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Synchronization of particle motion induced by mode coupling in a two-dimensional plasma crystal
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The kinematics of dust particles during the early stage of mode-coupling induced melting of a two-dimensional
plasma crystal is explored. It is found that the formation of the hybrid mode causes the particle vibrations to
partially synchronize at the hybrid frequency. Phase- and frequency-locked hybrid particle motion in both
vertical and horizontal directions (hybrid mode) is observed. The system self-organizes in a rhythmic pattern of
alternating in-phase and antiphase oscillating chains of particles. The spatial orientation of the synchronization
pattern correlates well with the directions of the maximal increment of the shear-free hybrid mode.
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I. INTRODUCTION

An odd “kind of sympathy” in pendulum clocks discovered
about 350 years ago by C. Huygens was later rigorously
explained as a specific synchronization process between the
weakly coupled close-frequency oscillators [1,2]. Since then
synchronization phenomena have become an important topic
in explorations of biological, physical, chemical, cybernetical,
and many other dynamical systems. Their diversity and
complexity required a principally new approach to develop
a network analysis, allowing to systematically study intercor-
relations in large populations of interacting units [3–8]. Spon-
taneous emergence of synchronized signals and spontaneous
symmetry breaking are typical behaviors in such nonlinear
systems, e.g., in spatially distributed mutually coupled lasers
[9–11]. A large system of weakly coupled nearly identical
oscillators with a phase-dependent interaction is normally
considered as a model to explore collective synchronization in
detail. Analytical studies [12], computational simulations [13],
as well as model systems, e.g., the dynamics of disordered
Josephson arrays [14], predict a nonlinear dynamical phase
transition in such systems. In this sense, complex plasmas
are ideal systems to observe the synchronization process
generically in all its complexity and diversity at an “atomistic”
scale and in real time.

Complex or dusty plasmas are weakly ionized gases
containing micron-size particles called dust particles or
microparticles. In a laboratory radio-frequency (rf) plasma
these particles are negatively charged. Due to their strong
interactions with the plasma and with each other, they can
form strongly coupled systems, analogous to colloids [15].
Microparticles are often confined in the sheath region of
electrical discharges, where the electrostatic force is strong
enough to balance the gravity force. They can form monolayers
or (quasi-)two-dimensional (2D) crystals [16–20] extended
vertically to a finite width, which strongly depends on the
strength of the vertical confinement [19]. In such systems,
two in-plane wave modes with an acoustic dispersion can be
sustained: a longitudinal mode and a transverse mode. Since
the strength of the vertical confinement is finite, there is a
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third fundamental wave mode associated with the out-of-plane
oscillations which has an optical dispersion [19–25].

Due to the strong electric field in the sheath region of the
discharge, every particle is influenced by a strong ion flow
exerting an additional force on it. Moreover, the screening
cloud around each particle in such conditions is strongly
distorted, being more extended in the direction of the flow.
The ions tend to focus downstream of the particle making the
system highly polarized. This mechanism is often referred
to as “plasma wake” [26–33]. One of the easiest ways to
represent the plasma wake is to add a pointlike positive wake
charge downstream of the particle [23,25], or consider the
polarization self-consistently in the framework of the linear
response models [26,33–35].

The existing theories predict that all three wave modes
depend critically on the parameters of the plasma wake. More-
over, the wake-mediated interactions between the particles
result in the coupling of the “usual” crystal modes into a new
“hybrid” mode of the lattice layer. This mode can be evidenced
as localized “hot spots” in the lattice phonon’s spectra [36].
The theory of mode-coupling instability [23,25,37] provides
a detailed picture of a plasma-specific melting scenario
operating in 2D plasma crystals. The melting associated with
the wake-mediated coupling between the longitudinal in-plane
and out-of-plane modes can only be triggered if (i) the modes
intersect, and (ii) the neutral gas damping is sufficiently low.
In the vicinity of the hybrid mode, one can observe traces
of mixed polarization for the two intersecting wave branches
[37]. These features can be considered as distinct fingerprints
to identify the onset of the wake-induced mode coupling. In
theoretical investigations [25,37] the hybrid mode was found
to preferentially emerge with a wave vector parallel to the rows
of the minimal packing density in the lattice. For instance, it
is valid for the waves propagating at an angle θ = 0◦ or along
any other direction equivalent by hexagonal symmetry, e.g., at
an angle θ = 60◦ or 120◦, etc. The propagation angle θ is as
introduced in Fig. 1.

It is well known that in a system of coupled limit-cycle
oscillators, a macroscopic fraction of them can synchronize to
a common frequency when the coupling among oscillators is
strong enough [38]. A two-dimensional plasma crystal can be
seen as an ensemble of coupled nonlinear oscillators. During
the mode-coupling induced melting, dust particles interact
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FIG. 1. (Color online) Sketch of the experimental setup. Mi-
croparticles are confined above the rf electrode and are illuminated
with a horizontal laser sheet. Microparticles are recorded from top
at a speed of 250 frames per second. A second vertical laser sheet
illuminates the microparticle cloud allowing us to record a slice of it
using a side-view camera at 103.56 fps. In the inset the elementary
cell of the hexagonal lattice is depicted with the frame of reference
chosen in this article.

strongly with each other, and, as has been shown previously,
the hybrid mode can be a source of anomalous heating [36,37].
First experimental observations showed that at the nonlinear
stage of the mode-coupling instability the crystal melts and
spreads out vertically [36,39,40].

In this paper, we demonstrate experimentally that during the
melting process mediated by the mode-coupling instability, the
microparticle oscillations are synchronized dominantly in
the direction along which the instability increment is maximal.
The side-view imaging revealed that the particles exhibit both
vertical and horizontal oscillatory motions at the hybrid mode
frequency. The synchronization is explained by the fact that
only the wave modes at the hybrid frequency have a positive
growth rate while the other waves are damped. Moreover,
the hybrid mode with a maximal increment is dominantly
compressional.

II. EXPERIMENTAL SETUP

Mode coupling and plasma crystal melting were sys-
tematically investigated in experiments performed with a
(modified) gaseous electronics conference (GEC) chamber,
in a capacitively coupled rf glow discharge at 13.56 MHz
(see Fig. 1). The argon pressure was between 0.4 and 1 Pa
and the forward rf power was between 5 and 20 W (which
corresponded to rf peak-to-peak voltage between 175 and
310 V). The plasma parameters in the bulk discharge were
deduced from Langmuir probe measurements, yielding the
electron temperature Te = 2.5 eV and the electron density
ne = 2 × 109 cm−3 at p = 0.66 Pa and P = 20 W [41]. A
horizontal monolayer was formed by levitating melamine-
formaldehyde particles in the plasma sheath above the lower rf
electrode. Particles with a diameter of 9.19 ± 0.14 μm were
used. The dust particle cloud was illuminated by two laser
sheets: a vertical one and a horizontal one. The particles
were imaged through a window at the top of the chamber

by a Photron FASTCAM 1024 PCI camera at a speed of 250
frames per second. The horizontal coordinates x and y as
well as velocity components vx and vy of individual particles
were then extracted with subpixel resolution in each frame by
using a standard particle tracking technique [42]. An additional
side-view camera (Basler Ace ACA640-100GM at 103.56 fps)
was used to verify that our experiments were carried out with
a single layer of particles. This side-view camera was also
used to study the in-plane and out-of-plane motion of the
microparticles in a slice of the crystal. The diameter of the
obtained crystalline structure, depending on the number of
injected particles [43], was up to ∼60 mm.

III. DATA PROCESSING

A. Dynamical characteristics

To explore the wave properties of the microparticle mono-
layer, the in-plane and out-of-plane tracking data obtained are
used to compute the particle velocity fluctuation spectra. First
the particle current components Vs(k,t) introduced as

Vs(k,t) =
N∑

j=1

vs,j (t)e−ik·sj (t) (1)

are calculated in the s direction at the time moment t , using
a wave vector k = {kx,ky} located in the horizontal plane.
Here, i is the imaginary unit, j is the particle index, vs,j (t) is
the s projection of the j th particle velocity, sj = {xj ,yj ,zj }
is its position, and N is the number of microparticles. Note
that the x,y axes are chosen as shown in Fig. 1. Fixing the
axes directions allows us to easily choose the direction of the
wave propagation with respect to the lattice principal axis. A
fast Fourier transform in time domain is then implemented to
obtain the current fluctuation spectra. The structure factor of
the crystal was also calculated from the particle positions:

S(k,t) = 1

N

∣∣∣∣∣∣
N∑

j=1

e−ik·sj (t)

∣∣∣∣∣∣
2

. (2)

B. Instantaneous phase and frequency of particle oscillations

From the tracks of each traced particle, it is possible to
obtain the instantaneous phases of the particle trajectories as
a function of time and position. The displacements rj (t) =√

x2
j (t) + y2

j (t) at hand were first filtered to remove the drift
and to keep only the oscillatory parts, i.e., the “filtered”
displacement r̃j (t) of the j th particle is defined as

r̃j (t) = xj (t) − 1

�t

∫ t+�t/2

t−�t/2
rj (t ′)dt ′ (3)

where �t , the interval of averaging, was chosen to be the
same, �t = 0.5 s, at all j = 1 . . . N . Finally the Hilbert
transform was implemented to obtain the analytic signals
raj

(t), their instantaneous phases φj (t) = arg[raj
(t)], and

amplitudes Aj (t) = |raj
| [44]. Maps of particle instantaneous

phases were then constructed for each frame and stacked
together to assemble a video [45].
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The instantaneous phase computed for each particle j was
used to calculate the degree of synchronization σj between the
particle j with its closest neighbors [46],

σj = 1

n

n∑
j ′=1

σjj ′ , (4)

σjj ′ = 1 − Sjj ′

Smax
, (5)

where n is the number of the closest neighbors, Sjj ′ is the
Shannon entropy of the cycle phase distribution between
neighbors,

Sjj ′ = −
M∑
l=1

pjj ′l ln pjj ′l ,

M∑
l=1

pjj ′l = 1. (6)

Here, pjj ′l is the fraction of the data in the lth bin in the distri-
bution of phase differences φjj ′(t) = φj (t) − φj ′(t)(mod 2π ),
l = 1 . . . M , M = 20 is the number of bins, and Smax =
ln M is the maximum entropy corresponding to a uniform
distribution pjj ′l = M−1. The distribution of phase differences
was computed with the help of a moving window procedure
using the instantaneous phases φjj ′(t) calculated for the 101
consecutive frames centered on the time moment t .

The synchronization index σj introduced by relationship
(4) scales between 0 and 1. The completely synchronized
(desynchronized) state corresponds to σ = 1(0).

The time derivative of the instantaneous phase yields the
instantaneous frequency 2πfinst = |∂φ(t)/∂t |.

IV. EXPERIMENTAL RESULTS

In this section, the early stage of the mode-coupling insta-
bility of a 2D complex plasma crystal triggering the frequency
and phase synchronization and followed by the melting is
discussed. The instability was initiated by decreasing the argon
pressure from p = 0.94 Pa to 0.92 Pa at a fixed forward rf
power P = 12 W.

A. Fluctuation spectra of the monolayer

The longitudinal and transverse sound speeds, respectively
CL = (34.1 ± 1.4) mm/s and CT = (7.9 ± 0.3) mm/s, were
obtained by using the low-k part of the longitudinal and
transverse in-plane spectra; see Fig. 2. The interparticle
separation in the center of the crystal was found to be
a = 480 ± 10 μm. Given the measured values of a, CL, and
CT , and following the method proposed in Ref. [47], the
charge of the dust particles Q � −18 600e, where e is the
elementary charge, the coupling parameter κ ≡ a/λD = 1.26
and the Debye length λD = 380 μm were calculated. The error
on the charge is about 15% and the error on κ is about 30%.

The frequency of the vertical particle oscillations (the “ver-
tical confinement parameter”) fv = 23 ± 1 Hz was extracted
from the out-of-plane fluctuation spectrum (not shown here).

The hot spot at the frequency fhyb = 16 ± 1 Hz, indicating
emergence of the hybrid mode, is well pronounced in the
longitudinal velocity fluctuation spectrum; see Fig. 2(a). To
obtain the wave energy distribution in the k plane around
the hybrid mode resonance frequency f = fhyb the spectrum
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FIG. 2. (Color online) Fluctuation spectra of the in-plane particle
velocity at θ = 0◦ and θ = 30◦: (a),(b) longitudinal, (c),(d) transverse
velocity fluctuations. A bright “hot spot” at the frequency of fhyb =
16 ± 1 Hz well seen in the spectrum (a) is worth noting.

of the in-plane velocity fluctuations was integrated over the
narrow frequency band 14–18 Hz. Performing computations,
the interrogation window was chosen to be a square of 400 ×
400 pixels. It was thus ∼35 × 35 interparticle distances giving
a resolution of ∼0.18ka. The resultant spectral map is shown
in Fig. 3. The upper (lower) panel of Figs. 3(a) and 3(b) shows
the compressional (shear) component of the velocity
fluctuation.

Note that the kx > 0 semiaxis corresponds to the θ = 0◦
direction in the frame of reference introduced in Fig. 1. As
predicted by the linear isotropic theory [25,37], it is the
“most unstable” direction in which the instability develops.
Therefore, in what follows, the θ = 0◦ direction (as well as
any other, e.g., at θ = ±60◦, ± 120◦, and 180◦ which are
equivalent by symmetry) is referred to as the “most unstable
direction.”

The synchronized nonlinear state of the crystal layer
oscillations happened to be highly anisotropic; see Fig. 3.
For instance, inside the first Brillouin zone, the hot spot
located at θ = 60◦ is about nine times brighter than its
“counterpart” located at θ = −120◦ [Fig. 3(a)]. The hot spots
expected to be at θ = −60◦ and 120◦ by symmetry have
astonishingly disappeared. Therefore the energy spectrum of
the synchronized hybrid mode oscillations is strongly intensity
and angle modulated. In this sense, the hexagonal symmetry
of the crystal state is broken.

Note that “spontaneous” symmetry breaking phenomenon
is a typical behavior for, e.g., driven colloids [48]. This
phenomenon explains rigorously the asymmetry of the escape
directions and the chirality of the defect configurations
revealed by the newly nucleated dislocations in 2D complex
plasma experiments [49,50].
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FIG. 3. (Color online) Spectrum of the particle velocity fluctu-
ations in the {kx,ky} plane integrated over the frequency in the
range 14 Hz < f < 18 Hz. (a) Compressional component. (b) Shear
component. The white dashed lines show the border of an ideal
(theoretical) first Brillouin zone. The dotted-dashed pink lines show
the border of the real first Brillouin zone obtained from the time
averaged structure factor S(k). The bright hot spots located inside
this zone are well recognizable in the compressional spectrum by
the higher energy concentration. Their positions in the first half of
the Brillouin zone are k1a = 3.0 ± 0.2, θ1 = (3 ± 5)◦, and k2a =
3.2 ± 0.3, θ2 = (60 ± 7)◦. Note an asymmetry effect: the 60◦ hot spot
is certainly brighter and no hot spot is observed at −60◦. A large-scale
inhomogeneity of the monolayer is most probably responsible for all
of the observed anisotropy.

As can be seen in Fig. 3(a), the hot spot positioned, for
instance, along a kx > 0 semiaxis is located in the k map at
kx = khyb, which is close to the very right border of the first
Brillouin zone kBr , still distinguishably well separated from it:

kBra = 2π/
√

3 > khyba � π, (kBr − khyb)/khyb � 15%.

The accuracy of given measurements, around 5–10%, allows
us to certainly state this.

It should also be noted that in Fig. 3(b), one can see a slight
excitation of shear waves in the direction of main instability
(especially at 60◦). Since the theory predicts that the hybrid

mode does not have a shear component, this is quite surprising.
However, the intensity of the shear component is around two
orders of magnitude less than the compressional component.
This probably originates in the nonlinearity of the coupled
waves.

B. Partial synchronization

The evolution of the cumulative probability p(fhyb) to
find the instantaneous frequency inside the frequency band
14–18 Hz around the hybrid resonance finst ∼ fhyb is presented
in Fig. 4. At start (t < 0.5 s), the frequency synchronization
probability is low. Then, as the mode-coupling instability
sets in, the probability gradually increases as more and more
particles get locked at the hybrid frequency. Between t = 2.5 s
and t = 3 s, there appears a significant fraction of the particles
that oscillate at the hybrid frequency, indicating emergence
of the partial frequency synchronization state. When the
crystalline suspension melts (at t > 3 s), the cumulative
probability drops down stepwise to the lowest level ∼0.05
indicating no frequency synchronization, and, hence, no mode
coupling. Only the central parts of the monolayer were
involved in calculations, half in size compared to those used to
assemble the phase distribution maps shown on top in Fig. 4.

Note that sharp change in the phase locking probability is
typical for the dynamical phase transitions, e.g., for Josephson
junction arrays [14].

The pair correlation functions shown in the inset in
the bottom panel of Fig. 4 demonstrate partial degradation
of the crystalline order during the transitions between the
synchronized and desynchronized states.

The snapshots of the instantaneous phase variation during
the mode-coupling instability are presented in the top panels
of Fig. 4. The phase locking proceeds as follows:

(i) At the beginning at t < 1 s, no recognizable synchro-
nization pattern can be extracted and the instantaneous phases
appear to be randomly distributed over the crystal layer.

(ii) Starting from t � 1.3 s (first map shown on top in
Fig. 4), short rows of in-phase oscillating particles can be
detected in the central part of the crystal, indicating that partial
synchronization of the particle motions takes place.

(iii) With time passed, at t = 2.16 s, rows of the in-
phase oscillating particles elongate as more particles become
involved in synchronization (second map shown on top in
Fig. 4). It is worth mentioning that neighboring rows of
the synchronically oscillating particles are moving almost
in antiphase (i.e., having a phase difference �φ � π ). Note
also that the motion of the synchronically moving particles is
strongly “polarised” in the θ = 60◦ direction.

(iv) Later on, at t = 2.94 s (third map shown on top
in Fig. 4), two types of the phase alignment, one oblique
(corresponding to the wave propagation angle θ � 60◦) and
another almost vertical (corresponding to the wave propagation
angle θ � 0◦), are clearly seen. Apparently, they correspond
to two equivalent directions, by symmetry, in the crystal. The
synchronization effect can also be well identified through
increase in the mean value of the synchronization index 〈σ 〉
(averaged over particles). The averaged Shannon entropy of
the cental part of the crystal (blue line in bottom panel of
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FIG. 4. (Color online) (top) Consecutive snapshots (a 300×300-pixel area of the original video) indicating the instantaneous phase
distribution for desynchronized phase states (the very left and right images, t = 1.32 s and t = 4.00 s), and during the synchronization
state (two middle images, t = 2.16 s and t = 2.94 s). Black dots show the position of the particles. (bottom) Evolution of the cumulative
probability p(fhyb) (red dashed curve) to find a particle with an instantaneous frequency in the band 14 Hz < f < 18 Hz around fhyb, the mean
value of the synchronization index 〈σ 〉 (averaged over particles, solid blue curve) and the averaged instantaneous amplitude of the particle
oscillations (solid black curve). Performing the averaging, about 150 particle tracks at the center of the crystal (a 145×145-pixel area of the
original video) were taken into account. The inset shows the radial pair correlation functions taken at the indicated time moments.

Fig. 4) grows almost linearly during the first 1.5 s, and shows
a maximum at the most synchronized state.

(v) The lifetime of the synchronized state is about �t = 1 s
in our conditions. It is important to emphasize that the
synchronization pattern self-assembles (and then disappears
after a while) almost simultaneously in the phase-locking
and frequency-locking processes. It is also worth noting that
the degree of phase synchronization is maximal when the
probability to find the frequency locked in the vicinity of the
hybrid resonance is also maximal; see blue and red curves
in Fig. 4. Notice that phase and frequency synchronization
starts at small but finite amplitude of particle oscillations. It
can be clearly seen in Fig. 4 that the amplitude of the particle
oscillations (solid black line) is nearly exponentially growing
during the synchronization period. It corresponds fairly well
to the theoretical expectations [37].

(vi) The pair correlation function g(r) (see the inset in
Fig. 4) shows that the crystalline structure is preserved for
a surprisingly long time. Nonetheless, at t > 3 s, when the
oscillations become too intense, the synchronization degree
goes down indicating that the phase locking no longer takes

place and the particle oscillations desynchronize (see fourth
map shown on top of Fig. 4). The crystal melts and the partial
synchronization state is lost.

C. Tracks of synchronically oscillating particles

To study in detail the out-of-plane particle vibrations, the
mode-coupling induced crystal melting process was recorded
from the side of the monolayer at a frame rate of 103.56 fps
(see Fig. 1). The trajectories of two neighboring particles
were traced and extracted from the recorded sequence of the
side-view images. These trajectories are presented in Fig. 5.
The time averaged values were subtracted from the actual
particle positions in order to emphasize the oscillatory part of
the particle movements. Both particles exhibit an oscillatory
motion at the hybrid frequency fhyb � 16.5 ± 0.8 Hz. Their
motion consists of the vertical (“out-of-plane”) and horizontal
(“in-plane”) approximately equally energized components.
This fact is in a fairly good agreement with that theoretically
expected [23,25,37,51]. It is also worth noting that the
trajectories shown in Fig. 5, belonging to the neighboring
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FIG. 5. (Color online) Trajectories of two neighbor particles [red
(plain diamond symbols) and blue (plain square symbols) plain lines]
exhibiting a periodic motion at the hybrid frequency � 16.5 ± 0.8 Hz
in both the vertical and horizontal directions. The dashed light-blue
(opened square symbols) and light-red (opened diamond symbols)
lines are the projection on the (x,t) and (z,t) planes.

chains of particles, present antiphase oscillations in pretty good
agreement with that shown in Fig. 4. (The measured phase
difference is in the z direction, 〈�φz〉 = (1.03 ± 0.10)π , and
in the x direction, 〈�φx〉 = (1.49 ± 0.70)π . The large error in
the last case can be explained by the fact that the laser sheet
was not properly aligned along the crystal main axis.)

The interpenetrating antiphase oscillating “sublattices” is
the general pattern most closely explaining synchronization in
a 2D plasma crystal; see Fig. 6. In this sense, the synchronized
state of a 2D complex plasma obeys the common well-
established rule stated in Ref. [1]: “symmetry breaking governs
the ways that coupled oscillators can behave.”

V. DISCUSSION AND CONCLUSION

The equation of motion of each particle in an infinite quasi-
2D crystal can be written as

m
d2rj

dt2
= −mν

drj

dt
− m�2

conf(zj − zeq)ez +
∑
j ′ 
=j

Fjj ′ + Lj ,

(7)

where m is the mass of the microparticles, rj = {xj ,yj ,zj } is
the coordinate of the j th particle, zeq is the vertical equilibrium
coordinate same for all particles (the particles are assumed
to be monodisperse), ez is the unit vector in the vertical z

direction, ν is the neutral gas drag coefficient, �conf = 2πfv

is the confinement parameter of the vertical confinement
potential well (here assumed to be parabolic). The Langevin
force is defined as

〈Lj (t)〉 = 0, 〈Lj (t + τ )Lk(t)〉 = 2νmT δjkδ(τ ),

where T is the temperature of the background gas (thermostat)
in energy units [here, δjk is the Kronecker δ and δ(τ ) is the
Dirac δ function]. Fjj ′ = F(Y )

jj ′ + F(w)
jj ′ is the interaction force

FIG. 6. Two superposed images of the lattice layer separated in
time by a half period (�t � 0.032 s). The absolute time moment,
t � 2.7 s, was taken close to the maximum of the synchronization
index; see Fig. 4. The white and black dots represent the particle
positions. The mean interparticle separation in the chosen region is
〈a〉 = 470 ± 16 μm. Three sets of parallel dashed lines are shown
to guide the eye. The stacked images were shifted along the main
deformation direction to graphically demonstrate the character of the
particle vibrations. The main deformation direction is as the dotted
lines indicate. Note that in this direction the lattice is about 7–9% more
compact. Importantly, the distance between the in-phase oscillating
rows of particles is kept nearly constant.

between the two particles. This force consists of the screened
Coulomb interaction

F(Y )
jj ′ = Q2 rjj ′

r3
jj ′

(
1 + rjj ′

λD

)
exp

(
− rjj ′

λD

)

and the ion-wake-mediated interaction force F(w)
jj ′ , introduced,

e.g., in Ref. [23]. In [23], by using a simple model, in which
the ion wake was modelled by a pointlike positive charge
located at a fixed distance below the particle, it was shown
that the longitudinal in-plane and transverse out-of-plane
wave modes ω(k) merge at a certain critical value of �conf .
Strongly coupled vertical and horizontal particle movements
result in the formation of the hybrid mode. The hybrid mode
emergence is characterized by a positive growth rate, which
can trigger the mode-coupling instability (see Refs. [23,25,37]
for details). Calculations done for a more refined wake
potential model (performed in Refs. [34,35]) do not change
the main characteristics of the mode coupling. According to
[23,25,37,51], the hybrid mode has both in-plane longitudinal
and out-of-plane transverse components, which are equally
strong. In Ref. [25], it is also shown that the coupling occurs
close to the boundary of the first Brillouin zone. All these
predictions are well in line with our observation results.

As can be seen in Figs. 2 and 3, most of the spectral
energy of fluctuations is concentrated in the hybrid modes
excited in the most unstable direction (i.e., for θ = 0◦ in
our adopted frame of reference). Consequently, the particle
motion surveyed from the top view should be mainly seen as
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oscillations around the equilibrium positions, occurring in this
direction at the hybrid frequency. Figure 5 confirms that the
hybrid mode has both the vertical and horizontal components.
In Fig. 4, it can be seen that the entire rows comprising 10–20
particles have the same instantaneous phase, especially at the
latest stage of the instability (before the crystal melts). This
effective “one-dimensionalization” by phase and frequency
locking deeply affects the synchronization pattern. As already
mentioned in the previous section, it can also be seen in Fig. 4
that every two consecutive rows containing “in-phase” moving
particles oscillate almost in antiphase with each other. The
latter can be explained by the fact that the hybrid mode with
synchronized particle motion has a wave number k � khyb

closely obeying the relationship ka � khyba � π . Since the
wave oscillations of the particle j are proportional to eik·rj ,
we immediately conclude that for such k the motion of
neighboring particles should indeed be almost antiphase; see
also Ref. [23].

When the instability is triggered, only the oscillations
associated with the hybrid mode can surpass the damping,
while all other wave modes tend to equilibrium with the
surrounding plasma. Consequently, the kinetic energy is
accumulated in the hybrid mode and the amplitude of the
corresponding oscillations grows exponentially, hiding any
motion related to other modes sustained in the crystal. This
effect explains why the particle motion gets synchronized with
time in the direction of the main instability, and the amplitude
exhibits an exponential growth (see Fig. 4). Moreover, it is easy
to show that, by making a second order Taylor expansion of the
force between two neighbor particles, a coupling between the
particle phases of both the in-plane motions and out-of-plane
motions exists (i.e., terms in xj zj+1, zjxj+1, xjxj+1, and
zj zj+1, which make a dependence of the force exerted on
the j th particle on the horizontal and vertical phases of the
(j + 1)th particle automatically appear). It is well known that
oscillators with any phase-dependent interaction can evolve
until their phases are (partially) synchronized [12].

Since the hybrid mode with maximal increment has only
a very weak shear in-plane component (Fig. 3), it naturally

occurs that rows of particles which belong to equivalent
elementary cells must have synchronized motion (two cells are
equivalent when the translation necessary to pass from one to
the other results in a phase shift such that �� mod 2π = 0).

When the amplitude of motion is too large, the monolayer
becomes disordered and the synchronization power naturally
vanishes.

In Fig. 4, it can be seen that only two of three possible
equivalent by symmetry directions were excited. We believe
that the third direction has a higher excitation level due
to inhomogeneity of the horizontal confinement, leading to
inhomogeneities in the density of the crystal, breaking the
symmetry of synchronization pattern.

It is worth noting that despite synchronization in plasma
crystals was so far never systematically studied, traces of
the synchronized particle motion could be also detected in
Ref. [36] (especially at a low discharge power and low gas
pressure). Interestingly, when the crystal layer is not circular
but elliptical, the synchronization pattern seems to be preferen-
tially observed in the direction of the minor axis of the ellipse.

Thus, we have shown that during the mode-coupling
induced melting, the formation of the unstable hybrid mode
leads to the partial synchronization of the particle motion
in the direction of the main instability. It was evidenced by
analysis of the instantaneous phase, instantaneous frequency,
and synchronization index (Shannon entropy). The frequency
and the phase synchronization processes could be explained by
the fact that only wave modes at the hybrid frequency have a
positive growth rate while the other modes are well attenuated
by the damping.
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[34] T. B. Röcker, A. V. Ivlev, R. Kompaneets, and G. E. Morfill,

Phys. Plasmas 19, 033708 (2012).
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R. Spigler, Rev. Mod. Phys. 77, 137 (2005).

[39] A. V. Ivlev, U. Konopka, G. Morfill, and G. Joyce, Phys. Rev. E
68, 026405 (2003).

[40] J. D. Williams, E. Thomas, L. Couëdel, A. V. Ivlev, S. K.
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