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Dissipative shocks in a chain fountain
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The fascinating and anomalous behavior of a chain that instead of falling straight down under gravity, first
rises and then falls, acquiring a steady shape in space that resembles a fountain’s spray, has recently attracted
both popular and academic interest. The paper presents a complete mathematical solution of this problem, whose
distinctive feature is the introduction of a number of dissipative shocks that can be resolved exactly.
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I. INTRODUCTION

It is amazing how a topic as classic as string mechanics,
which has been tended for centuries, may still surprise and
challenge us with unsolved problems. This is the case for the
chain fountain, the anomalous behavior of a chain falling under
gravity, which has already fascinated the millions who viewed
the movie of S. Mould [1], myself included.1 In words, one
end of a long metal chain sitting in a pot is raised above the
pot’s rim and let fall toward the floor. Contrary to everybody’s
expectation, in most experimental circumstances, the chain
instead of falling straight down climbs appreciably higher than
the pot’s rim before falling, thus drawing a steady curve in
space that resembles a fountain’s spray.

Chains, cords, and strings2 have been the object of
theoretical mechanics since 1614–1615 when, according to
Truesdell [3, p. 24], Beeckman is likely to have found that
the equilibrium shape of a string uniformly loaded along a
line (such as a suspension bridge) is a parabolic arc.3 James
Bernoulli is usually credited with the discovery of the analytic
form for the equilibrium shape of a chain under gravity, called
the catenary from the Latin word for chain.

More recently, that is to say, in the late 19th Century, it
was remarked by Airy [6] that the catenary is also the steady
shape of a string being drawn at constant speed, the passage
from equilibrium to steady motion only resulting in offsetting
uniformly the string’s tension by a quantity proportional to the
velocity square.4 Plenty of historical remarks illuminating the
pedigree of this problem can also be found in the papers by

*eg.virga@unipv.it
1A similar phenomenon had indeed been documented earlier by

J. A. Hanna and H. King [2].
2These three nouns will be regarded here as synonyms, as our

mathematical development will be equally applicable to all these
model bodies.

3Erroneously, such a conclusion was also reached by Galilei in
1638 [4, pp. 369–370] for the equilibrium shape of a homogeneously
heavy cord. The correct catenary solution was found subsequently
by Leibniz, Huygens, and Bernoulli, apparently independently. The
reader may also consult Ref. [5, p. 303] for a concise historical
account.

4It is remarkable how such a discovery was indeed prompted by
the failure of the first attempt at depositing a transatlantic telegraphic
cable, an engineering problem which was still an object of study a
century later [7].

Biggins and Warner [8,9], upon which I further elaborate in
this work.

That an arc of inverted catenary is also the steady shape
of a falling chain there can be no doubt. The boundary
conditions to which such an arc is subjected are essential
to the understanding of the dynamics of chain fountains,
and here opinions may differ. Biggins and Warner [8,9]
proposed that the chain is actually lifted up at the detach point
and pulled down at the deposition point, the corresponding
forces being produced by the pot and the floor, respectively.
Several arguments are given in Refs. [8,9] that reduce both
forces to elementary physical mechanisms involving the nature
and shape of the links constituting the chain. Suggestive as
these arguments may be, they eventually result in separate
constitutive assumptions for the tension τ of the chain at the
pickup and putdown points, which read as

τ0 = (1 − α)λv2, τ1 = βλv2, (1)

respectively, where λ is the mass per unit length of the chain,
v is the velocity at which it is drawn, and 0 � α � 1 and β �
0 are dimensionless parameters.5 According to Biggins and
Warner’s explanation, the negative contribution to τ0, −αλv2,
amounts precisely to the reactive upward force exerted by the
pot onto the chain’s link being set in motion. Contrariwise,
the tension τ1, which is exerted on the chain by the heap of
links being freely collected at the foot of the fountain, is not
required to vanish, as if the terminal link were still freely flying
before the impact with the floor, in accord with some recent
studies [10,11], which have already advanced theoretically and
also confirmed experimentally such a hypothesis.

Here I do not question the validity of Eq. (1), but I want to
derive Eq. (1) from first principles, expressing both α and β

in terms of a single internal constitutive parameter pertaining
only to how the chain is made. The way to achieve this will be
by regarding both the pickup and putdown points as standing
shocks that dissipate energy at the rate dictated by a classical
law for internal impacts. To this end, we need first recall the
theory of shocks in one-dimensional continua. Luckily this
task is made easy by a paper of O’Reilly and Varadi [12] who,
elaborating on earlier work of Green and Naghdi [13–16],

5For dimensional reasons, both tensions must be proportional to λv2.
In Eq. (1), where both Eqs. (12) and (13) of Ref. [9] are combined,
the dimensionless parameters α and β appear to be constitutive of
both the chain and the environment it comes in contact with.
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proposed an elegant and rather comprehensive theory, which
in Sec. II is applied to the case at hand. Section II, which
is the heart of the paper, is split in several subsections to
make it easier for the reader to retrace the different elements
of the theory developed here. The discussion proposed in
Sec. III draws a closer comparison with the theory of Biggins
and Warner and indicates further possible applications of the
present theory.

II. DISSIPATIVE SHOCKS

Think of a chain as an inextensible string with uniform
mass density λ per unit length, parametrized in the reference
configuration by the arc-length s. The position in space
occupied by a material point of the string is represented by the
mapping p = p(s,t). Here s, which designates the convected
variable, could as well be used to designate the arc-length
in the present configuration. Correspondingly, the velocity v

is defined by v := ṗ, where a superimposed dot represents
differentiation with respect to time t . Similarly, a := v̇ is the
acceleration. Let f denote the external force acting per unit
length of the string and τ � 0 the internal tension that arises
as a reaction to the inextensibility constraint. The balance
of linear momentum along any smooth arc of the string is
expressed by

λa = f + (τ t)′, (2)

where a prime ′ denotes differentiation with respect to s (see,
for example, Ref. [5, Sec. 34]).

A. Shock equations

In this context, a shock propagating along the string is
described by a function, s0 = s0(t), identifying the point in the
reference configuration carrying a discontinuity in speed (and
acceleration). Specifically, we assume that p is continuous at
s0, because the string breaks nowhere, but v is discontinuous.
Similarly, the unit tangent t , the principal unit normal n, and the
curvature c of the curve representing the present shape (at time
t) of the string are discontinuous at p[s0(t),t], as illustrated in
Fig. 1. We shall call p(s0,t) a singular point. We denote by
t+ and t− the two limiting values of t across a singular point.
Here and below, for any quantity �, superscripts ± refer to
the traces of � across p(s0,t) from the sides of increasing
and decreasing s, respectively. Also, we shall employ the

p(s0, t)
t−

t+

p(s1, t)

p(s2, t)

FIG. 1. (Color online) The present shape at time t of the string.
The points p(s1,t) and p(s2,t), with s2 > s1, delimit the arc under
consideration. The point p(s0,t) is a singular point, where the unit
tangent t is discontinuous, with traces t+ and t− on the two sides.

customary notation [�] := �+ − �−, for the jump of �

across a singular point.
The shock speed is ṡ0 relative to both the reference and

present shapes (as a consequence of the string’s inextensibil-
ity). A kinematic compatibility condition arises for the jumps
of both v and a, as a result of the requirement that both
the velocity and acceleration of the geometric point, which
instantaneously coincides in space with a singular point, can
be expressed in two different but equivalent ways (see, for
example, Refs. [12,17]):

[v] + ṡ0[t] = 0, (3a)

[a] + 2ṡ0[v′] + ṡ2
0 [cn] + s̈0[t] = 0. (3b)

The balance of linear momentum for an arbitrary small arc
enclosing a singular point (that is, for s2 → s+

0 and s1 → s−
0

in Fig. 1), requires that

[τ t] + ṡ0[λv] + � = 0, (4)

where � is the concentrated supply of momentum that must be
provided at a singular point to sustain the shock. In a similar
way (see again Refs. [12,17] for more details), the energy
balance at a singular point results in the following equation:

[τ t · v] + 1
2λṡ0[v2] + Ws = 0, (5)

where Ws is the concentrated power supply involved in the
shock.6 For a dissipative shock, Ws is negative and measures
the energy lost per unit time by the internal frictions that
hamper the shock as it goes by. While in our setting the force
� will be provided through the contact of the chain with the
external world, Ws is of a constitutive nature, which needs
to be further specified (see Sec. II B). Equations (4) and (5)
express only the mechanical balances at a singular point. The
former is also known as the Rankine-Hugoniot jump condition
for one-dimensional continua [22, p. 29].7

Interesting versions of the jump conditions in Eqs. (3), (4),
and (5) above occur when the string is amorphously quiescent
on one side of the shock. In this context, for definiteness,
we shall refer to such a shock as external, while the shock
described so far will be referred to as internal. An external
shock is an attempt at formalizing the notion of continually
imparted impacts introduced in the work of Cayley [24]; as
such, it is more than just an internal shock with vanishing
velocity on one side. At an external shock, mass is not

6Equation (5) is a specialization to the athermal case treated here of
Eq. (2.7)4 of Ref. [12]; what here is denoted Ws was there denoted �E .
For Ws < 0, energy is lost in the shock. According to Sommerfeld’s
book [18] (see, pp. 28–29 and Problem I.7, pp. 241, 257), the energy
loss in chain dynamics is a concept first introduced by Lazare Carnot,
the father of Sadi (this latter known for his contributions to the theory
of heat), who was a writer on mathematics and mechanics (besides
later becoming one of the most loyal of Napoleon’s generals). See
also Refs. [19, p. 52], [20], and [21].

7The reader is further referred to Refs. [12,17] for a general
thermodynamic theory of strings, which also features an additional
jump condition for the entropy imbalance. A formulation of shock
waves for general three-dimensional continua can also be found in
Secs. 32 and 33 of Ref. [23].

053201-2



DISSIPATIVE SHOCKS IN A CHAIN FOUNTAIN PHYSICAL REVIEW E 89, 053201 (2014)

conserved, as the string is there in contact with a reservoir,
where a shapeless deposit of mass serves as a supply of
links abruptly injected one-by-one into the moving string.
More generally, the moving system receives from the external
reservoir supplies of mass, linear momentum, and energy,
which enter the corresponding balance laws. Letting v− ≡ 0
and a− ≡ 0, and dropping everywhere the superscript + to
avoid clutter, by the same reasoning leading us to Eqs. (3), (4),
and (5), we obtain that

v + ṡ0 t = 0, (6a)

a + 2ṡ0v
′ + ṡ2

0cn + s̈0 t = 0, (6b)

τ t + λṡ0v + �∗ = 0, (6c)

τ t · v + 1
2λṡ0v

2 + W ∗ = 0, (6d)

where �∗ and W ∗ denote the appropriate supplies.8 Similar
expressions, apart from changing �∗ and W ∗ into their
opposite, are obtained if v+ ≡ 0 and a+ ≡ 0. Combining
Eqs. (6a), (6c), and (6d), we see that

v = v t, ṡ0 = −v,
(7)

�∗ = −(τ − λv2)t, W ∗ = − (
τ − 1

2λv2
)
v.

Similarly, if at a singular point the string comes instantaneously
to a halt, instead of being instantaneously set in motion,
Eqs. (7) are replaced by

v = v t, ṡ0 = −v,
(8)

�∗ = (τ − λv2)t, W ∗ = (
τ − 1

2λv2
)
v.

Equations (7) and (8), in particular, allow us to interpret �∗
as the continuous-impact force envisaged by Cayley [24] to
describe mechanical systems in which particles of infinitesimal
mass are continuously taken into “connexion” or are contin-
uously lost. In both cases, an external shock is propagating
backwards relative to the string at the same scalar velocity
as the material in the string, so that the shock results steady
in space. Thus, with the aid of Eqs. (7) and (8), we can also
phrase in terms of external shocks the dynamics of systems
with variable mass, for which Cayley [24] had proposed an
ad hoc variational principle. The complementary expressions
for W ∗ give the energy lost (or gained) by the string in being
either set in motion or brought to a halt instantaneously. (We
shall return to this in Sec. II E.)

B. Shock dissipation

When the shock is internal, that is, the singular point is
both followed and preceded by mass in motion, the shock
dissipation Ws should depend only on the impact mechanism
responsible for the abrupt change in velocity. To posit a
constitutive law for Ws , we seek inspiration in the laws of
impact, which were already introduced in 1668 by Wallis and
Wren [25], as recounted, for example, in Whittaker’s treatise
[26, p. 234].

8In particular, Eq. (6a) is nothing but the statement that links are
injected along the tangent to the present shape of the string. This is
a necessary boundary condition for the existence of a steady solution
of the dynamics of the string that preserves its shape.

When in a system of mass-points all impacts happen to be
characterized by the same restitution coefficient 0 � e � 1, the
kinetic energy after a single impact decreases by (1 − e)/(1 +
e) times the kinetic energy of the lost motion, the motion that
would have been composed with the motion before the impact
to reproduce the motion after the impact [26, p. 235]. By
applying this law to the elementary transfer of mass through
the shock suffered by a string, interpreted as an internal impact,
we justify setting

Ws := − 1
2f λ|ṡ0|[v]2

, (9)

where 0 � f � 1 will be treated as a phenomenological
parameter.9 In the ideal limit where f → 0+, the shock is
not dissipative. On the other hand, for f = 1, the shock is
maximally dissipative. In practice, for a chain f should depend
on both the material and shape of the constitutive links.10

Equation (9) is not completely unprecedented: a special
form of it can be found, for example, in Eq. (7.7) of Ref. [12],
though there v+ and v− were along one and the same direction
and so the geometric ingredient introduced in Eq. (9) by [v]2

was missing. I shall return in Sec. III to a possible way of
determining f experimentally, as I think that recently it has
already been found, though perhaps inadvertently.

C. Inverted catenary

Before solving the balance equations for a fountain chain,
we need to specify, albeit in an idealized fashion, both the
pickup and putdown mechanisms that we envisage. Figure 2
illustrates the mechanisms considered here. The points p0

and p1, where the chain abandons the supporting plane and
where it reaches the floor, respectively, are thought of as
steady internal shocks, whose kinematic compatibility with the
dynamic solution is still to be established. At points p−

0 and p+
1 ,

lying on the supporting plane and the floor, the chain comes
in contact with the supplying coil and the accumulating heap,
respectively, both at rest. We deliberately ignore the details
about the way the chain is either coiled or heaped up: we shall
be contented with assuming that at the points p−

0 and p+
1 the

velocity of the links constituting the chain is abruptly raised
from nought or abruptly depressed to nought, respectively, so
that in keeping with the notation of Eqs. (7) and (8), v− ≡ 0
at p−

0 and v+ ≡ 0 at p+
1 . Thus, also p−

0 and p+
1 are singular

points and they can be qualified as external shocks.11

The dynamics of the smooth arc of a chain fountain is
governed by Eq. (2), while Eqs. (3) through (8) are to be

9Letting for a moment f := (1 − e)/(1 + e), I note that for a plastic
impact, e = 0 and f = 1, whereas for a perfectly elastic impact, e = 1
and f = 0. However, in the absence of a microscopic mechanism
illuminating the origin of Ws , these correspondences are purely formal
and f remains a constitutive parameter of the string.

10It might be objected that Ws could equally well be regarded as an
external energy sink, instead of the energy lost in an internal impact.
The latter interpretation, however, provides a better justification for
the explicit law posited in Eq. (9). Moreover, linking f to an internal
dissipation process makes it constitutive of the string alone, a property
that seems to have some experimental ground (see Sec. III).

11Also in accord with the attitude we take of ignoring the details
about the external portions of chain they are connected with.
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h2

h1

p−0
p0

p+
1

p1
t+
1

t−0

FIG. 2. (Color online) Sketch of a chain fountain. Points p0 and
p1 designate steady internal shocks, whereas p−

0 and p+
1 , which are

the points where the chain comes in contact with the supplying coil
and the accumulating heap, respectively, designate external shocks.
The drop and rise heights of the fountain relative to the supporting
plane are h1 and h2, respectively.

enforced at the singular points identified above. We shall seek
the solution to the problem within a special class, that of steady
motions. To this end, we assume that the trajectory followed
by the chain’s links is invariable in time and that the spatial
velocity field v on it takes the form v = v t , with v constant.

Projecting both sides of Eq. (2) along the tangent t , the
principal normal n and the binormal b := t × n to the chain’s
steady shape, we arrive at

τ ′ + ft = 0, (λv2 − τ )c = fn, fb = 0, (10)

where c is the shape’s curvature and ft , fn, and fb are the
components of f along t , n, and b, respectively (see also
Ref. [6]).

Letting f lie in the (x,y) plane, fb vanishes identically as
long as the chain’s shape lies in that plane as well. Figure 3(a)
describes a generic arc of the chain’s shape. Denoting by ϑ the
angle that t makes with ey , we can represent t and n as

t = sin ϑ ex + cos ϑ ey, n = cos ϑ ex − sin ϑ ey, (11)

whence it follows that c = ϑ ′. Thus, as long as c does not
vanish, ϑ and s can equally be employed to parametrize the
chain’s shape: in the setting described by Figs. 2, 3(b), and 3(c),
ϑ0 � ϑ � ϑ1. Expressing both ft and fn as functions of ϑ , for
fn �= 0, we readily obtain from Eq. (10) that

ln |λv2 − τ | =
∫

ft

fn

dϑ, c = fn

λv2 − τ
. (12)

If f = −λgey , where g is the acceleration of gravity, then
ft = −λg cos ϑ , fn = −λg sin ϑ , and Eq. (12) yields

τ = λv2 − a2

sin ϑ
, c = λg

a2
sin2 ϑ, (13)

where a2 is a yet unknown, positive integration constant. As
already remarked in Ref. [27, p. 64], the shape described by

t

n

ϑ

ex

ey

(a)

t+
0

−t−0
Φ0

ϑ0

ex

ey

p0

(b)

−t−1

t+
1

Φ1

ϑ1

ex

ey

p1

(c)

FIG. 3. (Color online) Blowups of different significant portions
of the steady shape of a chain fountain: (a) generic arc with the
local, movable frame (t,n) and a fixed, Cartesian frame (ex,ey);
(b) arc around the pickup point p0; (c) arc around the putdown point
p1. The different unit tangent vectors are described analytically by
Eq. (25). Forces �0 and �1 are realizations of the momentum supply
� featuring in Eq. (4).

Eq. (13) is an inverted catenary. Moreover, for τ not to be
negative somewhere, it suffices that τ1 := τ (ϑ1) � 0, that is,

a2 � λv2 sin ϑ1. (14)

By integrating in ϑ , with the aid of Eq. (13), the equations

dx

dϑ
= sin ϑ

c
,

dy

dϑ
= cos ϑ

c
, (15)

which follow from Eq. (11), we arrive at

x(ϑ) = a2

λg

(
ln

1 − cos ϑ

sin ϑ
− ln

1 − cos ϑ0

sin ϑ0

)
, (16a)

y(ϑ) = a2

λg

(
1

sin ϑ0
− 1

sin ϑ

)
, (16b)

which parametrize the chain’s steady shape in the Cartesian
plane (x,y) with origin at p0. Likewise, the correspondence
between ϑ and s is expressed explicitly by

s(ϑ) = a2

λg
(cot ϑ0 − cot ϑ) . (17)

So far we have considered both the impressed scalar
velocity v � 0 and the pickup angle 0 � ϑ0 � π

2 as parameters
of the solution we seek. The solution of the balance equation
for linear momentum along the smooth arc of a chain fountain
has identified two further parameters, a2 and ϑ1, subject to the
bound (14). In the next section, by use of appropriate boundary
conditions, we shall resolve the shocks and devise a strategy to
determine all four unknowns encountered here (plus two more
we shall encounter there).
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D. Shocks resolution

Combining Eq. (3a) with the assumption that at a shock
v+ = v+ t+ and v− = v− t−, we immediately conclude that
v+ = v− = v and ṡ0 = −v. Making use of this in Eq. (3b)
changes the latter into an identity. As shown in Figs. 3(b)
and 3(c), �0 and �1 are the momentum supplies acting at p0

and p1, respectively, where Eq. (4) can now be enforced in the
form

[(τ − λv2)t] + � = 0, (18)

where � is either �0 or �1, depending on the shock being
considered. In a similar way, with the aid of Eq. (9), at both
p0 and p1 Eq. (5) becomes

[τ ] = 1
2f λv2[t]2

. (19)

While Eq. (18) written for both shocks determines the
momentum supplies �0 and �1, correspondingly the jump
condition Eq. (19) ties a2 to ϑ0 and ϑ1 via Eq. (13). Overall,
there are six unknowns that need to be determined to identify
completely the steady solution we seek here, namely, ϑ0,
ϑ1, v, a2, τ+

1 , and τ−
0 , where the latter two designate the

tensions at the points p+
1 and p−

0 , respectively (see Fig. 2).
The jump condition in Eq. (19) written for the two internal
shocks provides only two equations: four others are missing.

As partly anticipated in Sec. II C, my strategy will start
by treating ϑ0 and v as parameters that label all possible
solutions; only later, extra conditions are to be identified which
may fix them. This has the dual advantage of showing both
the richness of solutions of the problem and the possibility
of selecting different solutions corresponding to different
conditions. Since, as will be clearer shortly below, the problem
is highly nonlinear, the existence of solutions in different
classes will be subject to different compatibility conditions.
I have privileged one class of solutions upon possible others,
as I believe that that represents more closely the physical
nature of the anomalous phenomenon being described by this
idealized mathematical model, but the strategy proposed here
could easily be applied to find solutions in other classes as
well.

Thus, treating both ϑ0 and v as parameters, only two
equations would be missing for the moment. One comes from
the geometric condition

y(ϑ1) = −h1, (20)

which prescribes the total downfall of the chain (see Fig. 2).
The other is the boundary condition that must be required
at the point p+

1 to reflect the deposition mechanism envisaged
in the model.

I think of p+
1 as being arbitrarily close to p1, distinguished

from it only for being the site of the external shock where the
links in the chain come to an abrupt halt. I imagine this as
a free deposition process, for which �∗ in Eq. (8) vanishes.
Thus, from Eq. (8) we obtain the condition

τ+
1 = λv2, (21)

where τ+
1 is also the tension acting on p1 from the right. The

same assumption, however, may not be valid at the point p−
0 in

Fig. 2, also taken as arbitrarily close to p0, as we have no clue
as to the type of connection between every single departing

link in the chain and the coil left behind it. By Eq. (7), we can
only say that the force exerted at p−

0 on the chain is given by

�∗
− = (λv2 − τ−

0 )t−
0 , (22)

where τ−
0 is yet to be determined. Clearly, −�∗

− is the force
acted upon the residual coil by the continuously departing
links.

There are two compatibility conditions that a solution must
meet to be acceptable: both concern the positivity of the
tension τ . One is (14), which amounts to require that τ1 � 0,
and the other is

τ−
0 � 0. (23)

To expedite the search for solutions and to retrace more
easily in them signs of universality, it is advisable to scale
all lengths to h1 and all velocities to V := √

2h1g, which
represents the velocity acquired by any body falling from rest
down the height h1. Thus, v will be replaced by

ν := v

V
. (24)

Moreover, to apply to the internal shocks in p0 and p1 the
jump conditions established in Sec. II A, it is also expedient
recording here, in accord with Eq. (11), the explicit expressions
for the unit tangent vectors involved in the singular points
depicted in Figs. 3(b) and 3(c):

t+
1 = t−

0 = ex,

t−
1 = sin ϑ1 ex + cos ϑ1 ey,

t+
0 = sin ϑ0 ex + cos ϑ0 ey.

(25)

By Eqs. (25), (21), and (19), we readily obtain that

a2 = f λv2 sin ϑ1(1 − sin ϑ1), (26)

which makes (14) automatically satisfied. Making use of
Eqs. (26) and (16b) in Eq. (20), we arrive at an equation for
ϑ1 that has a unique solution ϑ0 � ϑ1 � π − ϑ0, given by

ϑ1 = arcsin
{

1
2 [1 + sin ϑ0 −

√
(1 − sin ϑ0)2 + 4χ sin ϑ0]

}
,

(27)

provided that

χ := 1

2f ν2
� 1. (28)

It should perhaps be noted that by Eq. (24) inequality (28)
requires the velocity at which the chain is drawn to be
sufficiently larger than V , by an amount that increases as f

decreases.
When (28) is obeyed and ϑ1 is given by Eq. (27), the forces

�0 and �1 are readily delivered by Eq. (18); their Cartesian
components in the (ex,ey) frame are found to be

�0x = −f λv2(1 − sin ϑ0)

[
1 + sin ϑ1

sin ϑ0
(1 − sin ϑ1)

]
,

(29a)

�0y = f λv2 sin ϑ1(1 − sin ϑ1) cot ϑ0, (29b)

�1x = −f λv2 sin ϑ1(1 − sin ϑ1), (29c)

�1y = −f λv2 cos ϑ1(1 − sin ϑ1), (29d)
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which show how both �0x and �1x are negative and both �0y

and �1y are positive, for all choices of ϑ0 and ϑ1.
Finally, �∗

− in Eq. (22) is determined as �∗
− = �ex , where

� := λv2 − τ−
0 = f λv2

[
sin ϑ1

sin ϑ0
(1 − sin ϑ1) + (1 − sin ϑ0)

]
,

(30)

where again ϑ1 is delivered by Eq. (27). In particular, Eq. (30)
shows that � � 0 for all values of ϑ0 and χ , and so the residual
coil resting on the left of p−

0 is subject to the force −�ex , which
would set it into a backward motion, if not counterbalanced
by friction.

Making use of Eqs. (26), (27), and (28) in the parametric
representation of the inverted catenary in Eqs. (16), we readily
arrive at

x(ϑ) = h1

χ
sin ϑ1(1 − sin ϑ1)

×
(

ln
1 − cos ϑ

sin ϑ
− ln

1 − cos ϑ0

sin ϑ0

)
, (31a)

y(ϑ) = h1

χ
sin ϑ1(1 − sin ϑ1)

(
1

sin ϑ0
− 1

sin ϑ

)
, (31b)

whence, in particular, it follows that the maximum elevation
h2 of a chain fountain and its width w are given explicitly by
(see Fig. 2)

h2 := y
(π

2

)
= h1

χ

sin ϑ1

sin ϑ0
(1 − sin ϑ1)(1 − sin ϑ0), (32a)

w := x(ϑ1) = h1

χ
sin ϑ1(1 − sin ϑ1)

×
(

ln
1 − cos ϑ1

sin ϑ1
− ln

1 − cos ϑ0

sin ϑ0

)
. (32b)

It requires just a few computations and resort to some identities
proving that Eq. (32b) agrees perfectly with Eq. (17) of
Ref. [9]. Figure 4 illustrates the shapes described by Eqs. (31)
for χ = 0.5 and χ = 0.8 and several values of ϑ0, ranging
from 1◦ to 9◦.

The solution whose shape is represented by Eqs. (31) does
not necessarily exist for all values of the parameters 0 � ϑ0 �
π
2 and 0 � χ � 1, as there is no guarantee from Eq. (30) that
� � λv2, and so (23) may be violated. We shall return to the
compatibility condition imposed by this requirement shortly
below, after having devised a criterion to select the kinematic
parameters (χ,ϑ0), which are still free.

As already remarked after Eqs. (29), the components along
ex of both �0 and �1 oppose the chain’s motion, suggesting
that they are to be provided by some friction. We assume that

�0x = −k0v, �1x = −k1v, (33)

where k0 and k1 are positive friction coefficients, possibly
different from one another, and having a constitutive nature.
Different physical mechanisms could be imagined to justify
Eq. (33), which however remains a criterion to select a solution
out of the many parameterized above in (χ,ϑ0). Other criteria
could possibly be proposed, but I shall be contented with
showing below that this is indeed effective.
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FIG. 4. (Color online) Fountain sprays according to the paramet-
ric representation in Eqs. (31), drawn for χ = 0.8 (higher curves)
and χ = 0.5 (lower curves). The locus of vertices of the inverted
catenaries corresponding to one and the same value of χ is depicted
as a dotted curve in both cases. The values of ϑ0 are marked in degrees
close to each curve. To avoid clutter, some curves have been reflected
about the vertical axis, making the visual impression of a fountain
even more evident.

By Eqs. (29a) and (29c), the Eqs. (33) can be given the
following dimensionless form:

(1 − sin ϑ0)

[
1 + sin ϑ1

sin ϑ0
(1 − sin ϑ1)

]
= μ0

√
χ, (34a)

sin ϑ1(1 − sin ϑ1) = μ1
√

χ, (34b)

where

μ0 := k0

λ
√

f h1g
, μ1 := k1

λ
√

f h1g
, (35)

and ϑ1 is expressed by Eq. (27) in terms of χ and ϑ0.
Equations (34) are amenable to a graphical solution, aided
by a bit of asymptotic analysis. Their common roots are the
intersections of the curves shown in Fig. 5 for different values
of the parameters μ0 and μ1. As μ0 and μ1 vary, two families
of curves sweep the domain 0 � χ � 1, 0 � ϑ0 � π

2 . The
members of the former run downwards and cover the whole
domain as μ0 increases away from 0: for μ0 → 0+ the curve in
this family tends to the segment ϑ0 = π

2 , whereas for μ0 → ∞
it tends to the orthogonal segment χ = 0.

The situation is a bit more intricate for the family param-
eterized by μ1. For 0 � μ1 � 1, the curves in this family
run upwards in the domain 0 � χ � 1, 0 � ϑ0 � π

2 , without
covering it completely. For μ1 → 0+, the corresponding curve
tends to the pair of segments ϑ0 = 0 and χ = 1, but for μ1 = 1,
it is tangent to the segment χ = 0 at both ϑ0 = 0 and ϑ0 = π

2 ,
without coinciding with it, as shown in Fig. 5. Thus, for every
μ0 � 0 and 0 � μ1 < 1, there is precisely one intersection
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FIG. 5. (Color online) Representative curves (solid lines) of the
μ0 and μ1 families described by Eqs. (34). The intersection between
members of the two families represents an admissible solution of the
chain fountain problem, provided that it falls above the appropriate
curve (dashed line) in a family indexed by f . For 0 � f � 1

2 , the
members of this latter collapse in the origin of the (χ,ϑ0) domain.
For 1

2 < f � 1, they grow away from the origin and cover the left
corner bounded by the curve with f = 1. The values of μ0 and μ1

are marked either outside the domain, where the corresponding curve
hits the boundary, or close to the curve in the interior.

between every curve in one family and every curve in the other.
For μ1 � 1, apart from the intersection at χ = 0 and ϑ0 = π

2 ,
which represents a singular solution with no physical bearing,
there is a meaningful intersection between representatives of
the two families of curves only if

μ0 � 4(
√

2μ1 − 1 − 1), (36)

as can be shown through a local analysis near the point (0, π
2 )

of the (χ,ϑ0) domain.
In this domain, with the aid of Eq. (30), condition (23) can

also be given a graphical representation. It can be shown that
for 0 � f � 1

2 , all points in the domain satisfy (23), and so all
intersections between μ0 and μ1 curves represent admissible
solutions for the chain fountain problem. For 1

2 < f � 1, on
the other hand, only the intersections that fall above a curve in
a family parameterized by f are admissible (see Fig. 5).

In conclusion, subject to the limitations just listed, for every
choice of f , μ0, and μ1, there is either one or no complete
solution to the chain fountain problem. In Sec. III, I shall
compare this solution to the one already proposed by Biggins
and Warner [8,9] and I will comment further on the physical
implications of some aspects of the solution proposed here.

E. Energy balance

Both the internal and external shocks that feature in the
chain fountain solution described above entrain an energy
supply, which according to Eq. (9) is dissipative for all internal
shocks, and by Eqs. (7) and (8) may be either dissipative
or productive for external shocks. The aim of this closing
subsection is evaluating all the energy supplies involved in
the solution and showing that, once all contributions are duly
accounted for, the total energy is perfectly balanced.

We begin by computing the energy dissipated at the internal
shocks steadily residing at p0 and p1 (Fig. 2), which will
be denoted by W (0)

s and W (1)
s , respectively. It follows from

Eqs. (9), (13), and (26) that

W (0)
s = −f λv3(1 − sin ϑ0),

W (1)
s = −f λv3(1 − sin ϑ1),

(37)

where, as above, ϑ1 is given as a function of χ and ϑ0 through
Eq. (27). Likewise, we apply Eqs. (7) and (8) to the external
shocks in p−

0 and p+
1 , where, in Cayley’s language, the chain

connects and disconnects, respectively, with the exterior. With
the aid of Eqs. (21) and (30), we write the corresponding
energy supplies as

W ∗
− = f λv3

[
sin ϑ1

sin ϑ0
(1 − sin ϑ1) + (1 − sin ϑ0)

]
− 1

2
λv3,

(38a)

W ∗
+ = 1

2
λv3. (38b)

Finally, we compute the power Wa expended by the active
external force f = −λgey . It readily follows from Eq. (2) that

Wa =
∫ p1

p0

f · vds = (τ0 − τ1)v

= f λv3 sin ϑ1(1 − sin ϑ1)

(
1

sin ϑ1
− 1

sin ϑ0

)
, (39)

where τ0 and τ1 are the internal tensions at p0 and p1,
respectively, and use has been made of Eqs. (13) and (26).

Combining together all the powers in Eqs. (37), (38),
and (39), we see that they add up to zero identically, in accord
with the fact that for a steady solution the total kinetic energy T

is constant, and so the total balance of energy requires that

Ṫ = Wa + W ∗
− + W ∗

+ + W (0)
s + W (1)

s . (40)

A final comment is perhaps wanted about the sign of the
powers obtained above. Clearly, Wa is positive, whereas both
W (0)

s and W (1)
s are negative, as expected. On the other hand,

W ∗
+ is positive, indicating that energy is put into the system to

produce a continuously instantaneous deposition of links; such
an energy gain is exactly compensated by a loss involved in
the specular pickup of links, as indicated by Eq. (38a), where,
however, W ∗

− may have another sign, without affecting the
total balance in Eq. (40).

III. DISCUSSION

I had promised in the Introduction that I would relate
the phenomenological coefficients α and β in Eq. (1) to a
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single constitutive parameter. I am now in a position to fulfill
that promise. Combining together Eqs. (13) and (26), and
comparing with Eq. (1) the expressions for the tensions τ0

and τ1 thus obtained, we readily see that

α = f
sin ϑ1

sin ϑ0
(1 − sin ϑ1), β = 1 − f (1 − sin ϑ1), (41)

which express α and β in terms of one constitutive parame-
ter, f , and the kinematic parameters (χ,ϑ0) of the solution.
As shown in Sec. II D, these latter may also be related through
μ0 and μ1 in Eq. (35) to the friction coefficients k0 and k1,
which unlike f can be viewed as external coupling parameters.
Alternatively, it easily follows from Eq. (41) that

f = (1 − β)2

1 − β − α sin ϑ0
, sin ϑ1 = α

1 − β
sin ϑ0. (42)

By using in Eq. (42) the values α = 0.12 and β = 0.11
measured in Ref. [9] together with the angle ϑ0 = 31◦, for
which Fig. 5 of Ref. [9] shows the best agreement between
predicted and observed shapes of the chain, we readily
obtain that f

.= 0.96 and ϑ1
.= 176◦. While the latter agrees

qualitatively with the shapes observed in Refs. [8,9], the former
is a first indirect measurement of f .

I also alluded to the possibility that f might have already
been measured for some special chains. This indeed emerges
from reading the work of Hamm and Géminard [10] in the
context of the theory presented in Sec. II. Hamm and Géminard
revisited an old problem for a special system with variable
mass: the dynamics of a straight chain falling vertically under
gravity and accumulating on the pan of a scale. They observed

experimentally that the free tip of the chain falls with an
acceleration greater than the acceleration of gravity g and
proposed an equation to describe this motion featuring a
dimensionless parameter, γ , which was determined by fitting
the experimental data. For a ball chain, they found γ

.= 0.83,
and for a loop chain, γ

.= 0.95. Moreover, they argued that
“It might be tempting to interpret γ as characterizing the
dissipation at the bottom. However, the values of γ measured
for a hard and a soft surface are the same,” and they concluded
that γ “must depend on the structure of the chain.” Now,
their equation of motion, Eq. (5), can also be obtained by
interpreting as a dissipative shock the kink at the bottom where
the chain impinges on the scale’s pan. Subjecting this shock
to Eq. (9), one easily gives the balance equation of linear
momentum the same form as Eq. (5) of Ref. [10], with their
γ just equal to our f [28].12 That dissipation plays a crucial
role in these problems is clearly witnessed by the explicit
solution obtained in Sec. II, in which the limit as f → 0+
is highly singular and would break the required compatibility
conditions, such as (28).

Another feature of the complete solution for the chain
problem given here has been observed as well, though only
qualitatively. It is apparent from the movies in Ref. [29] (see
also Ref. [9]) that the chain being picked up exerts a backward
force on the rows of chain being sucked in, a force that
eventually sets the latter in motion. For such a force, now
Eq. (33) delivers an explicit expression.

It is my hope that this and the other explicit details of the
solution found here could prompt an experimental validation
of the theory, whose main hypothesis is the existence in a chain
of the internal dissipative shocks described by Eq. (9).

12More generally, I shall show in Ref. [28] how some classical chain
paradoxes, and similar ones arising in the study of systems with
variable mass, can be resolved by the theory of internal dissipative
shocks outlined in this paper.
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