi(�x1,t) and
Fi(�x2,t + �t) are applied during the first and the second half
time steps, respectively. In this method, the momentum is
affected by the external force on point 2 at time t + �t as well
as the force on point 1 at time t [43]. Based on the method of
Guo et al. [47], the following four steps can be assumed for
the split-forcing LBE:

Step 1: First forcing:

ρ(�x,t)�u(�x,t) =
∑

i

�eifi(�x,t) + �t

2
�F (�x,t), (7)

Step 2: Collision:

f ′
i (�x, t) = fi(�x,t) − 1

τ

[
fi(�x,t) − f

(eq)
i (�x,t)

]
, (8)

Step 3: Second forcing:

f ′′
i (�x, t) = f ′

i (�x,t) + �t Fi(�x,t), (9)

Step 4: Streaming:

fi(�x + ei �t,t + �t) = f ′′
i (�x, t), (10)

where f ′
i and f ′′

i are named post-ollision and postforcing
particle distribution functions, respectively [43]. In the lattice
Boltzmann method, the consistency between the mesoscopic
evolution equation and the macroscopic conservation equa-
tions can be regulated by applying the Chapman-Enskog
expression [52–55]. The strain rate tensor is macroscopically
defined as [54]

Sα β = 1
2 (∇β uα + ∇α uβ). (11)

The strain rate tensor can be obtained locally, too [55]:

Sαβ = −
(

1 − 1

τ

)
1

2ρν

9∑
i=1

ciαciβf
(1)
i . (12)

The pressure can be considered as p = c2
s ρ, so the sound

speed, cs , should be cs = 1/
√

3. Using the first-order
Chapman-Enskog expansion of Eq. (12), where f

(1)
i ≈

f
(neq)
i = fi − f

(eq)
i , the kinematic viscosity can be achieved

as

ν = (2τ − 1)/6. (13)

2. Lattice Boltzmann method for shear-rate-dependent viscosity

In the shear rate-dependent viscosity fluids, the shear rate,
γ̇ , can be calculated from the second invariant of the rate-of-
strain tensor as [30]

γ̇ = 2
√

Dll, (14)

where

Dll =
2∑

α,β=1

Sα β Sα β. (15)

In order to simulate a shear-dependent non-Newtonian
fluid, the shear at each point should be calculated separately.
The rate-of-strain tensor can be calculated from the definition
of Eq. (11) by implementing the finite-difference method on
macroscopic velocities; on the other hand, it is a convenient
feature of the lattice Boltzmann method that the rate-of-strain
tensor can be achieved locally from Eq. (12) in mesoscopic
scale. So, regarding Eq. (14), the local apparent viscosity of a
power-law model in each point is

ν(�x,t) = m[2
√

Dll(�x,t)]n−1. (16)

The local apparent relaxation time can be directly calculated
from the local apparent viscosity via Eq. (13).

3. Thermal lattice Boltzmann equation

The thermal lattice Boltzmann equation with an energy
source can be written as [45]

gi(�x + �ei�t, t + �t)

= gi(�x,t) − 1

τg

[
gi(�x,t) − g

(eq)
i (�x,t)

] + Qi(�x,t)�t, (17)

where gi(�x,t) and Qi(�x,t) are the energy density distribution
functions and discrete energy source functions of the ith
direction, respectively. τg is the single relaxation time related
to the energy equation. The equilibrium internal energy density
distribution function, g

(eq)
i (�x,t), can introduced as

g
(eq)
i =

⎧⎪⎨
⎪⎩

wiρe
[−1.5 u2

c2

]
, i = 0,

wiρe
[
1.5 + 1.5

c2 (�ei · �u) + 9
2c4 (�ei · �u)2 − 3

2c2 �u2
]
, i = 1, 2, 3, 4,

wiρe
[
3 + 6

c2 (�ei · �u) + 9
2c4 (�ei · �u)2 − 3

2c2 �u2
]
, i = 5, 6, 7, 8.

(18)

The discrete energy source functions, Qi(�x,t) can be written as

Qi(�x,t) =
(

1 − 1

2τg

)
wiQ(�x,t), (19)
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TABLE I. Explicit diffuse interface scheme’s steps (between streaming and collision steps) [43].

(a) Calculating unforced velocities in Eulerian nodes (unoF
ij )

(b) Interpolating the unforced boundary velocities using unoF
ij . [unoF

b = ∑
b

unoF
ij D(xij − xb) h2]

(c) Evaluating the boundary force on boundary point via Eq. (22) (Fb)

(d) Distributing the boundary force to neighboring Eulerian nodes. [Fij = ∑
b

Fb D(xij − xb) �sb]

(e) Updating the velocities of neighboring Eulerian nodes.

where Q is the energy source density term. The internal energy
per unit mass (e) can be achieved from the following equation:

ρe =
∑

i

gi + �t

2
�Q. (20)

Using the Chapman-Enskog expansion, the thermal diffusivity
(α) can be achieved as

α = 2

3

(
τg − 1

2

)
c2�t. (21)

Equation (21) will be used for calculating the relaxation times
related to TLBE. It is important to mention that similar to
split-forcing LBE [Eqs. (7)–(10)], the method of Guo et al.
[47] is used for applying the energy source density term to the
thermal LBE.

4. Direct-forcing method

In this study, the direct-forcing method has been employed
to calculate the effects of immersed boundary on fluid flow
domain. The desired velocity must satisfy the no-slip condition
on the boundary. Considering this fact and the split-forcing
LBE which is used for solving the fluid domain, the following
direct-forcing relation can be obtained [43]:

�F (�x,t + �t) = 2ρ(�x,t + �t)
�Ud − �unoF (�x,t + �t)

�t
, (22)

where Ud and unoF (�x,t + �t) are the desired velocity of the
immersed boundary and the unforced velocity at the forcing
point, respectively. It is important to mention that the unforced
velocity, UnoF , can be determined by using the NSE without a
forcing term [56,57], or the LBE without a forcing term [58].
Similarly, a direct-forcing formula for the boundary energy-
forcing term can be derived [47]:

Q(�x,t + �t) = 2ρ(�x,t + �t)
c2

3T0

T d − T noE(�x,t + �t)

�t
,

(23)

where T d and T noE(�x,t + �t) are the desired temperature of
the immersed boundary and the temperature under no external
energy source at (�x,t + �t), respectively.

B. Two-point and four-point diffuse interface schemes

In this section, the diffuse interface schemes under the
direct-forcing IB-TLBM based on the split-forcing TLBE is
introduced. These schemes can be implemented with both
explicit and implicit methods. In the diffuse interface scheme,
on-lattice computational nodes which extended both inside

and outside the immersed boundary have been used for
representing the flow field; on the other hand a set of the
off-lattice forcing points on the boundary has been used for
tracing the presence of IB. In order to evaluate the boundary
forces, interpolation from off-lattice boundary nodes and
on-lattice neighboring nodes, and vice versa, is needed. Several
discrete delta functions were introduced for this purpose
[43,52–59]. Here two interpolation methods consisting of a
two-point discrete delta function [43] and a four-point discrete
delta function [59] are selected as

D(�xij − �xb) = 1

h2
d

(
xi − xb

h

)
d

(
yi − yb

h

)
. (24)

D represents the discrete delta function and h = �x. Related
to two-point and four-point discrete delta functions, the
shape function d can be achieved from Eqs. (25a) or (25b),
respectively.

d(r) =
{

1 − |r|, |r| � 1,

0, |r| > 1,
(25a)

or

d(r) =

⎧⎪⎨
⎪⎩

1
8 (3−2|r| +

√
1 + 4|r| − 4r2), 0 � |r| < 1,

1
8 (5−2|r|−

√
−7 + 12|r| − 4r2), 1 � |r| < 2,

0, |r| � 2.

(25b)

Using these two types of discrete delta functions, the effects
of the sharpness of the boundary on the solution can be
investigated. In the case of a stationary body, the surface force
can be calculated as below [14]:

�Fs = −
∑

b

�F (�xb)�sb = −
∑
i,j

�F (�xij )h2, (26)

where �sb is the arc length of the boundary segment. There
is no difference between the results of the first and second
summation.

1. Explicit diffuse interface scheme

In the explicit diffuse interface scheme, the boundary force
density (as well as the energy source density) is explicitly
obtained. Table I shows the required steps for the explicit
diffuse interface scheme. In addition, the schematic of steps (c)
and (d) of Table I are depicted in Fig. 2. The small blue points
show the on-lattice nodes and bigger red nodes indicate the
off-lattice nodes. As shown in Fig. 2, only the limited numbers
of on-lattice nodes are affected by specific boundary points.
Nonetheless, it should be stressed that when the force density
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FIG. 2. (Color online) Schematic of velocity and force density exchanges: (a) The unforced velocities interpolated from on-lattice nodes
into off-lattice nodes and (b) the force densities distributed from boundary points into flow nodes.

is calculated explicitly, the no-slip boundary condition cannot
be guaranteed. There is a similar problem for the evaluation of
boundary temperature.

2. Implicit diffuse interface scheme

As explained in Table I, the velocity field will be recon-
structed by the boundary forces in step (e) of the explicit diffuse
interface scheme. However, this forced velocity field may not
satisfy the no-slip condition on boundary points because the
forces used for forcing the velocities [step (e) in Table I] were
extracted from unforced velocities before the update [step (c)
in Table I]. To overcome this defect, several implicit forcing
methods have been introduced [60–63] which included the
complicated matrix calculation in some cases. Here to address
the present problem, the multi-direct-forcing method [60,62]
is used. Table II shows steps of this method briefly. According
to Table II, steps (a)–(e) are similar to the previous section.
After these steps, the velocities of the boundary points are
interpolated again with the updated neighboring nodes in
the flow field. The no-slip boundary condition is checked
and steps (c)–(f) are repeated until the desired accuracy is
reached. The number of these iterations (NF) determines the
degree of implicitness of the multi-direct-forcing method. In
the case that there is no iteration, i.e., NF = 1, the previously
mentioned explicit forcing interface scheme will be obtained.
It is important to mention that similar processes can be applied
for calculating the temperature and discrete energy density
function between the off-lattice and on-lattice nodes.

C. Nusselt number evaluation

In a heat transfer problem at a surface (boundary) in touch
with a fluid, the Nusselt number is defined as the ratio of
convective to conductive heat transfer across (normal to) the
boundary. Convection includes both advection and diffusion.
Here, a simple technique has been developed for calculating
the Nusselt number in the direct-forcing immersed boundary–
thermal lattice Boltzmann method inspired by the scheme of
Wu et al. [46]. The Nusselt number on the surface of boundary
(�xb,t) is introduced as

Nu(�xb,t) = h(�xb,t)Lc

k
, (27)

where Lc is characteristic length, h is convective heat transfer
coefficient of the fluid, k is thermal conductivity of the
fluid, and we have k = α ρ cp. The heat convection from the
immersed boundary should be the same as heat conduction
from the immersed boundary. Regarding the Fourier’s law and
the Newtonian cooling law,

h(�xb,t)(Tb − T∞) = −k
∂T

∂n
(�xb,t) = Q(�xb,t), (28)

where n is the normal direction to the boundary curve in a
certain point of the boundary. Tb and T∞ are the temperature
of boundary point and free stream, respectively. The heat flux
on the IB [Q(�xb,t)] is calculated by Eq. (23), previously.
Comparing Eqs. (27) and (28) leads to

Nu(�xb,t) = 3T0Lc

αρc2(Tb − T∞)
Q(�xb,t). (29)

TABLE II. Implicit diffuse interface scheme’s steps (between streaming and collision steps) [43].

(a) Calculating unforced velocities in Eulerian nodes (unoF
ij )

(b) Interpolating the unforced boundary velocities using unoF
ij . [unoF

b = ∑
b

unoF
ij D(xij − xb) h2]

(c) Evaluating the boundary force on boundary point via Eq. (22) (Fb)

(d) Distributing the boundary force to neighboring Eulerian nodes. [Fij = ∑
b

Fb D(xij − xb) �sb]

(e) Updating the velocities of neighboring Eulerian nodes (uF
ij )

(f) Interpolating the unforced boundary velocities using uF
ij . [uF

b = ∑
b

uF
ij D(xij − xb) h2]

(g) Iterating steps (c)–(f) until the desired criterion is satisfied.
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FIG. 3. Non-Newtonian velocity profile for different non-
Newtonian power-law indices in the pressure driven channel flow.

The mean Nusselt number over the all IB surface can be
obtained by averaging over the entire IB:

Nu = 3T0Lc

αρc2(Tb − T∞)L

∑
l

Ql(�xb,t)�sb. (30)

So, regarding Eqs. (29) and (30), the Nusselt number of
direct-forcing IB-TLBM can be obtained easily by previously
determined heat flux at the surface of the IB. Utilizing this
technique is simple and time saving because the difficult
normal temperature gradient on the IB surface is eliminated.

IV. VALIDATION

The present numerical simulation has been validated
thoroughly by analyzing the present results for three test cases:
first, a pressure driven flow of power-law fluid inside a channel
(see Fig. 3); second, the steady and unsteady flow of Newtonian
fluid past a circular cylinder (Table III); and third, the thermal
Newtonian flow over a heated cylinder (Table IV).

A. Non-Newtonian channel flow

Since the analytical solution of the two-dimensional veloc-
ity profile of a power-law fluid inside a channel is available,
this analytical solution is used to validate the non-Newtonian

simulation of the presented method. The analytical solution for
the velocity parallel to the axis of the channel is as follows [64]:

u(y) =
(

n

n + 1

)(
G

m

)[|H | n+1
n − (H − y)

n+1
n

]
, (31)

where G represents the constant pressure gradient in the x

direction and H is the width of the channel. In Fig. 3, the
normalized velocity profile based on the analytical solution
[introduced by Eq. (31)] and the velocity profile which was
calculated by the present non-Newtonian IB-LBM are shown.
Constant velocity and periodic boundary conditions were
implemented at the inlet and outlet of the channel, respectively.
The no-slip velocities were applied on the two parallel plates.
The computational domain consists of 31 × 101 uniform D2Q9
lattices. The solid walls of the channel are considered as no-slip
boundaries of fluid which are treated similarly to the other
standard lattice Boltzmann method. Figure 3 has been depicted
for three test cases of shear-thinning (n = 0.7), Newtonian
(n = 1), and shear-thickening (n = 1.3) flows. The analytical
and numerical velocities are in excellent agreement for all test
cases.

B. Newtonian steady and unsteady unconfined flow
over a circular cylinder

The problem of Newtonian flow over a circular cylinder has
been thoroughly investigated by the authors [17,43,44,63,65].
In order to validate the immersed body procedure of the
current simulation, the results of the previous published studies
for drag coefficient CD , and recirculation length LW , in
steady state flow are presented in Table III. The recirculation
length is calculated by inspecting the stream functions behind
the cylinder. Also, the average drag coefficient C̄D , lift
coefficient CL, and Strouhal number St in unsteady state
flow are presented in Table III. For the inlet boundary,
the Dirichlet boundary condition is used and for the outlet
boundary, the homogeneous Neumann boundary condition
is used. Regarding the unconfined flow over the cylinder,
the free-slip boundary condition is adopted for the far-field
boundaries. The same conditions are used in Secs. IV C and
V. In this study, the following definition has been used for
calculating the drag coefficient, lift coefficient, and Strouhal

TABLE III. Comparison with the previous studies of Newtonian steady and unsteady unconfined flow over a circular cylinder.

Steady Unsteady

Re = 20 Re = 40 Re = 100

The characteristics of method Year CD LW CD LW C̄D ±CL St

Body-fitted grid, NSE, [65] 1998 2.01 – 1 – 1.33 0.33 0.165
Exterior sharp direct-forcing, NSE, [17] 2001 – – 1.51 – 1.33 0.32 0.165
Implicit diffuse direct-forcing, NSE, [63] 2008 2.07 0.8 1.58 2.49 1.39 0.346 0.16
Implicit diffuse direct-forcing, LBE, [44] 2009 2.091 0.93 1.565 2.31 1.364 0.344 0.163
Exterior sharp direct forcing, LBE, [43] 2009 2.057 0.91 1.538 2.25 1.336 0.329 0.165
Explicit diffuse direct-forcing (two points), LBE Present 2.061 0.955 1.584 2.342 1.359 0.322 0.163
Explicit diffuse direct-forcing (four points), LBE Present 2.074 0.974 1.605 2.381 1.370 0.332 0.163
Implicit diffuse direct-forcing (two points), LBE Present 2.060 0.971 1.591 2.345 1.354 0.321 0.162
Implicit diffuse direct-forcing (four points), LBE Present 2.072 0.987 1.600 2.382 1.369 0.332 0.163
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TABLE IV. Comparison with the previous studies of non-Newtonian unconfined thermal flow over a heated circular cylinder at Re = 40
and Pr = 1.

Average of Nusselt number

The characteristics of method Year n = 0.6 n = 1.0 n = 1.4

Finite-difference method, NSE [42] 2005 – 3.569 3.3249
Finite-volume method, NSE [41] 2007 – 3.703 3.3522
FLUENT, NSE [40] 2008 4.0545 3.653 3.4003
FLUENT, NSE [39] 2010 4.0775 3.675 3.4216
Implicit diffuse direct-forcing (two points), LBE Present 4.0518 3.711 3.4671
Implicit diffuse direct-forcing (four points), LBE Present 4.0636 3.709 3.4614

number:

CD = FD

U 2∞ D/2
, (32a)

CL = FL

U 2∞ D/2
, (32b)

St = fqD

U∞
, (32c)

where drag force, FD , and lift force, FL, can be achieved by
using Eq. (26). fq and D are shedding frequency and diameter
of the cylinder, respectively. Here the evolutions of lift
coefficients are used to calculate the shedding frequency. The
comparison between the present numerical data and the values
reported in Table III shows that the current IB-LBM simulation
has acceptable results. In this study, the computational domain
is 40D × 40D with 1601 × 1601 uniform D2Q9 lattices.

C. Non-Newtonian unconfined flow over a
heated circular cylinder

In order to validate the equations utilized for thermal
simulation of the current solution, the average Nusselt number
related to the heat transfer over the immersed cylinder is
compared. In this section, the method introduced in Sec. III C
is used for calculating the Nusselt number. As seen from
Table IV, an acceptable agreement between the current split-
forcing IB-TLBM and the prior methods presented in Table IV
is observed for Newtonian and non-Newtonian fluids.

V. RESULTS AND DISCUSSION

In this section, the introduced direct-forcing IB-TLBM is
used to investigate the fluid flow over a circular cylinder. The

computational domain is taken as 40D × 40D with 1601 ×
1601 uniform grid points. The circular cylinder is considered at
the center of the computational domain. The boundary forcing
points are uniformly distributed on the cylinder boundary with
a spacing of �sb = h/1.5. The following Reynolds number
and Prandtl number for a power-law-based flow can be defined:

Repl = U
(2−n)
∞ D n

m
, (33)

Prpl = mρcp

k

(
U∞
D

)(n−1)

, (34)

where U∞ represents the free stream velocity. In the next
sections, the effects of numerical parameters and flow charac-
teristics are investigated separately.

A. Check the numerical parameters

1. Number of forcing (Re = 10)

In order to find the accuracy of the method in satisfying
the no-slip boundary condition on immersed boundary, the
following “boundary error” is defined:

Boundary error =
√√√√ 1

Nij

∑
i

∑
j

[�un
b(i,j ) − �ue

b(i,j )
]2

, (35)

where the superscript e and n refer to the exact and the
numerical solution, respectively. In the case of a stationary
body, the exact velocity on the boundary (off-lattice nodes)
(�ue

b) is equal to zero. The values of the numerical value
of velocity (�un

b) can be easily determined by step (f) in
Table II. Nij is the number of boundary points. The ef-
fect of forcing number (NF) on drag coefficient (CD) and

TABLE V. The effect of number of forcing loops (NF) on drag coefficient and boundary error at Re = 10 at different power-law indices
using both the two-point and four-point discrete delta function.

Number of forcing loops NF = 1 NF = 10 NF = 20

(CD )2p

(CD )4p

2.936
2.779

2.940
2.800

2.942
2.779

n = 0.7 (B Error)2p

(B Error)4p

2.721×10−3

5.198×10−3
4.743×10−4

7.720×10−5
3.358×10−4

7.270×10−5

(CD )2p

(CD )4p

2.838
2.854

2.841
2.857

2.845
2.858

n = 1.0 (B Error)2p

(B Error)4p

2.562×10−3

5.349×10−3
3.596×10−4

5.937×10−5
2.854×10−4

5.501×10−5

(CD )2p

(CD )4p

2.984
3.079

2.963
3.096

2.871
3.099

n = 1.3 (B Error)2p

(B Error)4p

3.051×10−3

5.990×10−3
3.583×10−4

5.816×10−5
2.601×10−4

4.543×10−5
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TABLE VI. The effect of on-lattice grid size on the drag coefficient and boundary error in steady (Re = 10) and unsteady (Re = 100) states
and different non-Newtonian power-law indices.

Re = 10 Re = 100

CD B Error Avg. CD B Error

801 × 801 n = 0.7 2.901 4.032 × 10−4 1.358 5.633 × 10−4

n = 1.0 2.975 3.327 × 10−4 1.421 4.835 × 10−4

n = 1.3 2.894 2.872 × 10−4 1.523 4.139 × 10−4

1201 × 1201 n = 0.7 3.053 3.889 × 10−4 1.320 4.167 × 10−4

n = 1.0 2.954 3.245 × 10−4 1.372 3.695 × 10−4

n = 1.3 2.886 2.807 × 10−4 1.492 3.381 × 10−4

1601 × 1601 n = 0.7 2.942 3.358 × 10−4 1.307 3.762 × 10−4

n = 1.0 2.846 2.854 × 10−4 1.355 3.328 × 10−4

n = 1.3 2.871 2.601 × 10−4 1.482 2.949 × 10−4

boundary-error (BE) at Re = 10 in the Newtonian (n =
1), shear-thinning (n = 0.7), and shear-thickening (n = 1.3)
fluids is presented in Table V. The obtained results are
provided for both two-point and four-point interface schemes.
According to Table II, in the case of NF = 1, only one transition
step between the off-lattice and on-lattice nodes takes place
and consequently the explicit diffuse interface scheme (as
presented in Table I) will result. In Table IV, a significant
decrease in the boundary error is seen by increasing the forcing
loop number for both two-point and four-point interface
schemes.

2. The effect of on-lattice grid refinement

In Table VI, the effect of on-lattice grid size on the
drag coefficient and boundary error in steady (Re = 10)
and unsteady (Re = 100) states for the different non-
Newtonian power-law indices is presented. This table is
presented for a two-point interface scheme. As the num-
ber of computational nodes increases, the boundary error
reduces significantly for all cases. The dominant behavior
is slow reduction of drag coefficient with respect to the
growth of the number of grid points but these variations
are different for various Reynolds numbers and power-law
indices.

3. Arc spacing of off-lattice distance (Re = 10)

Table VII shows the effects of arc spacing of off-lattice
distance located on the boundary of IB for different values
of power-law indices. According to Table VII, decreasing of
�sb has no significant effect on the obtained results. Actually,
refinement of off-lattice points only increases the speed of
convergence. For example, in the case of Newtonian flow

(with NF = 20 and using the two-point interface scheme),
changing the arc spacing of off-lattice distance from �sb = h

to �sb = h/2 leads to 2.72% reduction in convergence steps.

B. Flow characteristics

1. Streamlines of different flow regimes

Figures 4–6 show the streamlines of the non-Newtonian
fluid flow over a cylinder for the shear-thinning non-Newtonian
(n = 0.7), Newtonian, and shear-thickening non-Newtonian
(n = 1.3) fluid flow, respectively. These figures are associated
with different Reynolds numbers using the two-point interface
scheme. As shown in this figure, the non-Newtonian fluids
with different Reynolds numbers experience different states,
i.e., steady flow with no wakes behind the cylinder [Figs. 4(a),
5(a), and 6(a)], steady flow with two axisymmetric wakes
[Figs. 4(b), 5(b), and 6(b)], and unsteady shedding flow with
two asymmetric wakes [Figs. 4(c), 5(c), and 6(c)]. These
different contours show that the flow regime is sensitive to
the Reynolds number and power-law index of non-Newtonian
fluid. On the other hand, the present results show the ability
of the current method for detecting the different states of
non-Newtonian fluids.

Figures 4(b), 5(b), and 6(b) show the dependence of the
wake length on the power-law index. The recirculation length
in Figs. 4(b), 5(b), and 6(b) are 1.945, 2.336, and 2.874,
respectively. The wake tends to be shorter in shear-thinning
fluids than in Newtonian and shear-thickening fluids at the
same value of the Reynolds number. The maximum rate of
fluid deformation takes place near the surface; therefore the
viscosity is minimum in this region for shear-thinning fluids
and a thin layer of low viscosity fluid encapsulates the cylinder.
A reduction in the shear rate is observed away from the

TABLE VII. The effects of arc spacing of off-lattice distance (�sb) located on the boundary of IB.

Arc spacing of curve boundary distance �sb = h �sb = h/1.5 �sb = h/2

CD 2.943 2.943 2.942
n = 0.7

B Error 7.556 × 10−5 3.358 × 10−4 3.953 × 10−4

CD 2.846 2.846 2.843
n = 1.0

B Error 6.424 × 10−5 2.854 × 10−4 3.35 × 10−4

CD 2.967 2.884 2.884
n = 1.3

B Error 6.284 × 10−5 2.601 × 10−4 3.109 × 10−4
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FIG. 4. (Color online) Streamline contours for the shear-thinning
non-Newtonian fluid flow (n = 0.7) at (a) Re = 1, (b) Re = 40, and
(c) Re = 100.

cylinder (yielding high viscosity of the fluid). The latter acts
as an effective solid boundary which suppresses the tendency
for flow separation, and thus separation is somewhat delayed
in shear-thinning fluids. The high shear rate in the vicinity

FIG. 5. (Color online) Streamline contours for the Newtonian
fluid flow at (a) Re = 1, (b) Re = 40, and (c) Re = 100.

FIG. 6. (Color online) Streamline contours for the shear-
thickening non-Newtonian fluid flow (n = 1.3) at (a) Re = 1, (b)
Re = 40, and (c) Re = 100.

of the cylinder leads to high viscosity for shear-thickening
fluids near the surface, and the slow moving viscous fluid
encapsulates the cylinder. This slow moving viscous fluid
meets the low viscosity fluids away from the cylinder. In
other words, for n > 1, the maximum viscosity occurs near
the surface of the cylinder which progressively decreases
elsewhere and therefore, in this case, the effective size of
the bluff body increases which will translate into a higher
value of the Reynolds number than its nominal value. This
leads to an early flow separation in this case. For Newtonian
fluids, wake length shows linear dependence on the Reynolds
number. This linearity also seems to hold for shear-thickening
fluids, but the dependence is seen to be slightly weaker in
shear-thinning fluids (Fig. 7) which is in a sense consistent with
the aforementioned discussion on the delayed wake formation

FIG. 7. (Color online) The variation of recirculation length with
respect to Reynolds number in different power-law indices.
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FIG. 8. (Color online) Time evolution of (a) drag and (b) lift coefficients for the shear-thinning (n = 0.7), and shear-thickening (n = 1.3),
non-Newtonian and Newtonian fluids at Re = 100 (NF = 20).

in these systems. Figures 4(c), 5(c), and 6(c) are presented in
135 × 103 time step. As seen from these figures, the place and
the size of the vortex which is formed behind the cylinder in
the same time is highly dependent on the power-law index.

2. Time evolution of drag and lift coefficients

Figures 8(a) and 8(b) represent the time evolution (in 100 ×
103 steps) of drag and lift coefficients for the shear-thinning
(n = 0.7), shear-thickening (n = 1.3), non-Newtonian, and

Newtonian fluids at Re = 100, respectively. These figures are
depicted for both two-point and four-point interface schemes
and NF = 20. As seen from these figures, in the unsteady state,
the variations of drag and lift coefficients are periodic for
both interface schemes. The periodic time increases with the
growth of power-law indices for both drag and lift coefficients.
Although there is no significant difference for drag coefficient
values in two-point and four-point interface schemes, the
difference of lift coefficient are considerable for these interface
schemes. The lift coefficient values related to the two-point

TABLE VIII. The average Nusselt number for different power-law indices and Reynolds number.

n = 0.6 n = 0.8 n = 1.0 n = 1.2 n = 1.4

Re = 20 Two points 3.024107 2.86705 2.788048 2.670105 2.626354
Four points 3.026998 2.896804 2.791445 2.69953 2.629049

Re = 40 Two points 4.051846 3.869223 3.710647 3.572922 3.467057
Four points 4.063633 3.869972 3.709672 3.570668 3.461448

n = 0.7 n = 0.85 n = 1.0 n = 1.2 n = 1.4
Re = 60 Two points 4.89611 4.68663 4.52172 4.30766 4.14517

Four points 4.93029 4.64969 4.35909 4.25228 4.09753
Re = 80 Two points 5.73421 5.46021 5.2857 5.02179 4.77764

Four points 5.72315 5.41414 5.20604 5.00481 4.74103

053312-11



AMIRI DELOUEI, NAZARI, KAYHANI, AND SUCCI PHYSICAL REVIEW E 89, 053312 (2014)

FIG. 9. (Color online) The variation of drag coefficient with
respect to (a) the power-law indices at different Reynolds numbers
and (b) Reynolds number at different power-law indices.

interface scheme are higher than the corresponding values
in the four-point interface scheme for non-Newtonian fluids.
In the case of Newtonian fluid, the differences are hardly
detectable.

3. The variation of drag coefficient with respect to the Re and n

The variation of drag coefficient with respect to Reynolds
numbers (at different power-law indices) and with respect
to the power-law indices (at different Reynolds numbers)
are shown in Figs. 9(a) and 9(b), respectively. These figures
are presented for the two-point interface scheme. According
to Fig. 9(a), the drag coefficient generally decreases as the
Reynolds number increases for all power-law indices. The
slope of variation of the drag coefficient curves is lower for
large values of Reynolds numbers [Fig. 9(a)]. As seen from
Fig. 9(b), the trend of the drag coefficient with respect to
power-law indices is different for low and high Reynolds
numbers. At low Reynolds numbers (Re < �10) the skin
friction drag is effective. This part of the drag is caused by
shear stress on the surface of IB where it is affected by the
fluid in which it is immersed. In the low Reynolds number the
shear stress on the surface of IB will be decreased with the
growth of n and leads to lesser values of drag coefficients. At
high Reynolds numbers, in addition to the friction drag, the
pressure drag due to the flow separation is important, too. In
the high Reynolds numbers (Re > �10), the shedding vortex
is larger in higher power-law indices [see Figs. 4(c), 5(c), and
6(c)] which leads to larger amounts of drag coefficient.

4. The variation of average Nusselt number with respect
to the Re and n

Table VIII shows the values of average Nusselt number at
different Reynolds numbers for both two-point and four-point
interface schemes. Table VIII is presented for Newtonian,
shear-thinning, and shear-thickening fluids in a wide range of
power-law indices at Pr = 1. Implicit direct-forcing (NF = 20)
method is used for simulating both momentum and energy
equations. Regarding Table VIII, the values of average Nusselt
number increase with the growth of Reynolds number in all
power-law indices. In the specific value of Reynolds number,
the increase of shear-thinning behavior of a non-Newtonian
fluid leads to higher values of average Nusselt number, whereas
for the shear-thickening behavior an inverse trend will be
considered. This phenomenon is related to the lower viscosity
of shear-thinning fluids in comparison with the Newtonian and
shear-thickening fluids.

VI. CONCLUSIONS

In this paper, the non-Newtonian fluid flow and heat transfer
over a cylinder has been investigated using the direct-forcing
IB-TLBM. The split-forcing TLBE was used for solving the
computational fluid domain. Both two-point and four-point
interface schemes are used to compare the effects of boundary
sharpness on the accuracy of solution. A simple technique
based on predetermined parameters of diffuse IB-TLBM is
developed for calculating the Nusselt number. The main results
of this study are summarized below:

The IB-TLBM based on split forcing can capture the non-
Newtonian behavior of thermal fluid flows in the presence of
a heated immersed body in steady or unsteady states.

The on-lattice grid size has a significant effect on the flow
characteristics whereas the influence of off-lattice points is not
so noteworthy.

In the non-Newtonian steady flows over a cylinder, the
shedding vortex length is very sensitive to non-Newtonian
behavior indices.

The non-Newtonian behavior index has an important role
in the separation phenomenon in unsteady flows of non-
Newtonian fluids over an IB.

The drag coefficient reduces with growth of power-law
indices in low Reynolds numbers (Re < �10) whereas this
variation is inverse for large Reynolds numbers (Re > �10).

The Nusselt number is very sensitive to power-law index
in a way that the heat transfer will be increased with
the increment of shear-thinning behavior of non-Newtonian
fluid.

Since the IB method is highly suitable for simulating
moving boundaries, the current in the IB-TLBM algorithm
can be considered as a base structure for investigating flow
and heat transfer in non-Newtonian fluids with moving bodies
in future studies.
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