
PHYSICAL REVIEW E 89, 053311 (2014)

Ab-initio reconstruction of complex Euclidean networks in two dimensions
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Reconstruction of complex structures is an inverse problem arising in virtually all areas of science and
technology, from protein structure determination to bulk heterostructure solar cells and the structure of
nanoparticles. We cast this problem as a complex network problem where the edges in a network have weights
equal to the Euclidean distance between their endpoints. We present a method for reconstruction of the locations
of the nodes of the network given only the edge weights of the Euclidean network. The theoretical foundations
of the method are based on rigidity theory, which enables derivation of a polynomial bound on its efficiency. An
efficient implementation of the method is discussed and timing results indicate that the run time of the algorithm
is polynomial in the number of nodes in the network. We have reconstructed Euclidean networks of about 1000
nodes in approximately 24 h on a desktop computer using this implementation. We also reconstruct Euclidean
networks corresponding to polymer chains in two dimensions and planar graphene nanoparticles. We have also
modified our base algorithm so that it can successfully solve random point sets when the input data are less
precise.
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I. INTRODUCTION

Reconstruction of heterogeneous and complex systems
using pair correlation functions or pair distance information is
a problem that arises in many branches of materials physics
[1,2], in biology [3–6], and in a variety of engineering
applications [7,8]. We distinguish between two problems: first,
where the objective is to find a statistical characterization
of a heterogeneous system consistent with experimental
information. In these cases the reconstruction is not unique, but
instead generates an ensemble of structures that are on average
consistent with the data. Reverse Monte Carlo methods [9]
for the atomic structure of glasses and simulated annealing
methods for a range of heterogeneous materials are in this
class. Large samples are often used and the system is highly
underconstrained as there are many more degrees of freedom
in the model than there is information in the data. Second,
the related but significantly different problem where we seek
to reconstruct a specific, unique network or structure. The
amount of information in the data must constrain the degrees
of freedom in the structure. This problem can be hard for
structures with only ten to hundreds of atoms or components.
Uniqueness is lost when the model has too many degrees
of freedom as compared to the available data. This unique
structure problem is the focus of our study. Surprisingly, we
find that it is possible to efficiently reconstruct large complex
structures in two dimensions, given only Euclidean distance
information.

The practice of crystallography represents the gold stan-
dard for structure determination and it provides methods to
overcome the phase problem. If there are no homometric
variants [10], it provides a unique crystal structure. When
crystals are not available, but a unique structure is still the
objective, new methods are required. One successful approach
is the determination of protein structure in solution that
may be found by using pair distance information extracted
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from NOESY NMR data [4,5,11–13]. Two other approaches
are emerging. The first is determination of the structure of
individual nanoparticles using lensless imaging algorithms
[14–17]. The second approach is extracting a list of interatomic
distances from scattering data and solving a new inverse
problem to find the atom locations. Here we present a highly
efficient method to solve the latter inverse problem for the
case of complex networks or random point sets in two
dimensions.

As discussed recently in [18–20] by Torquato and collab-
orators, reconstruction of heterogeneous systems in general
requires multipoint correlation functions. However, pair cor-
relations are by far the most readily available structural data
for heterogeneous materials as they are found by a Fourier
transform of elastic electron, x-ray, or neutron scattering data
collected, for example, at national facilities. This provides a
strong motivation to find methods to determine the extent to
which we can reconstruct heterogeneous systems only using
pair information. The most fundamental pair information is
the list of distances between points or atoms in a structure,
reducing the problem to an inverse problem, namely, given a
set of interatomic distances find the location of the atoms, up to
global rotations, translations, and reflections of the structure.
This pair distance inverse problem (PD-IP) may be interpreted
as a complex network reconstruction problem where the edge
weights are equal to the Euclidean distances between nodes in
the network.

The PD-IP is central to determining protein structure from
NMR data, however there are vital differences between the
problem we study and the NMR PD-IP problem. The most
important difference is that the list of residues or sequence of
a protein is known, enabling mutation and other experiments
to be carried out to specify the points between which each
distance lies. This leads to the assigned pair distance inverse
problem (APD). In contrast, pair distances are not assigned in
problems concerning, for example, many materials and most
heterogeneous media. This is the unassigned pair distance
inverse problem (UPD), and it is a significantly harder inverse
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problem. In fact, APD algorithms for reconstruction of atom
locations from precise distances is known to be easy, being of
order the number of atoms in the structure (N ). However, NMR
is plagued by uncertainties in the experimentally determined
interatomic distances, typically of order 25% or higher [21].
The problem of finding protein structure from NMR data is
then best treated using loose restraints rather than hard distance
constraints. The energy landscape of the APD with loose
constraints has many of the features of spin glass problems, and
structure determination with imprecise or missing distances is
widely believed to be computationally challenging (NP hard)
[1,22–25].

In almost all other Euclidean network reconstruction prob-
lems the distances are not assigned, as the data do not indicate
which nodes lie at the end of each distance. For example,
the pair distribution function method is used for the analysis
of the local structure of nanoparticles and complex materials.
In many complex materials, such as high performance ther-
moelectric materials [26], high temperature superconductors
[27], and manganites [28], crystalline order and heterogeneous
local distortions co-exist so that crystallographic and PDF
methods are complementary. Crystallography finds the average
structure and the PDF of the local structure [29,30]. The pair
distribution function gives a direct measure of the list of
interatomic distances arising in the local structure, however
the endpoints of the distances are not known so we face
a computationally challenging UPD problem known as the
nanostructure problem [31].

Recently, in collaboration with the Professor Billinge’s
group at Columbia University, we developed efficient algo-
rithms for the UPD problem for cases where there is significant
symmetry in the structure, including C60 and a range of
crystal structures. In those cases we found that two types
of algorithm worked well, genetic algorithms and the novel
Liga algorithm [32–34] that uses a combination of ideas from
dynamic programming with backtracking, and tournaments.
Though these methods work well for structures with relatively
high symmetry, solving structures with hundreds of points,
they fail miserably for low symmetry problems such as random
point sets due to the large number of unique pair distances in
random structures. They thus fail for the general problem of
complex Euclidean networks.

A formal statement of the UPD problem is as follows.
We are given a list of distances {dl}, l = 1 . . . M , between
N points in a D-dimensional Euclidean space, where M =
N (N − 1)/2. Our task is to find coordinates of the points
{�ri}, i = 1, . . . ,N such that the distance between every pair
of points |�ri − �rj | = rij is a member of the distance list {dl}.
Moreover, we require that every distance in the list {dl} occurs
for some pair of points (i,j ) in the structure.

The only inputs to the Euclidean network reconstruction
algorithm described below are the number of points in the
network N and the interpoint Euclidean distances. Physically,
it is useful to think of the Euclidean distances as natural
lengths of Hookian springs, l0

ij so that we may define an energy
function,

E
({

l0
ij

}) =
∑

ij

kij

(
lij − l0

ij

)2
. (1)

In the ideal UPD problem the distance list is known
precisely, but we don’t know the mapping (i.e., assignment)
dl → l0

ij . This is the precise UPD. In the precise UPD the key
computational difficulty is to find this mapping or assignment
of dl to lij . If the correct assignment is found the energy is
zero, while wrong assignments lead to stretched or compressed
springs and nonzero energy. Here, we present an algorithm that
solves the unassigned problem (UPD) in the precise case in
two dimensions and hope that it will offer insights that lead to
techniques for solving the imprecise case.

Two examples of this problem are shown in Fig. 1. The top
panel of Fig. 1 presents an example of a degenerate distance
list (i.e., distances are repeated), typical of structures which
have high symmetry, while the bottom panel of Fig. 1 is
an example of a random point set where all distances are,
with high probability, unique. Since the number of Euclidean
distances is M = N (N − 1)/2, a search over all permutations
of the distances to find the correct assignment of dl to lij
requires computational time proportional to the factorial of
M . This is worse than exponential time complexity and thus a
very poor way to proceed.

The rest of this paper is organized as follows. Section II
summarizes the theoretical concepts upon which the UPD
reconstruction algorithm is based. The key concepts, based
on constraint counting and generic graph rigidity, have a long
history in the physics and mathematics literature. Section III
discusses implementation of the procedure, which broadly
consists of two steps: core finding and buildup. A naive imple-
mentation is quite inefficient, however a simple optimization
where cores are found using a selected subset of the distance
list provides a much more efficient implementation. We also
develop a loose polynomial upper bound on the computational
efficiency of the algorithm and compare it with the actual
data. Large random point sets may yield distance lists that are
close to degenerate, leading to problems with reconstruction.
Section IV discusses potential applications and extensions of
the algorithm. Finally in Section V, we make our concluding
remarks.

II. RIGIDITY THEORY OF UNASSIGNED PD-IP

Graph rigidity theory addresses how many independent
constraints are required to ensure that a graph is rigid [35–38].
This subject was initiated by James Clerk Maxwell, leading
to the development of mathematical theories of graph rigidity
and physical approximations to the rigidity of glasses. In D

dimensions a point has D translational degrees of freedom,
so a structure with N nodes has DN degrees of freedom.
The number of internal degrees of freedom is DN − D(D +
1)/2 as there are D(D + 1)/2 = D + D(D − 1)/2 degrees
of freedom due to global translations (D) and rotations
[D(D − 1)/2]. An object is rigid when its internal degrees
of freedom are constrained, leaving only its global rotations
and translations.

A constraint such as an interpoint distance contributes to
the rigidity of a structure only if it is linearly independent
with respect to the other constraints in the structure, so that
identification of such constraints is key to accurate constraint
counting. Several mechanisms for the linear dependence
of constraints in small structures are illustrated in [22].
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FIG. 1. (Color online) Simple examples of structures found from Euclidean distance lists. The figures on the left are plots of the distance
lists for top: a C60 fullerene that has a degenerate distance list; and bottom: a random set of ten points in the plane that has a nondegenerate
distance list. The fullerene has a total of 1770 interatomic distances, but only 21 unique distances. The random point set has 45 distances, which
are with high probability unique. The multiplicity is on the vertical axis while the distance is on the horizontal axis (in arbitrary units). The
figures on the right hand side are solutions to the inverse problem found using the Liga algorithm (fullerene) and Tribond (random point set)
to find the structure from the given distance lists, without the use of any other information. For the random point set all interatomic distances
are drawn in the figure. For clarity only the nearest neighbor bonds are drawn in the fullerene case. In this study, the distance lists are taken
from the known structure and then we try to solve the inverse problem using only the distance list. In practice, the structure is unknown and the
distance lists are derived from experiments, particularly x-ray and neutron scattering data.

In a classic paper, Laman [39] presented a combinatorial
characterization of the rigidity of graphs in the plane and
Henrickson [22] provided the basis for efficient algorithms
that have been widely applied in physics, applied mathematics,
and in biology. Note that if a graph is rigid it can support an
applied stress. Addition of further bonds or edges (redundant
bonds) to a rigid graph does not increase its rigidity, though
of course the elastic moduli continue to increase as further
bonds are added. Redundant bonds lead to overconstraint
except in special cases. This is an important feature in physical
situations, where energy is almost certainly nonzero, because
they are a source of internal stress.

Now we are ready to address how much information is
necessary to solve the UPD problem. The critical number of
independent constraints, Bc, required to make the network
rigid is

Bc = DN − D(D + 1)/2. (2)

In an ideal NMR or PDF experiment all interparticle distances
would be extracted so that the number of interparticle
constraints would be N (N − 1)/2, which appears to be
more than enough to constrain the structure. However, it
is not clear that an interparticle distance corresponds to an
independent constraint. In fact, the number of independent
constraints is given by the number of independent rows in the
rigidity matrix, the elements of which are derived from the
vector differences between nodes in the relevant Euclidean

vector space. Although an edge defined in this vector space
may correspond to one of the independent rows, Euclidean
distances alone are insufficient for constraint counting. This
can be seen by considering the C60 molecule as illustrated
in Fig. 1, where there are only 21 different interatomic
distances. Since for a buckyball, Bc = 3 × 60 − 6 = 174 �
21, it appears that there are far fewer distance constraints than
required to find the correct structure using the distance list
alone. However, distances with the same length need not be
linearly dependent as they may have different directions in
the structure. Mathematical analysis of this important issue
is currently absent. In contrast, for the generic random point
sets that are of interest here, all the distances and directions
are, with high probability, unique. A random Euclidean
network with N = 60 will therefore provide 1770 independent
constraints, far more than required to specify the network in
three dimensions.

The above discussion indicates that there are more than
enough constraints in complex Euclidean networks to specify
the network structure. As described in the next section,
these rigidity concepts may be used to develop an efficient
reconstruction algorithm. However, it is important to keep in
mind that Laman’s theorem only applies to planar structures.

The theoretical foundation of efficient algorithms for the
UPD problem rests on rigidity theory discussed above that
states that an isostatic (i.e., minimally rigid) structure in
two dimensions [from Eq. (2)] has Bc = 2N − 3 independent
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distance constraints. However, the key test of whether the
assignment of distances to natural lengths is correct is to place
at least one additional, overconstrained Euclidean distance
into the structure. A distance incompatible with the isostatic
structure leads to a finite strain energy cost in Eq. (1), due to
stretched or compressed springs, while a distance compatible
with the isostatic structure has zero energy cost. Note that many
isostatic structures that are inconsistent with the final structure
can be made, but with high probability no overconstrained zero
cost structures can be made that are inconsistent with the final
reconstruction.

III. TRIBOND ALGORITHM

In two dimensions the smallest structure with at least one
overconstrained bond is N = 4, where the total number of
bonds is (4

2) = 4 × 3/2 = 6, while the number required for
isostaticity is [from Eq. (2)] 2N − 3 = 5. The key observation
is that if six unique Euclidean distances taken from a target
structure form a four-point structure, and the cost function for
this structure and distances is zero, then it is almost certainly
a unique and correct substructure of the target. We call a zero
cost correct substructure with six distances and four sites a
core. If the distance list is nondegenerate, then with high
probability, this core is a correct substructure of the target
structure. We may then build up from the core iteratively to
find the complete structure. At each step we have an existing,
correct substructure. We then add one site and search for three
edges that are compatible with the new node and with three
nodes that are in the existing structure. The addition of one
site and two edges is an isostatic addition, while the addition
of one site and three edges is overconstrained. If we find
three edges compatible with one additional site then, with
high probability, this site is part of the target structure.

In practice, to construct a core (Fig. 2) we choose the
smallest bond as the “base bond.” We then test all the bond
combinations using the triangle inequality to generate feasible
triangle pairs. This is performed in two steps: first we fix a
triangle as the “base triangle” and then search through all other
candidate (“top”) triangles that share the same base bond. After
all the top triangles have been exhausted a new base triangle
is selected and the process continues. For every triangle pair
we calculate the length of the bond that connects the two apex
points, which we call the bridge bond. The length of the bridge
in the candidate core is tested against the lengths in the distance

FIG. 2. (Color online) An example of a core. In two dimensions,
it consists of four points. The horizontal bond is the base (in black),
the bonds below it (in blue) make up the base triangle while those
above it (in red) make up the top triangle. The vertical bond is the
bridge (in green).

list. If the candidate bridge length matches an unused distance
in the distance list, we have found a core.

In the buildup procedure, we try to add more sites to
the core. The addition of a site consists of generating candidate
top triangles using the base bond and two distances from the
distance list. After we place this site, we carry out bridge
testing to determine whether the structure has zero strain
energy. While core finding requires a search over all possible
base and top triangles, buildup requires only a search through
top triangles as the base triangle is a known part of the
structure. Consequently, buildup requires significantly fewer
computations than core finding.

Our Tribond implementation of the above procedure for the
unassigned PD-IP algorithm may be summarized as follows:

We are given the sorted distance list {dl} with the number
of nodes in the network N . (The target network is generated
by randomly placing N points in a square box with sides of
length N .) We start with an empty set, then

(A) Core finding procedure
(1) Choose the shortest bond as the base bond and a window

(subset) of W = 6 smallest entries in the distance list for the
core finding search.

(2) Iterate over all triangles constructed with the triangle
inequality that have the same base bond using distances in the
window W .

(3) Search over all pairs of feasible triangles generated
above and calculate the bridge bond. Using a binary search,
test if there is an unused distance that matches the bridge bond.
If such a value is found, we have a core. Remove the edges
used from the distance list and exit to the buildup procedure.

(4) Increment W by 6 and return to (1), making sure not to
retest bond combinations.

(B) Buildup procedure
(1) Search over all sets of two edges from the distance list

to find a set compatible with the base triangle in the existing
structure. Search over the distance list to test the bridge bond.

(2) If successful, remove from the distance list the edges
that are used in connecting the newly added node. If size of
reconstructed structure is <N , return to previous step and
resume the search.

In these procedures the choice of tolerance is important to
ensure efficient reconstruction with few restarts, particularly
for large structures. The results presented below are for optimal
tolerance settings, so that even for large structures restarts are
required only 10% of the time.

A coarse upper bound on the computational time for this
procedure consists of two parts: (i) the time to find the core;
(ii) the time to carry out the buildup procedure. The number
of unique cores in the point set is (N4 ), the number of ways of
choosing four sites from N total sites. The number of ways
of choosing six distances from the set of M = N (N − 1)/2
distances is (M6 ). If we had done a brute force search then

we would find a core in computational time τcore ∼ (M6 )/(N4 ) ∼
N8. Similarly, using brute force for the buildup would take
a computational time that scales as τbuildup ∼ (M3 ) ∼ N6. This
clearly shows that the brute force approach is polynomial,
although a high order one.

The simple methods we have developed reduce the com-
putational time significantly from the coarse upper bounds of
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FIG. 3. Number of feasible triangles using the bonds from a given
distance list go up when we choose a larger bond as base for the
triangle. Statistically, using the shortest bond in the distance list as
the base leads us to the core in the shortest time. This plot shows data
from runs using 10 different structures with N = 128.

the last paragraph. The key observation is that many of the
distances in the distance list violate the triangle inequality
d1 + d2 � d3. A large fraction of the computational time in a
brute force search is spent exploring these trivially inconsistent
distance combinations. If we fix the base bond, the bridge
bond is found using binary search, using simple combinatorial
arguments, τcore ∼ (M4 )ln(N )/(N2 ) ∼ N6ln(N ). For a triangle
with base bond a and second side b, the range of values for
third side c is (b − a,b + a). So a larger base bond requires
a much larger range of feasible values for the third side and,
hence, the number of feasible triangles increases. But the actual
number of triangles in the target structure is the same for any
choice of base bond. This is seen in Fig. 3, where the number
of feasible triangles increases with fractional position of the
base bond in the distance list (for a list of distances li that are
ordered smallest to largest, with a total number of distances
M , the fractional position is i/M). Hence, statistically, we find
a core in the least time if we choose the shortest bond as our
base.

Distances are also more likely to satisfy the triangle
inequality if they are drawn from a list of comparable,
rather than disparate, lengths. Since the base bond is short,
a core is more likely to be found quickly by searching over
other short distances first (the small-core hypothesis, Fig. 4),
and including longer distances only as necessary. This is
implemented as a window of the W shortest distances in
the distance list, which increases periodically as core finding
proceeds. Of the six bonds in the core, the base is fixed, four
are drawn from the window, and the bridge bond may appear
anywhere in the distance list. We observe that a window of size
W ∼ N is usually sufficient to find a core. Therefore, typical
computation time is τcore ∼ (N4 )ln(N ) ∼ N4ln(N ).

From these arguments, supported by Figs. 3 and 4, we
expect that using the smallest bond as the base will lead to the
core finding and buildup in a much shorter time. Figure 5 shows
that the improvement is about three orders of magnitude.

Attempting to find the core for large point sets (N > 200)
frequently leads to bad cores. Bad cores are overconstrained
substructures whose distances are part of the given distance
list within a given numerical tolerance, but the substructure
is not present in the target structure. This occurs due to
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FIG. 4. Empirical example of the small-core hypothesis. The
hypothesis states that there exists a core where at least five of the six
total bonds are drawn from a relatively small window of the shortest
bonds in the structure. Varying the base bond’s fractional position in
the distance list for ten different N = 1024 structures, core finding
shows that using the smallest distance as the base bond reduces the
typical size of the window required to find a core by an order of
magnitude.

finite tolerance when checking for the bridge bond and also
finite precision while placing the points using triangulation.
Triangles with both small and large distances are likely to
have small angles, resulting in a greater loss of numerical
precision. A base bond of intermediate length would limit this
loss, but is not sufficient to forsake the performance benefits
of a small base bond previously outlined. Instead, we try to
use all six bonds (in the core) as the base bond and check if the
corresponding bridge bond is valid or not. We only take cores
for which the bridge bond is valid in all of the six cases. This
check is very good at identifying bad cores.

A structure comparison routine provides another test for bad
cores by overlaying the points in the reconstructed structure
(�r) with the points in the target structure ( �R) and calculates an
overlay error,

εoverlay =
∑

i

|�ri − �Ri |2. (3)
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FIG. 5. Figure illustrating the effect of base bond size on the
computational cost (bridge bond checks) of reconstruction for
N = 32. The plots for the total and core finding steps are nearly
indistinguishable because the core finding is orders of magnitude
more expensive than buildup. If the smallest bond is chosen as the
base, the total computational cost of reconstruction is nearly three
orders of magnitude lower than when a longer base bond is utilized.
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This error tells us if a given (sub)structure is part of the target
structure. This proves useful for testing purposes only, as in
principle the latter remains unknown. It is also used to verify
the correctness of the final structure.

If the buildup step fails to add any points after looping over
a certain number of bonds from the distance list, likely due to
a bad core, then we discard the substructure. We resume the
core finding step and attempt another buildup from a new core.
This heuristic helps identify probable bad cores efficiently.

It is important to choose an appropriate tolerance when
checking if the bridge bond is part of the distance list.
Using a very loose tolerance leads to a large number of
bad cores. On the other hand, using a very tight tolerance
excludes good cores, due to finite precision when carrying
out the triangulation to place the points in our substructure.
All calculations were performed using 80-bit x86 extended
precision floating point format (GNU GCC v.4.4.3 on an Intel
Core 2 Duo processor), which provides about 18 digits of
precision. We found that a relative tolerance of 10−12 is optimal
to retain good cores and filter out bad ones. When trying to
place points which are nearly collinear to the base bond a
loss of precision is observed due to small angles, as discussed
earlier. In such situations we relax the tolerance when checking
for the bridge bond.

To check the validity of a new point while doing buildup,
in addition to the bridge bond check, we check the ten
largest distances that it creates with the points already in the
substructure. Only if these are part of the distance list does the
new point get added to the structure. The three bond lengths
(two from the new triangle created and the third is the bridge)
that were used are removed from further reconstruction. This
reduces the list of available distances by 3. After placing the
nth point, updating all (n − 1) distances created between the
new point and the points already in the substructure reduces
the number of available distances substantially. However, due
to the computational cost of this update procedure, we see only
a small speedup in the buildup routine.

If, after buildup, the structure has fewer than the desired
number of points (N ), relax the tolerance for the bridge bond
checks by a few orders of magnitude. If the structure remains
incomplete, choose a different bond as the base bond and
buildup from the start. After reconstruction, we calculate the
distance error, which is based on the agreement between the
given distance list and the distances derived from the final
structure.

The Tribond algorithm ran for N = 8,16, . . . ,512 and the
computational cost was measured in a system-independent
manner by counting the number of bridge bond checks while
placing a point in both the core finding and buildup steps
(Fig. 6). The time required for buildup is about an order of
magnitude less than that for core finding. The scaling is τtotal ∼
N3.32. This is better than the estimate obtained earlier using
simple combinatorial arguments, which did not account for the
speedup gained by exploiting the triangle inequality.

IV. APPLICATIONS

In the previous section we showed that Tribond is able to
reconstruct random point sets, but it is not limited to such cases.
Tribond is expected to solve any structure with all distinct
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FIG. 6. Experimental results for a series of reconstructions from
distance lists generated from random point sets in two dimensions.
The computational cost (bridge bond checks) for finding the core,
performing buildup, and their total is presented as a function of the
number of points. The plots for the total and core finding steps
are nearly indistinguishable because core finding takes orders of
magnitude more time than buildup. Each point on the plots is an
average over 25 different instances of random point sets. We find that
the total time scales as τtotal ∼ N 3.32.

distances. For example, an adsorbed polymer with varying
nearest-neighbor distance modeled as a two-dimensional (2D)
self-avoiding walk in the continuum will, with high probability,
have a distance list with unique entries (Fig. 7).

Structures occurring in nature often have symmetric or
otherwise ordered features, with small deviations from ideal
behavior due to, for example, finite size effects. Tribond is
able to solve sufficiently perturbed lattice structures, as shown
in Fig. 8. These perturbations create a distance list which
has unique entries with respect to the algorithm’s numerical
precision.

A. Tribond for structures with high symmetry

The idea behind Tribond was refined to handle some
structures with high symmetry (as indicated by a degenerate
distance list). To handle degeneracy we restrict each step
of core finding and buildup to a subset of the distance list
consisting only of unique distances. Distance multiplicities
are updated, however, in the buildup step. This cuts down on
the number of bad cores and bad points (low cost, but wrong).
Using this modified approach we attempted to solve square
grids with up to N = 1024 (32 × 32) points. Nearly all the

FIG. 7. (Color online) A self-avoiding walk is a sequence of
moves that does not visit the same point more than once and is used
to model polymers. Tribond was able to successfully reconstruct the
above structure (N = 100) in a few minutes.
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FIG. 8. (Color online) Lattice structures perturbed to resemble
natural imperfections. Tribond reconstructs both in a few minutes.
On the top is a hexagonal grid (graphene nanoparticle [40]) with 144
atoms and the bottom is a square grid with 100 points.

reconstructions were successful, with runs taking no more
than 10 min on a desktop computer. In high symmetry cases it
is possible for buildup to fail by finding a wrong substructure
consistent with the distance list, preventing further addition
of points. This problem could not be overcome for N = 400,
676, and 900, where reconstruction failed.

B. Structure buildup from known core with
an imprecise distance list

Thus far distances have been known to a precision of
about 18 digits, such that in our trials substructures are
indistinguishable (to within a very small tolerance) to those
consistent with a theoretical distance list of infinite precision.
An imprecise distance list may be compatible with many
substructures not part of the target structure, or may lead to
high cost for any reasonable structure.

The inverse problem under these conditions is significantly
more challenging, both theoretically and practically. We
have attempted to address structure buildup from a known
substructure with an imprecise distance list in the case of

random point sets. The modification of the original buildup
algorithm described in Sec. III is as follows.

Assume a known initial substructure (not necessarily a
core) that serves as the starting point for reconstruction. The
modified buildup step (adding a point) now has multiple stages;
it uses a pool of candidate points which have low error with
respect to the current substructure, and adds the two candidates
which jointly lead to the lowest cost substructure. Because the
pool examines many possible ways to grow the substructure,
the likelihood of adding bad points is reduced. Adding two
points at once is justified empirically, as this appeared to make
the most acceptable tradeoff between success and run time.
The detailed steps follow.

(1) Define an empty pool that saves the coordinates of
k1 ≤ 20 candidate points to add to the current substructure.
Associated with each candidate is the cost of the new
substructure if that point were added. Populate the pool with
candidate points. First, randomly choose a bond in the current
substructure. Generate all triangles using two distances from
the distance list which share the chosen bond. Calculate the
cost for each candidate point (the new vertices). If this cost is
below a user-defined threshold add it to the pool, and if the pool
exceeds its maximum size remove the worst candidate. The
threshold significantly improves run time without affecting
the final structure.

(2) Randomly choose another bond in the current substruc-
ture and generate a new pool of size k2 ≤ 20 as described
above.

(3) Select the best candidates from either pool to make a
combined pool with k ≤ 20 points.

(4) Calculate the pair cost for adding two candidates to the
current substructure for each of the (k2) possible pairs.

(5) Add the two candidates with least pair cost to the
substructure. If its size is less than target size then go to
step 1.

Our results can be seen in Fig. 9, which shows the minimum
initial substructure size needed to reconstruct structures of
size N = 26, 50, 76, 100 for different values of the precision
(P ) of the input distance list. The units for the precision
of the distances is the number of digits. Our criterion for
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FIG. 9. Plot of minimum initial substructure size vs precision of
the input distance list for N = 26, 50, 76, and 100. A larger initial
substructure is needed for less precise distance lists. The typical run
time for N = 26, 50, 76, 100 was about 1 min, 10 min, 4 h, and 20 h
respectively, on a computer with a 2.2-GHz processor and 2 GB of
memory.
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success was that the algorithm successfully reconstructs at
least five of ten different random point sets. We can see that
as the distances become less precise, an initial substructure of
larger size is needed for successful reconstruction. When the
input data have a higher precision (P ≥ 6), we found that an
initial substructure size of 4 (i.e., a core) was sufficient for
reconstruction.

A notable case with imprecise distances is the PDF of
nanostructured materials, which can provide distance lists with
uncertainties of order 0.01 Å. For a typical nanoparticle of size
∼15 Å, this means the input distances from experimental data
will have three to four digits of precision and our algorithm is
a promising approach.

Experimental methods providing pair distance information
of comparable precision and sufficient quantity are rare.
Distances derived from the PDF may have uncertainties as
low as order 0.01 Å, and in some nanostructured materials
a sizable fraction of all pair distances can be resolved to
this level [41]. Under these circumstances the input distances
from the experimental data will have three to four digits of
precision, and our algorithm is a promising approach. We
are working on an algorithm that can handle incorrect or
missing distances, in addition to imprecise distances. Chemical
information like the presence of functional groups (aromatic
rings, etc.) can serve as a core and help find the larger initial
substructures necessary for buildup in the case of less precise
distances. Some approaches to these issues are discussed in the
context of reconstructing high symmetry nanostructures from
experimental PDF data using the Liga algorithm [32–34]. A
hybrid approach using Tribond (low symmetry) and Liga (high
symmetry) could potentially solve structures of intermediate
symmetry.

V. CONCLUSIONS

The problem of reconstructing complex Euclidean net-
works given only their unassigned Euclidean distances has
unique theoretical and algorithmic challenges, reflecting the

combinatorial explosion of possible assignments. We have
concentrated on finding structure from precise distances. The
Tribond algorithm consists of two steps: core finding and
buildup. The core is the smallest substructure with at least
one overconstrained bond. Choosing the smallest bond as the
base bond for reconstruction had a dramatic improvement in
performance. Computational cost of core finding was orders of
magnitude more than buildup. Tribond was able to reconstruct
random point sets in two dimensions of size ∼1000.

A modified approach was presented for the buildup step
with less precise data and given a known substructure. As
precision decreases the minimum size of the starting substruc-
ture must increase, underscoring the importance of techniques,
including core finding, which may help find good seeds for
reconstruction. We successfully reconstructed random point
sets of size 100, with the distances having four digits of
precision, given a known substructure of size 24. Solving
the unassigned distance problem arising from experimental
data requires further effort. These must include methods for
handling missing or incorrect distances and finding good
substructures to seed the buildup step. A hybrid approach using
Liga and Tribond could help overcome these issues. We are
currently working on extending the Tribond algorithm to three
dimensions, which will help us attack additional unassigned
pair distance scenarios, including the general nanostructure
problem.
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[24] J. Moré and Z. Wu, technical report, 1995.
[25] J. Saxe, in Proceedings of the 17th Allerton Conference on

Communications, Control and Computing, edited by J. B. Cruz
and F. P. Preparata (University of Illinois Urbana-Champagne,
Urbana, IL, 1979), pp. 480–489.
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