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Lattice Boltzmann scheme for electrolytes by an extended Maxwell-Stefan approach
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This paper presents an extended multicomponent lattice Boltzmann model for the simulation of electrolytes. It is
derived by means of a finite discrete velocity model and its discretization. The model recovers momentum and mass
transport according to the incompressible Navier-Stokes equation and Maxwell-Stefan formulation, respectively.
It includes external driving forces (e.g., electric field) on diffusive and viscous scales, concentration-dependent
Maxwell-Stefan diffusivities, and thermodynamic factors. The latter take into account nonideal diffusion behavior,
which is essential as electrolytes involve charged species and therefore nonideal long and short-range interactions
among the molecules of the species. Furthermore, we couple our scheme to a finite element method to include
electrostatic interactions on the macroscopic level. Numerical experiments show the validity of the presented
model.
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I. INTRODUCTION

In the past decade lattice Boltzmann models have become
a popular numerical method to solve reduced kinetic models,
in particular for the incompressible Navier-Stokes equation.
In subsequent years it has been applied successfully to
a number of complex problems in science and engineer-
ing [1–5]. A promising research area for lattice Boltzmann
methods is multicomponent flows in complex geometries,
e.g., porous media. In contrast to standard continuum-based
models, e.g., Refs. [6,7], lattice Boltzmann algorithms are well
suited for complex setups on high-performance computers.
However, a straightforward extension of lattice Boltzmann
BGK models to multicomponent flows fails due to the fact
that a proper way of interaction between the species has
to be defined in the kinetic formulation. In recent years a
number of different models have emerged: Some models
properly take into account the momentum exchange between
the species by pseduopotential interactions [8–11]. Others
have defined free energies [12–15], while still others [16,17]
have adopted a force coupling in the momentum equations,
derived from a linearized kinetic term and further [18–20]
avoid a linearization by two collision operators. In Ref. [21]
another LB scheme has been proposed aiming to mini-
mize a proper H function defined on the fully discrete
lattice.

Our work is a further extension of the models proposed
in Refs. [20,22] (which are based on Ref. [23]). Therefore, it
inherits most of the basic properties as the indifferentiability
principle; its main idea is to exchange momentum among the
species according to the Maxwell-Stefan formulation and the
fact that the diffusion equations are recovered even when
the mixture averaged diffusion approximation does not
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hold [24]. For further detailed comparison of existing models
we refer the reader to the previously mentioned publications
and references therein.

However, in this work a number of extensions for elec-
trolytes and electrodialytic processes is presented: Compared
to ideal mixtures, where any interaction between two species
is the same, electrolytes show additional nonideal diffusion
behavior (due to significant deviation from spherical molecule
shape, variations in molecule size, long-range electrostatic
interactions between molecules, and short-range van der Waals
interactions) and thus only parts of the ionic species might be
active. Even in diluted electrolytes the deviation from ideal
behavior becomes apparent [25]. The Maxwell-Stefan closure
relation incorporates these effects by use of the so-called
thermodynamic factors [26], a coefficient matrix which is
mathematically derived by the concept of activity coefficients.
To the knowledge of the authors this is the first time
that thermodynamic factors (and therefore nonideal diffusion
processes) are considered in the context of mixture lattice
Boltzmann models. Electric forces are the main driving force
for convection and diffusion in electrolytes and electrodialysis
processes, therefore we present a proper inclusion of these
driving forces in our finite discrete velocity model (FDVM).
In comparison to Ref. [22], our approach requires no additional
correction terms, works in presence of thermodynamic factors,
and is applicable in nonelectroneutral regimes, where strong
diffusive driving forces apply (as long as the diffusive asymp-
totic limit is applied). Since the Maxwell-Stefan diffusivities
for electrolytes show a significant dependence on species’
concentrations [27], we consider variable diffusivities in
our FDVM. The model recovers the governing conservation
equations asymptotically in the diffusive limit [28,29]. The
correct nonlinear hydrodynamic mixture behavior is recov-
ered, even in regimes where diffusion velocities are large (and
mixture velocity is small). Furthermore, our model recovers the
Maxwell-Stefan equations in terms of molar quantities (which
is more common for electrolytes) and it avoids the utilization
of nondefined quantities for liquid electrolytes (e.g., partial
pressures, etc.).
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This paper is structured as follows: In Sec. II we present
the equations of motion for an electrolyte solution. Section III
presents a simplified kinetic model, a FDVM, that recovers
the equations of motion for an electrolyte asymptotically.
Section IV provides simulation results of a fully discrete lattice
Boltzmann scheme derived by integrating the FDVM along
its characteristics. Finally, Sec. V gives a conclusion and an
outlook to future work.

II. GOVERNING EQUATIONS OF MULTICOMPONENT
ELECTRO-HYDRODYNAMICS

In this section we are concerned with the equations of
motion for a mixture composed of N distinct ionic species in
the regime of vanishing Mach number, influenced by external
electric and gravitational fields, E and g, respectively. Its mass
balance for species k in terms of its the molar concentration
nk is given by

∂tnk + ∇ · (nkw) = −∇ · Jk. (1)

The molar and density averaged mixture velocities are defined
by

w =
∑

k

nk

n
vk, v =

∑
k

ρk

ρ
vk. (2)

Additionally, we define the mixture molar weight and number
density fractions by

m = 1

n

∑
k

nkmk, χk = nk

n
,

with mk the molar mass of species k, and find the following
relation between molar fraction χk and mass density ρk: χk =
m
mk

ρk

ρ
. The mixture’s momentum conservation is given in terms

of an incompressible Navier-Stokes equation with external
forcing term

∂tρv + ∇ · (ρv ⊗ v + pI) = ν∇2(ρv) + ρg + ρeE︸ ︷︷ ︸
=:F

. (3)

Here F denotes the total mixture force per unit volume. The
equations of motion are well posed when an additional closure
relation for the diffusive fluxes Jk is provided.

It has been shown by experiments that the analytic
predictions of an extended Maxwell-Stefan closure relation
leads to reasonable results in case of electrolytes and
electrodialytic processes ([30,31]). In our case, we consider
the following extended Maxwell-Stefan model ([32,33])
(where F denotes the Faraday constant, E the electric field,
zk the ionic charge of species k, Vk its molar volume, and
yk = ρk/ρ its mass fraction):(∑

i

�k,i∇χi

)
− Fk + nkVk − yk

nRT
∇p

=
∑
l �=k

1

Dk,ln
(χkJl − χlJk), (4)

where the external diffusive forcing term Fk for species k is
defined by

Fk = 1

nRT
ρk

(
g + zkF

mk

E
)

− yk

nRT

N∑
l=1

ρl

(
g + zlF

ml

E
)

.

(5)

Please notice that, by definition of Fk , the sum of the external
diffusive forces vanishes. Furthermore, we notice that the
diffusive forcing terms related to the gravitation acceleration
in Fk cancel out. Additionally, in case of an electroneutral
mixture (zero charge of the mixture), we have

ρe =
N∑

l=1

F ρlzl

ml

=
N∑

l=1

Fnlzl = 0,

thus the electric forcing term in the summation part of Fk

vanishes. In general, the external diffusive forces Fk can
be decomposed into two parts: The total external force for
species k [i.e., ρk(g + EzkF/mk)/(nRT )] and the fraction
of the total mixture force acting on the species k [i.e.,
yk(
∑

l ρl(g + EzlF/ml))/(nRT )]. By subtracting these two
parts, Fk contains only that part of the external forces acting
exclusively on species k. The total mixture force is added to
the momentum equation that leads to a transport of all species
by advection of the mixture [cf. Eq. (3)].

The binary Maxwell-Stefan diffusivities in (4) can be
calculated in an electroneutral electrolyte solution by [27,34]

Di,j = D̃1(i,j ) + D̃2(i,j )ni+j + D̃3(i,j )n3/2
i+j

+ D̃4(i,j )n2
i+j + D̃5(i,j )

√
ni+j , (6)

where D̃1(i,j ), . . . ,D̃5(i,j ) are species-dependent coefficients
and ni+j = ni + nj denotes the combined number density
of species i and j . For nonelectroneutral conditions we use
properly adapted rules for binary Maxwell-Stefan diffusivities,
as given in Ref. [34], and we refer the reader to this publication
for a detailed discussion. Appendices A1 and A2 provide
numerical values for aqueous NaCl and H2SO4 solutions. It
is worth pointing out that even in simple electrolytes, e.g.,
aqueous NaCl mixture, diffusivities show a significant depen-
dence on ionic concentrations in the liquid, as D̃1(Na,Cl) = 0.
Furthermore, it is easy to check that, according to Eq. (6),
Maxwell-Stefan diffusivities themselves might be negative.
Although this seems to be wrong intuitively, it is sufficient
to ensure a positive-definite condition of the Maxwell-Stefan
diffusivity matrix to ensure well-posedness. A detailed
investigation is given in Ref. [35] and we refer to it in Sec. IV A,
Eq. (14).

The left-hand side of Eq. (4) is coupled by a matrix � that
contains the thermodynamic factors [26]. The thermodynamic
factor matrix is related to the concept of activity coefficients
γk and for electrolytes its functional dependence is given
by [36]

�k,i(x,t) = δk,i + χk(x,t)
∂ ln γk

∂χi

|(x,t).

A short derivation of the thermodynamic factors from
thermodynamic principles is given in Appendix B. From the
physical point of view, activity coefficients take into account
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the deviations from ideal behavior in a multicomponent fluid
in the following sense: In an ideal mixture, any interaction be-
tween two species is the same, hence properties of the mixture
may be expressed directly in terms of species’ concentrations
or partial pressures. However, in nonideal mixtures, as
electrolytes, these concentrations have to be scaled properly
by activity coefficients. Even at very low concentrations
electrolytes show a significant deviation from ideal behavior,
an effect that has been known for a long time [25], and thus
activity coefficients play an important role in mathematical
models of such mixtures. A number of different models for
the evaluation of activity coefficients and thermodynamic
factors exist. Theoretical activity coefficient models include
the Debye-Hückel model [25] and its extensions, e.g.,
Davies [37], Pitzer [38], and TCPC [39]. For concentrated
electrolyte solutions, activity coefficients can also be evaluated
by use of correlative methods, e.g., MOSCED, (e)NRTL,
UNIQUAC, and UNIFAC. We refer the reader to Ref. [36] for
a complete overview of these models. It should be noted that
all of these models are consistent with the Maxwell-Stefan
formulation without thermodynamic factors in the limit
of vanishing concentrations, i.e., γk → 1 when χk → 0
or χk → 1.

The electric potential ψ (and hence the electric field
E = −∇ψ) are obtained by

−
ψ = F
εmix

N∑
k=1

nkzk. (7)

In combination with properly defined boundary conditions
(Neumann or Dirichlet) the upper equation provides a well-
posed potential equation for the electric potential, where εmix

denotes mixture’s permittivity.

III. A SIMPLIFIED KINETIC MODEL FOR
MULTICOMPONENT ELECTRO-HYDRODYNAMICS

In this section we present a simplified kinetic model, a
finite discrete velocity model (FDVM), consistent with the
electrolyte’s equation of motion. It recovers them in the
asymptotic limit of vanishing Knudsen and Mach number.
Additionally, this FDV model will be the starting point for our
lattice Boltzmann model (LBM) that will be derived by spatial
and temporal discretization in Sec. IV.

In the BGK-FDV model we restrict the full Boltzmann
equation to a finite set of M discrete velocities and replace
the collision operator with its BGK version [40] (where m ∈
{0, . . . M − 1}) as follows:

∂tf
m
k + um · ∇f m

k = λk

(
f

eq,m

k − f m
k

)︸ ︷︷ ︸
=:Cm

k (f )

+dm
k . (8)

The collision parameter λk is defined by λk = BK/p′, where B

denotes a collision frequency, p′ denotes an upper limit of the
mixture pressure variations, and K denotes the bulk modulus
of the liquid mixture measuring the mixture’s resistance to
uniform compression. Numerical values for some electrolytes
relevant in electrodialysis can be found, for example, in
Ref. [41]. In particular, we obtain c2

s = K/ρ and, for later
use, we define the ratio of background density to pressure
fluctuations by C = Bρ/p′. Obviously, we assign the same

relaxation parameter to all the species in our model. As
already shown in Ref. [20], this does not restrict us to a single
independent diffusion parameter, as momentum exchange
among the species is modeled by ρkv∗

k in f
eq,m

k , cf. (9). The
forcing term dm

k is directly related to the diffusive driving
forces and mixture forces in (4) and (3). In the FDV model
density and momentum can be obtained by

ρk =
M−1∑
m=0

f m
k , jk =

M−1∑
m=0

umf m
k .

The right-hand side of Eq. (8) is the collision operator of the
BGK model and relaxes the species probability density func-
tion f m

k towards its thermodynamic equilibrium with a given
relaxation parameter λk to achieve the desired macroscopic
behavior. We define

ρkv∗
k =

⎡⎣ρkvk +
∑

l

�−1
k,l ρl

∑
ζ

χζ

Bl,ζ

C φl(vζ − vl)

⎤⎦ , (9)

where Bk,l = 1/Dk,l are Maxwell-Stefan resistivities and set
the thermodynamic equilibrium as follows (where k is the
species index):

f
eq,m

k = ωm

[
ρks

k
m + 1

c2
s

(um · ρkv∗
k) + ρk

2c4
s

(um · v)2 − ρk

2c2
s

v2

]
.

(10)

The modifications, compared to Refs. [20,22], are twofold:
First, we make use of a modified velocity in the bilinear part of
the collisions. This allows us to recover thermodynamic factors
in the Maxwell-Stefan equations. In contrast to Ref. [20], in
our model

∑
k ρkv∗

k �= ∑
k ρkvk due to the inclusion of the

thermodynamic factors. In Sec. III A, we show that a slightly
generalized condition holds true [cf. Eqs. (12) and (13)].
Second, we replace the velocities in the quadratic equilibrium
part with the mixture-averaged velocities. Hereby we recover
the correct mixture Navier-Stokes equation even in regimes
where the mixture-averaged diffusion approximation does not
hold. In addition, we choose sk

0 = 1
ω0

+ (1 − 1
ω0

)φk , sk
m�=0 =

φk . The coefficient φk defines the equation of state in our
FDV model, i.e., pk = c2

s φkρk . In general, any equation of
state is possible in our model, but two restrictions have to be
considered: The equation of state should depend on the slow
mass diffusion time scales and its corresponding quantities
solely, e.g., ρ

(0)
k cf. Sec. III B. From the numerical point of

view it should be bounded by 1 to guarantee stability of
the model. In the following we set φk = minα mα/mk � 1.
The weights ωm are chosen to guarantee lattice isotropy
conditions, e.g., as defined for the D2Q9, D3Q15, or D3Q19
lattice [29].

It is worth emphasizing that the upper model satisfies
the indifferentiability whenever the activity coefficient model
satisfies γk → 1 for χk → 0 and χk → 1.

A. Diffusive driving forces and collision invariants

Similarly to the decomposition of the external forces into
diffusive driving forces (slow mass diffusion time scale,
cf. Sec. II) and mixture forces (fast viscous time scale), we
split the mesoscopic forcing term in (8) into d

m,1
k and d

m,3
k ,
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respectively. We relate the forcing term in the FDVM to (5)
by

dm
k = minαmαωmum ·

∑
l

�−1
k,l n

(
Fl − nlVl − yl

nRT
∇p

)
︸ ︷︷ ︸

=:dm,(1)
k (diff. driv. forces)

+ ωm

c2
s

um · (ρkg + FnkzkE)︸ ︷︷ ︸
=:dm,(3)

k species’ mix. force fraction

. (11)

The mixture pressure gradient ∇p can be obtained by a
centered finite difference with second-order accuracy on the
compact lattice Boltzmann stencil. Of course, this finite
difference correction is not necessary whenever �i,j = δi,j ,
cf. Ref. [42].

It should be noted that most activity models do not
provide a formal dependency of the pressure and therefore the
partial molar volume Vk = ∂2g/(∂ni∂p) cannot be obtained
(g denotes the molar Gibbs free energy). This is due to
the fact that, in practice, correlation-based activity models
would require a large amount of parameters. Hence, additional
density models for electrolytes have been developed and
applied. A detailed discussion and our density model of
choice is given in Ref. [43]. Besides this technical discussion,
the upper density model fixes the equation of state, as
it provides a formal dependency Vk = f (n1, . . . ,nN ,p,T ).

Compared to the previous work in Ref. [22], no correction
term for the stress tensor in the presence of external forcing Fk

is necessary in Eq. (11) (even in the case where Fk and F are
nonzero) due to the fact that the spurious terms cancel out by
construction. Therefore, derivatives of the forcing terms are
unnecessary. This can be easily checked by considering the
asymptotic limit of the FDVM.

Although it has been shown in Ref. [20] that jk �=∑
m umf

eq,m

k , we can furthermore check that in our model∑
m

Cm
k (f ) = 0,

∑
m

d
m,(1)
k = 0 (12)

and ∑
k,m

um
[
Cm

k (f ) + d
m,(1)
k

] = 0 (13)

are satisfied. These three relations guarantee that each species’
mass, as well as mixture momentum (up to third order), are
collision invariants of our FDV model. In general, the latter
holds true only whenever external diffusive driving forces
are properly considered [as done in (13)]. While (12) is
obvious (cf. Ref. [20]), it is worth pointing out that (13)
is naturally true, as the presented FDV model recovers
the Maxwell-Stefan formulation (including thermodynamic
factors and external driving forces). This can be seen very
easily by considering Eq. (4) in matrix-vector notation as
follows:

�

⎛⎜⎝∇χ1
...

∇χN

⎞⎟⎠−

⎛⎜⎝F1
...

FN

⎞⎟⎠ =

⎡⎢⎢⎣
∑

ζ �=1
B1,ζ

n
(χ1Jζ − χζ J1) − n1V1−y1

nRT
∇p

...∑
ζ �=N

BN,ζ

n
(χNJζ − χζ JN ) − nN VN −yN

nRT
∇p

⎤⎥⎥⎦.

Inverting the matrix � and summation of corresponding rows leads to

∑
k

∇χk =
∑

k

∑
l

�−1
k,l

⎡⎣∑
ζ

Bl,ζ

n
(χlJζ − χζ Jl) + Fl − nlVl − yl

nRT
∇p

⎤⎦ .

Taking advantage of
∑

k χk = 1 and Ji = ni(vi − w) we get

0 =
∑

k

∑
l

�−1
k,l

⎡⎣∑
ζ

Bl,ζ

n
χlχζ (vζ − vl) + Fl − nlVl − yl

nRT
∇p

⎤⎦ ,

which is equivalent to (13). Physically, the upper technical
discussion proves that the presented FDVM ensures vanishing
total diffusive driving forces (no matter whether the driving
forces are internal or external).

B. The asymptotic limit of vanishing Mach
and Knudsen number

The presented mesoscopic FDV method of the previous
section recovers the electro-hydrodynamic equations of Sec. II
asymptotically, in the limit of small Knudsen and Mach
number, with second order in space and first order in time.
This can be shown rigorously by considering the diffusive
asymptotic limit [28], i.e., scaling as 
̃x = ε
x, 
̃t = ε2
t .
Much effort has been spent over the past several years to

analyze LBM-like schemes rigorously and we refer the reader
to Ref. [29] and to the previous work in Refs. [20,22,42]
for mixture models based on the work of Ref. [23]. In the
following we provide only the key concepts to connect (8)
to (1), (4), (5), and (3) and point out the differences to the
mentioned publications. We adopt the notation of Ref. [20]
in the following. The diffusive asymptotic limit is usually
considered for analyzing continuum low Mach limit in Hilbert
expansions [28] and provides a direct mathematical relation
between the Boltzmann equation and the incompressible
Navier-Stokes equation. However, alternative scalings, as well
as expansions, are possible [44] and therefore the following
analysis serves as a mathematical example in the low Mach
and continuum limit.
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Considering the diffusive mass transport in the proposed
FDV model, cf. Eqs. (47) and (49) in Ref. [20], we obtain

∇ρ
(0)
k =

M∑
m=1

umd
m,(1)
k

φkc2
s

+ λk

φkc2
s

∑
j,l � 0

j + l = 1

(
ρ

(j )
k v(l)

k

)∗ − ρ
(j )
k v(l)

k .

After some algebra and inversion of the thermodynamic factor
matrix, it can be shown that this equation ensures that (1)
and (4) are satisfied. By construction of ρkv∗

k and d
m,1
k the re-

covered Maxwell-Stefan formulation includes thermodynamic
factors � and diffusive driving forces Fk . Furthermore, it
should be noted that the calculation of the Maxwell-Stefan
diffusivities, according to (6), and the thermodynamic factors,
is solely based on the slow scales and corresponding quantities,
e.g., n

(0)
k . Overall, we recover for the diffusive mass transport[∑

i

�k,i∇χ
(0)
i

]
− Fk + n

(0)
k Vk − y

(0)
k

n(0)RT
∇p

=
∑
l �=k

1

Dk,ln(0)

[
χ

(0)
k J(1)

l − χ
(0)
l J(1)

k

]
.

It is worth emphasizing that the barodiffusion term in dm
k ,

obtained by use of a centered finite difference, is usually small
in the diffusive asymptotic limit.

Regarding the mixture momentum transport the following
observations can be made: In comparison to Eq. (54) in
Ref. [20] we obtain a slightly different momentum flux tensor
for each species. When summing over the species index k, the
result is a correct nonlinearity of the mixture Navier-Stokes
equation,∑

k,m

um ⊗ umf
m,(2)
k = c2

s

∑
k

φkρ
(2)
k I + ρ(0)v(1) ⊗ v(1)

+ 1

C [∇ρ(0)v(1) + (∇ρ(0)v(1))T ].

Thus, we recover the correct hydrodynamic behavior of the
electrolyte solution [i.e., (3) with ν = 1/C], even when the
diffusive fluxes are large and the mixture averaged diffusion
approximation is not satisfied.

Independent of the asymptotic scaling under consideration,
a few general remarks with respect to the external forcing
terms can be given. By formally expanding the forcing
term dm

k = ∑
i�0 εid

m,(i)
k , different orders of forcing become

apparent. Diffusive driving forces are large, appearing on d
m,1
k

scales, while mixture forces are small (i.e., d
m,(3)
k in case of

diffusive asymptotic limit). However, it is important to ensure
that

∑
k

∑
m um(Cm

k (f ) + d
m,(i)
k ) = 0 (for i � 2 for diffusive

asymptotic analysis) to guarantee consistency to the low-Mach
assumption). It is worth emphasizing that (11) guarantees
this by construction for the diffusive asymptotic limit (to the
knowledge of the authors this question has not been addressed
rigorously so far, cf. discussion below (39) in Ref. [22]). Our
model ensures this condition in the diffusive limit even when
the mixture is not electroneutral and in the presence of strong
electric driving forces, a situation that is likely to occur in
boundary layers of electrodialysis processes, the so-called
diffusive double layer [33]. In fact, the correct coverage of this

phenomena is mandatory to study strongly nonlinear effects
as electroconvective vortices [45,46].

IV. NUMERICAL EXPERIMENTS

To derive a fully discrete model, we integrate the FDVM
along its characteristics [47,48]. While the left-hand side of (8)
is integrated analytically, the particular fully discrete model is
obtained by choosing a specific approximation for the integral
of the collision term. We choose a trapezoidal rule for stability
and accuracy [20]. After applying a reformulation in terms
of the transformed variable f̄ m

k = f m
k + δtλk

2 (f m
k − f

eq,m

k ), an
explicit Lattice Boltzmann scheme is obtained,

f̄ m
k (x + umδt,t + δt) − f̄ m

k (x,t)

= δt
1
λk

+ δt
2

[
f

eq,m

k (x,t) − f̄ m
k (x,t)

]+ dm
k (x,t).

A few remarks on the upper discrete algorithm can be made.
After each time step the electric potential equation (7) is solved
numerically to compute the external driving forces; density
distributions are used to evaluate activities, diffusivities, and
the finite difference correction for the barodiffusion term. To
complete the assembly of the right-hand side of the upper
discrete scheme, we solve an elemental linear equation system
to recover the correct momentum jk from the transformed
variables,

j̄k = 〈1,umf̄ m
k 〉 = jk + δtλk

2

(
jk − 〈

1,umf
eq,m

k

〉)
= jk − δtλk

2

∑
ζ

jζ
∑

l

�−1
k,l

Bl,ζ

C φζχl

+ δtλk

2

∑
l

jl
∑

ζ

�−1
k,l

Bl,ζ

C χζφl.

After these steps, collision and streaming can be carried out
to complete the time step. In contrast to the implementation
described in Ref. [20], the presented method considers variable
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of Na+ mole fractions in an electroneutral mixture of H2O,Na+,Cl−,
according to model (6) and the parameters of Table I.
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an electroneutral mixture of H2O,Na+,Cl− (predicted by the NRTL
model).

diffusivities and thermodynamic factors and, hence, the ele-
mental variable system changes in each iteration. Therefore, no
precomputation of the inverse can be done. In the course of our
numerical experiments in Secs. IV A and IV B, the elemental
linear equation system has been well posed in every time step.

The presented lattice Boltzmann scheme is coupled to a
nodal, first-order finite element method (FEM) [49] to solve
the electric potential equation on the same domain as the
lattice Boltzmann method. The coupling is achieved by a
simple first-order accurate interpolation in both directions
[from vertex- (FEM) to barycentric- (LBM) based values and
vice versa]. Both meshes have similar spatial resolutions. Due
to the simplicity of the presented lattice Boltzmann method,
most of the time is spent solving the electric potential equation
by use of the FEM.

A. Thin diffusive double layer for H2O-NaCl

We consider a mixture of NaCl and H2O. The deviation
of the Maxwell-Stefan diffusivities, activity coefficients, and
thermodynamic factors from ideal Maxwell-Stefan coeffi-
cients as a function of Na+ mole fractions are given in
Figs. 1, 2, and 3, respectively. The Maxwell-Stefan diffusivities
have been computed according to model (6) and the parameters
are shown in Table I. According to the given diffusivity model,
it is obvious that for low concentrations the Maxwell-Stefan
diffusivities of DNa+,Cl− might become negative. The effect is
well known and has been discussed many times, e.g., Ref. [35].
The authors point out that the only relevant restriction on
the diffusivities arises from the fact that the overall entropy
production has to be positive (including all driving forces) and
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FIG. 3. Deviation of thermodynamic factors from ideal behavior
as function of Na+ mole fractions in an electroneutral mixture of
H2O,Na+,Cl− (predicted by an NRTL model). In an ideal mixture all
lines would equal zero. Due to symmetry only the relevant entries of
� are shown.

this can be ensured whenever

0 �

⎛⎝∑
i �=k

χiχk

Di,k

⎞⎠⎛⎝∑
j �=l

χjχl

Dj,l

⎞⎠−
(

χkχl

Dk,l

)2

(14)

holds true for all k and all l with k �= l. Essentially, the
upper equation is a constraint on the positive definiteness of
the diffusivity matrix and can be satisfied even for negative
Maxwell-Stefan diffusivities [35]. In our simulations Eq. (14)
has always been satisfied. The geometrical setup is a simple
microchannel of length L in the x direction (periodic in
the y direction), homogeneously filled with a mixture of
H2O,Na+,Cl−, initially. We denote the initial values by
χ0

H2O,χ0
Na+ ,χ0

Cl− in the following.
To create a nonelectroneutral, thin diffusive double layer,

we apply a drop in the electric potential by imposing Dirichlet
boundary conditions,

ψ(0,t) = V0, ψ(L,t) = 0.

Initially, the electrical, external driving force moves oppositely
charged species into opposite directions and creates nonelec-
troneutral regimes. The process continues until driving forces
that result from gradients in chemical and electrical potentials
equilibrate; a thin nonelectroneutral layer at the boundaries,
the so-called diffusive double layer, is formed.

At first we consider low electrolyte concentrations. In this
regime nonideal effects are small and we can compare the
coupled simulation results to existing, leading-order analytical
predictions [50–52]. The resulting concentration profiles for

TABLE I. Parameter values D̃1(i,j ), . . . ,D̃5(i,j ) (given as multiples of 10−9) for a liquid NaCl solution as reported in Ref. [34].

(i,j ) D̃1 D̃2 D̃3 D̃4 D̃5

Na,Cl 0 8.02 × 10−5 −2.09 × 10−7 −7.03 × 10−9 2.18 × 10−3

Na,H2O 1.34 −3.06 × 10−5 −3.91 × 10−6 3.77 × 10−8 −1.77 × 10−3

Cl,H2O 2.04 −2.24 × 10−4 −3.79 × 10−6 3.78 × 10−8 8.32 × 10−3
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FIG. 4. Normalized mole fraction and electric potential profiles
for Na+ and Cl− in the μ channel.

Na+ and Cl− are shown in Fig. 4. Figure 5 shows a close-up
of the nonelectroneutral region. The thin double layer is
clearly visible close to the boundary. Around the center region,
where concentration gradients are very small, the mixture
is electroneutral, due to the strong electrostatic interactions
among the species. In the leading order approximation, the
concentration profile of the ionic species in the double-layer
region is given by χi(x) = C1

i exp(C2
i x) + χ0

i (where C2
i < 0

and the sign of C1
i is determined by the charge of the species i).

For the electric potential in the double-layer region we
obtain in leading order ψ(x) = C

ψ

1 exp(Cψ

2 x) + C
ψ

3 x + C
ψ

4 .
For a detailed analysis, we refer the reader to Refs. [50–52].
Overall, the coupled lattice Boltzmann–finite element sim-
ulation results are close to the leading order predictions
(cf. Fig. 5).

Figure 6 shows a comparison of simulations at high elec-
trolyte concentrations, where nonideal effects are important,
among different lattice Boltzmann models: The presented
model, the presented model without the finite difference cor-
rection for the barodiffusion term, and the model in Ref. [20],
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FIG. 6. Comparison of double-layer concentration profiles for
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difference correction for the barodiffusion, and “ideal” to the model
presented in Ref. [20].

suited for ideal gas phases. Obviously, the presented model
leads to much larger boundary layers than the model suited
for ideal gas phases due to the following fact: Thermodynamic
factors weight the driving forces ∇χi in the Maxwell-Stefan
formulation [cf. Fig. 3 and Eq. (4)]. As the potential drop across
the channel is prescribed, the main driving forces of the system,
i.e., chemical and electrical driving forces, equilibrate at
smaller concentration gradients with a larger double-layer size.

B. Large molecular-weight ratio (H2O-H2SO4)

In this section we consider a setup similar to that in the pre-
vious section but test our model with a high-molecular-weight
ratio of mSO2−

4
/mH+ > 95. The corresponding Maxwell-Stefan

diffusion coefficients are calculated by use of the coefficients
from Table II. Furthermore, an adapted eNRTL model for
H2O − H2SO4 has been applied. A close-up of the resulting
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TABLE II. Parameter values D̃1(i,j ), . . . ,D̃5(i,j ) (given as multiples of 10−9) for a liquid H2SO4 solution as reported in Ref. [34].

(i,j ) D̃1 D̃2 D̃3 D̃4 D̃5

H,SO4 0 2.545 × 10−4 −9.089 × 10−7 −2.240 × 10−8 0.0
H,H2O 9.313 −1.431 × 10−2 2.197 × 10−4 −1.148 × 10−6 2.176 × 10−1

SO4,H2O 1.068 −9.998 × 10−4 1.437 × 10−5 −7.335 × 10−8 1.525 × 10−2

concentration profiles for H+ and SO2−
4 is shown in Fig. 7.

The double layer is well resolved.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a new finite discrete velocity
model for electrolytes. It recovers mass conservation, the
incompressible Navier-Stokes equation, and the Maxwell-
Stefan equations. The building blocks of the extension to
electrolytes are the rigorous coverage of external driving
forces, the inclusion of thermodynamic factors for nonideal
diffusion, and concentration-dependent diffusivities. A fully
discrete lattice Boltzmann scheme is derived by integration
along the characteristics. Numerical experiments show the
validity of the presented model for electrolyte solutions.
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APPENDIX A: MAXWELL-STEFAN DIFFUSIVITIES
FOR ELECTROLYTE SOLUTIONS

The concentration-dependent Maxwell-Stefan diffusion
coefficients for a liquid NaCl and H2SO4 solution have been
estimated in Ref. [34] using Eq. (6). The results are obtained
by experimental data from Ref. [27]. Parameter values for D̃i,j

are summarized in Table I and Table II, respectively.

1. Liquid NaCl solution

The correlation (6) can be applied for a NaCl concentration
range of 0–5000 mol/m3.

2. Liquid H2SO4 solution

The correlation (6) can be applied for a H2SO4 concentra-
tion range of 0–6000 mol/m3.

APPENDIX B: THERMODYNAMIC FACTORS
IN THE MAXWELL-STEFAN FORMULATION

In the following we briefly review the derivation of the
formal shape of Eq. (4) from irreversible thermodynamics. A
detailed version can be found in Ref. [32]. The diffusive driving
forces dk for species k are related to the diffusive fluxes by

nRT dk =
∑
l �=k

RT

Dk,l

(χkJl − χlJk).

The driving forces are proportional to gradients in the electro-
mechanical-chemical potential

nRT dk = nk∇μ
e,m,c
k = nk∇μk − yk∇p − Fk.

The chemical potential of each species can be obtained by
molar Gibbs free energy g by μk = ∂g/∂nk . In addition, the
chemical potential is given by

μk = μ0 + RT ln ak = μ0 + RT ln γknk,

where ak is the species’ activity and γk is its activity coefficient.
Hence

nk∇μk = nRT
∑

i

(
δk,i + χk

∂ ln γk

∂χi

)
∇χi + nkVk∇p,

where we used Vk = ∂μk/∂p.
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