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Computing two-center overlap integrals arising in Hartree-Fock-Roothaan equations is considered by using
the numerical Global-adaptive method. These integrals are expressed through auxiliary functions in ellipsoidal
coordinates. They involve Slater-type basis sets with noninteger principal quantum numbers. A computationally
simple, efficient, and reliable program procedure is presented. Comparison is made with the results of numerical
three-dimensional adaptive integration procedure presented by Ramanowski, with methods used for analytical
solution via auxiliary functions and series expansions by translation to a single center. Highly accurate results
can be achieved for overlap integrals by numerical approximations both for integer and noninteger principal
quantum numbers also, these extended calculations are efficient with no restriction and over a wide range of

orbital parameters.
DOI: 10.1103/PhysRevE.89.053307

I. INTRODUCTION

Hydrogen-like functions generalized as exponential-type
orbitals (ETOs) are eigen-functions for the single electron
atom Hamiltonian, which makes them a natural basis to
construct molecular electronic wave functions in the linear
combination of atomic orbital (LCAO-MO) method [1], and
they satisfy Kato’s cusp conditions for behavior of the wave
function at the nuclei and at long distances from them [2,3].
Calculation of electronic structure of molecules using ETOs
begins with the solution of two-center overlap integrals.
Particularly, the overlap integrals constitute the basic building
block of more complicated multicenter integrals. Besides,
these integrals arise in Hartree-Fock-Roothaan equations
(HFR) both for ab initio and semiempirical methods [4].
Computing such integrals, defined in a nonaligned molecular
coordinate system by

Snlm,n’l’m’(psf) = / \I’I:Zm(g»ra)lyn’l’m/(;‘/srb)dvv (1)

is very longstanding and extensively studied in the lit-
erature [5-10] (see also reference therein), where, n,n’,
are principal quantum numbers, [,m; l’,m’ are the angular
momentum quantum numbers, ¢, ¢’ are screening constants,
p= %({—i—{’)R, T = % and R=R,, =r, —r, is the
internuclear distance vector. The vectors r,, r, are radius
vectors of electrons with respect to nuclear labels a, b. The
W, functions, considering the simplest form of ETOs, are
referred to as noninteger Slater-type orbitals (NSTOs) for
n € RT. These functions provide extra flexibility for closer
variational description of molecules. They are obtained by
simplification of Laguerre functions in hydrogen-like orbitals
by keeping only the term of the highest power of r, for integer
n. Then, n is treated as a parameter. They can be written as

Waim(.r) = Nuy(©)r" e S (0, 9), )
here,
_ (2§)n+1/2
N,(¢) = m 3
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are normalization factors, ['(z) are gamma functions, and S,
are complex (S, = Yj,,) or real spherical harmonics [11]. It
should be noted that the definition of phases used in this work
for the complex spherical harmonics (Y;,, = Y;_,,) differs from
the Condon-Shortley phases [12] by a sign factor (—1)™.

The first analytical derivations for two-center overlap
integrals over NSTOs were made by Silverstone in Ref. [13],
using the Fourier-transform convolution theorem to reduce
NSTOs overlap integrals to a one-dimensional integration.
Then the same author obtained the final expression from a
previous paper by defining it as a series in the internuclear
distance [14]. The remarkable results obtained for atomic
properties [15-19] have caused increased popularity for the
use of NSTOs over the last decade. No detailed investigation
of molecular electronic structure calculations over NSTOs
has been made because of difficulties in the evaluation of
multicenter molecular integrals and its lack of the precision
to date. The most fundamental two-center overlap integrals
hitherto had these precision problems even for integer principal
quantum numbers (see Refs. [8,20]). The NSTOs situation
is much more complicated. Outstanding work on obtaining
analytical relations for the two-center overlap integrals over
NSTOs has been made possible after [13,14] in [4,7,21,22]
via the ellipsoidal coordinate system using auxiliary functions
and the single-center expansion procedure [23], respectively.
It should be noted that the auxiliary functions used in
analytical derivation of overlap integrals over NSTOs need
to be convergent and numerically stable. On the other hand,
single-center expansion of NSTOs in terms of Slater-type
orbitals with integer principal quantum numbers (ISTOs) at
the same center must have as high as possible an upper limit
of summation. These two methods are internally consistent,
but they provide different results with correct digits varying
according to the quantum numbers. It has been uncertain which
reference gives the more accurate values [21]. This work gives
benchmark values that can be used to remove such uncertainty.

Alternatively, the numerical algorithm based on the
ADAPT-like adaptive integration procedure was recently used
to calculate two-center integrals over ISTOs in Ref. [24]. The
results compared well with analytical solution. It seems from
the results presented in Tables I and II here that the accuracy
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TABLE I. The comparative values of two-center overlap integrals over ISTOs.

n l m n 4 m P T C]

[} Results

1 0 0 1 0 0 0.1 0

9.98337 28456 63420 62391 22146 22559 01738 E-01°
9.98337 28456 63420 62391 22146 22559 01738 E-01°
9.98337 2913 E-01°¢

9.98337 28456 63425 E-01°

0 7.15537 44350 12757 24983 22690 59617 20779 E-10*
7.15537 44350 12757 24983 22690 59617 20779 E-10°
7.15224 4882 E-10¢
7.15537 4435012768 E-10°

0 —4.42287 76698 82608 80679 54150 24354 52085 E-04*
—4.42287 76698 82608 80679 54150 24357 E-04¢
—4.40796 15156 10623 E-04 E-04°

120 3.22601 93043 96471 01300 54876 30236 40989 E-09*
3.22601 93043 96471 01300 54876 30236 E-09¢
120 8.37290 47190 38628 26960 63231 72822 20235 E-40*

8.37290 47190 38628 26960 63231 72822 20239 E-40°

0 1.35310 57870 24712 38186 18677 70288 53421 E-04*
1.35310 5787024712 38186 18677 70288 E-04¢

0 7.09059 49024 39344 74525 33028 03956 05290 E-90°
7.09059 49024 39344 74525 33028 03956 05290 E-90°

0 5.38980 68533 81437 73017 27203 24019 14298 E-05°
5.38980 68533 81437 73017 27203 24019 E-05¢

—7.23339 14676 87606 82677 55821 58140 80371 E-03*
—7.23339 14676 87606 82677 55821 58140 80371 E-03°

0 9.48379 22083 22556 78538 44190 07653 62745 E-02*
9.48379 22083 22556 78538 44190 07654 E-02¢

35 1.09293 91789 07866 13706 54526 97582 19446 E-01*
1.09293 91789 07866 13706 54526 97582 19446 E-01¢

135

8 0 0 8 0 0 51/20 49/51 0

3 2 1 3 2 1 25.0 0.6 0

6 5 4 5 4 3 100.0 0.9 30
6 5 4 5 4 3 125.0 0.09 30
13 12 12 13 12 12 25.0 0.01 0

13 12 12 13 12 12 250.0 0.001 0

21 10 6 9 8 6 45.0 0 0

25 11 6 12 8 3 45.0 0.001 45
40 4 3 12 4 3 15.0 0.6 0

40 4 3 12 4 3 15.0 0.6 125
4[Numerical].

®[Analytic].

‘Reference [24].
dReference [10].
¢[Cubal].

of given results for overlap integrals over ISTOs even with
lowest values quantum numbers is insufficient.

In this paper, we use the adaptive integration method on the
two-center overlap integrals over NSTOs, which are expressed
with two-dimensional auxiliary functions Q% ,, in ellipsoidal
coordinates [21]. This method gives benchmark values for
overlap integrals. The Global-adaptive strategy is used to reach
the required precision and accuracy goals of the integral esti-
mate. The computer program is constructed in the Mathemat-
ica programming language [25] with the included numerical
methods; the calculations were performed withn, n’ € R™ for
arbitrary values of quantum numbers and orbital parameters.

II. DEFINITION AND BASIC FORMULAS
The overlap integrals over NSTOs are defined by following
formula [10,21,22,26]:

min(l.l")

Z Tlﬁj.l/m’(®’(D)Snl)\,n’l’)»(p’ T)a (4)
A=0

Snlm,n’l’m/ (P7 T) =

' a+p
Surwra(pT) = Naw(p.7) Z DO gl Unny
a=0 =i ¢=0
X sza’n/,ﬂ(par)a (5)
where, N, is a normalization constant,
[p(1 + 12 [p(l — o))" +!/2
Nnn’(paf) - ) (6)

[C2n 4+ DHC2nr' + 1]1/2

and the auxiliary functions QY in ellipsoidal coordinates are
defined as

NN'(P 7) —/ f

QNN (,v)

Va+7a

e (wv)dudv, @)

4 — —
v)Ne pu—pTv

= () + )N — ®)

Here, u = The relationships for rotated-
angularfuncnonsT Im ,and auxiliary functions ga occurring

in Egs. (4) and (5) in terms of binomial coefﬁments given
as [21,27,28].

Ta—la 7ra
LV =
"R
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TABLE II. The convergence behavior of the analytical solution of two-center overlap integrals with Eq. (21).

n l m n' U m' p T ® P Results

5 4 4 5 4 5.0 0 3.56825 98684 57483 60689 04872 31073 68139 E-01*
3.56825 98684 57483 60689 04872 31073 68139 E-01°
3.568259972 E-01°
3.5682598618 92429 E-01"

5.1 4 4 5.1 4 4 5.0 0 0 0 3.68837 33855 08336 58641 31918 22868 35839 E-01*

3.68837 33855 05726 37942 01568 75075 77285 E-01¢
3.68837 33855 02829 31225 21439 34449 97437 E-01°
3.68837 33854 94605 78092 61548 46231 82180 E-01*
3.68837 33854 94605 78092 61548 46231 82180 E-01'
3.68837 33854 63771 70501 74331 34118 31567 E-01#
3.68837 33852 74417 43376 93079 44890 38419 E-01"
3.68837 33815 49121 07703 85081 75542 56719 E-01*
3.68837 32224 55592 65438 31561 52778 02193 E-01!
3.68837 07606 36279 99583 24709 21920 68306 E-01™

#[Numerical].
[ Analytic].
‘Reference [24].
4[N, = 1500].
[N, = 1250].
fIN, = 1000].
¢[N, = 750].
"IN, = 500].
KN, = 250].
'[N, = 100].
"N, = 50].
"[Cuba].

The rotated-angular functions,

I+’
Thuw©®) = Y Tl Yiu©.@), O
L=|i-1|
where

L (i)&uf\m\ (_l')amh—\m’\ L aL

n0 = 3000 )1+ ST s+ En T
AL AL

+ Eme”mH/_‘m/l + 8m8m’Tl—\m\,l’—\m’|)’ (10)

. 2 1/2
Tk, = ——C"E L .ot
Im,'m 1 4 (S)LO —mm' M~ —AA0 2L + 1 ( )

Here, the quantities C are the Clebsch-Gordan coefficients and
M=—-—m+m,

+1 for m>0
€, = . (12)
—1 for m<O
The auxiliary functions g,
ghsnI'2) = gl IV Fy(a + 1.8 — 1), (13)
A
8os(UnI'0) = [Z (—1)ZE()~)QZ+2A—2I':| git. (14
i=0
o (DR L R+
Y 2 RO
x Fu_gyp(DFg_p(I + B). (15)

Here, Fy(n), Fi(n,n") are the binomial and generalized bino-
mial coefficients, respectively.

Note that the essential problem in the calculation of overlap
integrals is based on the accurate calculation of Eq. (7).
All other components occurring in overlap integrals are
coefficients and no computational problem emerges except
“tragic cancellation”, and here, computing a sum of positive
and negative terms may be obtained with less precision than the
sum of computed positive and negative terms. Mathematica, by
making use of numerical precision, evaluates any expression
to n-digit precision. The number of digits of input parameters
is set equal to the requested numbers of digits for overlap
integrals to prevent the occurrence of tragic cancellation.
Therefore, we can say that the results of overlap integrals
become as precise as Q% function evaluation.

When the single-center expansion methods or series rep-
resentation formulas are used in the evaluation of integrals,
hermiticity cannot be assumed. If it is imposed as a constraint,
the accuracy is reduced. In the present work, it is not assumed.
The hermiticity properties of overlap integrals [10] can be used
to control the digital accuracy,

Sn’l’m’,nlm (P,v T/) = S:[m,nfl/m/(p’ 7:)7 (16)

where 7/ = g,%g p = %’(;’ +¢),and R = —R.

In order to investigate the accuracy of overlap integrals
through numerical calculation of QY functions, the quadra-
ture rule of subdomain r in a sequence of n, point quadrature

for approximation to integrals of Q%% (11,v) given in Eq. (8)
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on intervals [1, co) x [—1, 1], determined by

Ny Ny,

I = Z Z Wy 5, Wrys, Q;I\/;[[(frr (/J/rlsl s Ur252)~ (17)

S 52

Here, w, are the weights, {u,s,v,s} are roots and their choice
so that I ~ Q% ,, define the rule and provide both an integral
estimate and an error (g,) estimate as a measure of the integral
estimate accuracy.

Most numerical integration rules consist of approximating
the integrand by a polynomial and then integrating the
polynomial exactly. To ensure higher accuracy for a wide range
of integrals requires treatment of the roots as additional degrees
of freedom and is referred to as Gauss-quadrature. This differs
from Newton-Cotes quadrature as the roots are not equally
spaced and they are not fixed. If a specified degree of accuracy
is needed, new roots, which are called for re-computation of
all roots at each iteration and a number of roots (unknown
in advance), can be added via Kronrod extension (Please see
Ref. [25b] for weights and information on the singularities
depending on input criteria in Gauss-quadrature with Kronrod
extension).

An adaptive algorithm is used commonly over a wide
range of integrands to compute an approximation as &, — 0
recursively by partition of the integration interval into disjoint
sub-intervals to increase the number of roots until the required
accuracy is achieved. The procedure recursively subdivides
the integration subregion (with the largest error estimate) into
two halves and computes integral and error estimates for each
half. It is referred to as global strategy and it can be used in
an adaptive algorithm to obtain results for multidimensional
integrals of a given accuracy in a more reasonable time
since the algorithm in each subinterval provides an error
estimate [25a,29,30].

III. RESULTS AND DISCUSSIONS

The Mathematica programming language can handle ap-
proximate real numbers with any number of digits, and it is
used with the included numerical computation packages to
perform the calculations using the Global-adaptive strategy.
However, Mathematica is suitable only for benchmarking
in the view of the calculation times. The Gauss-Kronrod
rule is used since it is suitable for benchmarking highly
accurate values for the integral. The input criteria given by
precision and accuracy goals are used to stop the algorithm
via a Global-adaptive strategy by a specific Gauss-Kronrod
rule. Note that, if the precision goal is increased, a narrow
spike in the integrand is not missed. In the present paper the
precision goal is determined as 50 and other input criteria can
be determined depending on orbital parameters and quantum
numbers. The calculations for Q% ,, auxiliary functions are
also performed with the Cuba integration algorithm [31] and
analytical solution via infinite series representations [21].
The results obtained by calculating Eq. (5) are presented
for two-center overlap integrals over NSTOs with integer
and noninteger principal quantum numbers. The single-center
expansion method proposed in Ref. [32] in order to calculate
molecular integrals over NSTOs is also investigated for overlap

PHYSICAL REVIEW E 89, 053307 (2014)

integrals. Note that in this study all results are given in atomic
units (a.u.).

The results obtained are presented in Tables I, II, and III for
arbitrary values of integer and noninteger quantum numbers
with different values of orbital parameters. This is always the
first line in table entries, which provides benchmark accuracy
to 35 decimal digits. Further content is given with decreasing
accuracy for comparison. The second line is generally the
analytical evaluation given in Eq (5). Some entries from the
Cuba integration algorithm are also included.

In Table I the results obtained for two-center overlap
integrals are presented with n, n’ € INt. It can be seen from
Table I, the applied strategy in this paper for numerical
calculation overlap integrals gives exactly the same results
as analytical calculation, which is the solution of Eq. (5) by
using Mulliken auxiliary functions [33], where

o0
As(p) = / we Py, (18)
1
1
By(p,7) = / Ve, (19)
—1
and
N+N’
Qhn(pT) = D Fe(N.N)Ansnrsq1(p)Byialp.1).
k=0
(20)

Some results obtained are also compared with results of the
Cuba numerical integration algorithm via a Cuhre globally
adaptive scheme using the Mathematica platform. Here, the
accuracy goal, maximum points, and precision goal have been
chosen as 50, E+5, E+3, respectively. Note that the Cuba
algorithm gives up to about 10-12 digit accuracy for the low
values of orbitals parameters (see Fig. 1). The details on the
algorithm and on the quadrature rules used by Cuba can be
found in Ref. [34].

In Table II the convergence properties for analytical solution
of overlap integrals with n, n’ € R are investigated, where
Q% y are now expressed with infinite series,

Qin (P D)
N+N,
= Jim_ k;: F (NN Awnq-(P) By (P, T),
@1
Na
FY(NNY =Y (1) B o(N)F,(N).  (22)
o=0

The results are presented depending on the upper limit of
summation N,. As can be seen from this table, the computer
program constructed to evaluate Eqs. (5) through (21) is
consistent, and results obtained by increasing the upper limit
of summation are getting closer to the results obtained by
solution of Eq. (5) using numerical Global-adaptive method
with Gauss-Kronrod extension. However, the convergence of
results is bad, it is worse after the upper limit of summation 250
and only a few more exact digits are obtained by increasing the
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TABLE III. The comparative values of two-center overlap integrals over NSTOs.

n l m n' ' m p T

®

P

N,

Results

73 4 4 73 4 4 2.0 0.5

6.4 1 0 6.4 0 0 5.1

3.8 0 0 5.5 0 0 231

5.7 1 1 3.8 1 1 2.38 4/17

3.6 2 1 2 1 1 0.8 0.3

6.3 5 4 55 4 4 15.0 0.1

4.1 2 2 3.7 2 2 10.25 5/41

103 O 0 10.3 9 0 5.25 3/7

-8/17

11/33

72

180

120 240

50

75

50

50

50

40

40

50

1.01734 31495 95668 84009 52107 36427 25565 E-02*
1.01734 31495 95668 84007 86947 52077 34718 E-02°
1.01734 31495 95668 36968 25958 39497 31859 E-02°
1.01734 31495 9344 E-02¢

1.01734 31496 0 E-01°

1.01734 31495 95668 E-01°

3.12099 12216 53204 22891 71991 67638 91165 E-01*

3.12099 12216 53204 22768 13000 53889 56350 E-01°
3.12099 12216 53204 48179 50345 40070 48609 E-01°¢
3.12099 12216 5129 E-01¢

3.12095 40910 5 E-01°¢

3.12099 12216 52738 E-10*

2.90802 04650 66341 47700 88166 91317 05703 E-01?*
2.90802 04650 66340 76485 08364 06364 42126 E-01°
2.90802 04650 66322 65270 93348 40769 12961 E-01°¢
2.90802 04650 5438 E-01¢

2.90802 06936 9 E-01°

2.90802 04650 66341 E-01"

8.66889 50632 72588 09962 28315 86072 66015 E-01°
8.66889 50632 72588 01466 19441 06578 54985 E-01°
8.66889 50632 72426 54151 02360 41307 43577 E-01°¢
8.66889 50633 1727 E-01¢

8.66889 476942 E-01°

8.66889 50632 726 E-01°

6.4962173637 32212 98813 20684 64320 73379 E-02°
6.49621 73637 31904 68474 20731 82929 20005 E-02°
6.49621 73633 59793 04074 14262 99135 25490 E-02¢
6.49621 73644 9485 E-02¢

6.4962173637 32153 E-02f

1.85058 95468 20783 59133 54756 23091 64154 E-02*
1.85058 95403 14289 92881 34756 78487 22549 E-02¢
1.85058 94705 91934 44517 09029 45209 52352 E-02°
1.85610 75335 3492 E-02¢

1.75344 05078 04364 E-02°

2.9354197236 64768 15362 90672 35811 14085 E-02°
2.93541 97234 26640 97329 01022 58524 91729 E-02°
2.93541 97235 73426 91638 11859 94834 42774 E-02°
2.93541 96688 0792 E-02¢

2.93217 48617 1 E-02°

2.93539 60891 94248 E-02f

1.52896 89539 18532 09475 62114 33969 06544 E-05°
1.52896 89539 37703 62033 75440 99497 83633 E-05¢
1.52896 89418 36941 49796 69264 42398 82275 E-05°
1.52927 43006 2972 E-05¢

1.52926 48336 9 E-05°

1.52896 89931 28066 E-05'

4[Numerical].

°[Analytic].

°[Single-centre expansion method based on Ref. [32]].
dReference [21].

¢Reference [7].

f[Cubal.
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FIG. 1. The comparison of methods of computing QY auxiliary
functions depending on orbital parameters p with g =1, N =
3.1, NV =2.2, and T = 0.5. The solid black line and the dashed
black line is the 8,14 and 8¢ , respectively. The results multiplied by
108 for 8,4 and by 108 for Sy .

upper limit of summation up to 1500. Note that the expression
Eq. (21) with an infinite series, which requires recalculation of
every term in the sum, is ill-conditioned, and it is necessary to
take into consideration thousands of terms. Further, Egs. (18)
and (19) are expressed with incomplete Gamma functions,
which may have erroneous last digits (many papers on that
issue exist [35,36]).

The results in Table III, to be used for NSTOs, are presented
with n, n’ € R and compared with results obtained from the
solution of Eq. (5) analytically. The upper limit of summation
in Eq. (5) is determined as 250 in this table. It should be noted
that the results obtained for overlap integrals with Eq. (21)
are closer to numerical methods than the results presented in
Ref. [21] using the same method. Availability of the single-
center expansion method, which uses expansion of NSTOs
in terms of an infinite series of ISTOs at a displaced center,
applied to a single-center

N,
Wan(@r) = lim Y Vi W (@or). (23)
P_)Don’:l-&-l

Here, n € R*,n’ € INT (please see Ref. [32] for definition of
anxfn,l expansion coefficients) is investigated and the results
are presented in Table III. In this table, the results found in
the literature and Cuba performance for overlap integrals with
noninteger principal quantum number are also included.
Dependence of numerical and analytical solutions of
Q3 1.2, (.0.5) on the orbital parameters are given in Fig. 1. In
this figure, the difference between the logarithm of values

obtained with Mathematica-Nintegrate, analytical solution

PHYSICAL REVIEW E 89, 053307 (2014)

(8pm4), and results obtained from Cuba integration algorithm
(6mc), respectively, are plotted. It can be seen from this
figure that the correct number of the digits decreases upon
increasing the values of orbital parameters (p), and the effect of
orbital parameters on the number of correct digits is becoming
less with two digits when the Cuba integration algorithm is
implemented, where N, = 25 and default Cuba-Cuhre inputs
are used (accuracy goal 3 and maximum points 50 E4-3).

The computing time depends intensively on the angular
momentum quantum numbers due to the number of Q% ,,
auxiliary functions in the sum determined by upper limits of
summations in Eq. (5). The seventh lines of Table I and the first
line of Table III are some of lines have high values of angular
momentum quantum numbers. The results are obtained for
overlap integrals with these values using numerical Global-
adaptive method in 76.5 minutes and 57.3 minutes on a PC
(Intel core 15-3.2 Ghz) running the Mathematica platform,
respectively. The results for overlap integrals through Eq. (21)
with the same values are obtained in 0.006 minutes and
2.44 minutes.

On the other hand, accurate calculation of overlap integrals
via Eq. (21) depends on orbital parameters. In the case of
large values of orbital parameters (p if T = 0 else pt) getting
more accurate number of decimals is required, taking into
consideration the upper limit of summation N,, which must
be as high as possible. In the second line of Table II the value
obtained for overlap integrals through Eq. (21) with most
accurate decimals, where N, = 1500 is computed in 8§94.3
minutes. The given benchmark value for the same quantum
numbers and orbital parameters is computed in 93.8 minutes.

Finally, it can be said that highly accurate results can be
obtained using Eq. (20) for overlap integrals with integer
principal quantum number values and it is the fastest method
among the methods investigated in this paper. The calculations
for the overlap integrals with noninteger values of quantum
numbers can be performed via the single-center expansion
method or molecular auxiliary functions only for small values
of parameters (in nonrelativistic molecular electronic struc-
ture calculations usually 10 accurate decimals is considered
sufficient). Some results presented in the tables, obtained
from Cuba numerical integration algorithm in less than a
few seconds with any values of quantum numbers and orbital
parameters, are more accurate than either methods for pt < 1.
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