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Dynamical friction in a relativistic plasma
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The work of Spitzer on dynamical friction in a plasma [L. Spitzer, Jr., Physics of Fully Ionized Gases, 2nd ed.
(Wiley, New York, 1962), Chap. 5] is extended to relativistic systems. We derive the force of dynamical friction,
diffusion tensor, and test particle relaxation rates for a Maxwellian background in the same form as Trubnikov
[B. A. Trubnikov, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York,
1965), Vol. 1, p. 105], enabling high-temperature laboratory and astrophysical plasmas to be modeled in a
consistent manner.
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I. INTRODUCTION

Relativistic plasmas are of relevance to both fusion energy
research and high-energy astrophysics. Coulomb collisions
influence behavior in many of these systems, such as transport
in inertial fusion targets [1], the slowing of fast electrons
formed in high-intensity laser-plasma interactions [2] (critical
to the fast ignition fusion scheme [3]), current drive in toka-
maks [4,5], the thermalization of astrophysical plasmas [6,7],
and, potentially, gamma-ray burst emission [8].

Accurately modeling any of these processes, typically
achieved using the Boltzmann equation, requires a relativistic
treatment. Landau [9] first showed that for Coulomb inter-
actions the Boltzmann collision integral may be written in
the Fokker-Planck form. Rosenbluth et al. [10] and later
Trubnikov [11] reformulated this in terms of the derivatives of
two potentials, a phrasing much more amenable to numerical
solution. These results were extended to relativistic plasmas
some time ago: the Fokker-Planck-Landau collision operator
by Beliaev and Budker [12] and the differential formulation
by Braams and Karney [13].

However, the direct relativistic analog to the semianalytical
results of Spitzer [14] (later reformulated by Trubnikov [15])
remains missing. These describe the motion of a test particle
traveling through a thermal background of field particles and
enable kinetic processes to be modeled without directly solv-
ing the Boltzmann equation. Adopting the more convenient
notation of Trubnikov, the relaxation rates of a test particle
(labeled a) traveling with a velocity v through a background
of field particles (labeled b) are given by [15]

dv
dt

= −�a/b

v3

(
1 + ma

mb

)
μ(x)v, (1)

d

dt
(v − v̄)2

‖ = �a/b

vx
μ(x), (2)

d

dt
(v − v̄)2

⊥ = �a/b

vx
[2x(μ(x) + μ′(x)) − μ(x)], (3)

dε

dt
= �a/bma

v

(
μ′(x) − ma

mb

μ(x)

)
, (4)
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with

dε

dt
= ma

2

(
2v · dv

dt
+ d

dt
(v − v̄)2

‖ + d

dt
(v − v̄)2

⊥

)
. (5)

Equations (1)–(4) describe the rate of momentum loss,
parallel and perpendicular momentum diffusion, and energy
change of the test particle, respectively. Here, ma and mb

are the species masses, v = |v| is the test particle speed, and
ε = mav

2/2 its kinetic energy. The function

μ(x) = 2√
π

∫ x

0
e−t t1/2dt (6)

is the Maxwell integral, whose argument x = v2/2�bc
2

(where �b ≡ kBTb/mbc
2 is the reduced temperature of the

background) and derivative μ′(x) ≡ dμ/dx. The coefficient
�a/b is given by

�a/b = nbq
2
aq

2
b ln �a/b

4πε2
0m

2
a

,

where nb is the density of the background, qa and qb are the
species charges, ln �a/b is the Coulomb logarithm, and ε0 is
the permittivity of free space.

In this work, we derive the Fokker-Planck coefficients
for a relativistic Maxwellian plasma (Sec. II), which are
subsequently used to obtain expressions for the relativistic test
particle relaxation rates (Sec. III). These are presented in the
same form as those of Trubnikov [Eqs. (1)–(4)] and can readily
be seen to reduce to these results in the classical limit. Finally,
we discuss the limits of applicability of this work in Sec. IV.
We note that these results are the exact relativistic counterparts
to those of Spitzer; those derived in previous works are either
more complex or less general [16–20].

II. RELATIVISTIC FOKKER-PLANCK COEFFICIENTS
FOR A MAXWELLIAN BACKGROUND

We begin by considering the collision operator of Braams
and Karney [13] between species a and b, as expressed in
Fokker-Planck form:

Ca/b = − ∂

∂u
·
(

Fa/b

ma

fa − Da/b · ∂fa

∂u

)
, (7)

where fa(r,u,t) is the distribution function of species a and
u ≡ p/ma is the ratio of momentum to species mass. The force
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of dynamical friction Fa/b and diffusion tensor Da/b are given
by

Fa/b(u) = −4π�a/b

nb

m2
a

mb

1

γ
K

(
g0 − 2

c2
g1

)
, (8)

Da/b(u) = −4π�a/b

nb

[
1

γ

(
L + I

c2
+ uu

c4

)
h1

− 4

γ c2

(
L − I

c2
− uu

c4

)
h2

]
, (9)

in which g0,1 and h1,2 denote four of five potentials (repre-
sented in general by the symbol χ ), γ = (1 + |u|2/c2)1/2 is
the Lorentz factor, I is the unit diagonal second-order tensor,
and

Kχ = 1

γ

∂χ

∂v
, Lχ = 1

γ 2

∂2χ

∂v∂v
− v

c2

∂χ

∂v
− ∂χ

∂v
v
c2

,

where v = u/γ and ∂/∂v = γ (I + uu/c2) · ∂/∂u. The poten-
tials satisfy the equations

Lg0 = fb, [L + 1/c2]h0 = fb,

Lg1 = g0, [L − 3/c2]h1 = h0,

[L − 3/c2]h2 = h1, (10)

where h0 is the fifth potential, fb is the distribution function
of species b, and

Lχ =
(

I + uu
c2

)
:

∂2χ

∂u∂u
+ 3u

c2
· ∂χ

∂u
.

It is instructive to switch to a spherical coordinate (u,θ,φ)
system, such that the distribution functions f and potentials χ

may be expressed as the complex amplitudes of an expansion
in spherical harmonics, e.g.,

f (r,u,t) =
∞∑
l=0

l∑
m=−l

f m
l (r,u,t)P |m|

l (cos θ )eimφ, (11)

where u = |u| and f −m
l = (f m

l )∗. Explicit forms for the
potentials can then be found by solving Eqs. (10) through the
construction of a Green’s function. We consider the case of an
isotropic background (l,m = 0), in which case all components
of Fa/b and Da/b vanish other than F

a/b

u,l=0, Da/b

uu,l=0, and D
a/b

θθ,l=0.
After substitution of the potentials, these be can written as
integrals over the background distribution fb (for a detailed
derivation, see Ref. [21]):

F
a/b

u,0 = −4π�a/b

nb

m2
a

mb

( ∫ u

0
(γ 2j ′

0[1]1−2j ′
0[2]11)

1

u2

u′2

γ ′ fb(u′)du′

+
∫ ∞

u

4
u′

u
j0[2]02fb(u′)du′

)
, (12)

D
a/b

uu,0 = 4π�a/b

nb

( ∫ u

0
(2γ 2c2j ′

0[2]02 − 8c2j ′
0[3]022)

× γ

u3

u′2

γ ′ fb(u′)du′ +
∫ ∞

u

(2γ ′2c2j0[2]02

− 8c2j0[3]022)
γ

u2

u′

γ ′ fb(u′)du′
)

, (13)

D
a/b

θθ,0 = 2π�a/b

nb

{∫ u

0

[
j ′

0[1]2 − 2

(
c2

u2
+ 1

γ 2

)
j ′

0[2]02

+ 8

γ 2

c2

u2
j ′

0[3]022

]
γ

u

u′2

γ ′ fb(u′)du′

+
∫ ∞

u

[
γ ′2

γ 2
j0[1]2 − 2

u′2

u2

(
c2

u′2 + 1

γ 2

)
j0[2]02

+ 8

γ 2

c2

u2
j0[3]022

]
γ

u′

γ ′ fb(u′)du′
}
, (14)

where j
(′)
l[k]∗ = jl[k]∗(u(′)/c); these functions are cataloged for

reference in Appendix A. In general, the integrals must be
evaluated numerically and considerable care taken in the
limit u′ → 0 due to large cancellations. However, when the
background is a Maxwellian, fb = fbM , where

fbM (u) = nbe
−γ /�b

4πc3�bK2(1/�b)
(15)

(Kν is the νth-order Bessel function of the second kind), the
integrals may in their most part be evaluated analytically and
those remaining cast in a much simpler form. After several
pages of algebra, one arrives at

F
a/b

u,0 = −�a/b

u2

m2
a

mb

μ1, (16)

D
a/b

uu,0 = �a/bγ c2

u3
�bμ1, (17)

D
a/b

θθ,0 = �a/bc2

2γ u3

[
u2

c2
(μ0 + γ�bμ

′
1) − �bμ1

]
, (18)

where, in analogy with Trubnikov’s formulation, we have
introduced the functions

μ0(γ,�b) = γ 2L0 − �bL1 + (�b − γ )ue−γ /�b

K2(1/�b)c
, (19)

μ1(γ,�b) = γ 2L1 − �bL0 + (�bγ − 1)ue−γ /�b

K2(1/�b)c
, (20)

with

μ′
1 ≡ dμ1

dγ
= 2�bγL1 + (

1 + 2�2
b

)
ue−γ /�b

�bK2(1/�b)c
.

The integrals Lν = Lν(u,�b) are given by

L0 =
∫ u

0

e−γ ′/�b

γ ′ du′, L1 =
∫ u

0
e−γ ′/�bdu′.

(See Appendix B for further details of this derivation.) The
full forms of Fa/b and Da/b may then be determined via the
relations [22]

Fa/b

l=0 ≡ F
a/b

u,0

u
u

, (21)

Da/b

l=0 ≡ (
D

a/b

uu,0 − D
a/b

θθ,0

)uu
u2

+ D
a/b

θθ,0I. (22)

The classical results are retrieved in the limit u → v (where
v2/c2 
 1) and �b 
 1. Under these conditions, it is easily
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seen that μ0,μ1 → μ(x) and �bμ
′
1 → μ′(x); Eqs. (16)–(22)

then reduce to the results of Trubnikov [15]:

F
a/b

v,0 = −�a/b

v2

m2
a

mb

μ(x), (23)

D
a/b

vv,0 = �a/b

2vx
μ(x), (24)

D
a/b

θθ,0 = �a/b

4vx
[2x(μ(x) + μ′(x)) − μ(x)]. (25)

In the classical theory, μ(x) represents the sum over the
distribution up to the speed of the test particle; no momentum
is exchanged with any field particle which has a greater
momentum than the test particle. In the relativistic theory,
the discontinuity disappears [12]; neither of the functions μ0

and μ1 represent a sum over the relativistic Maxwellian.
Braams and Karney obtained versions of these coefficients

in the limit (γ − 1) � �b [13]. It is straightforward to
verify these are consistent with Eqs. (16)–(18) by noting
Lν(u,�b) → cKν(1/�b) as u → ∞ and using the recurrence
relations of the Bessel functions [23].

III. RELATIVISTIC TEST PARTICLE
RELAXATION RATES

Now that the forms of the force of dynamical friction
and diffusion tensor are known, it is straightforward to
compute the various relaxation rates. Following the approach
of Trubnikov [15], we consider an ensemble of test particles
(a) with an initial distribution fa(t,r,u)|t=0 = naδ(u − u0)
traveling in an infinite uniform background of field particles
(b). The first two moments of the distribution are defined by

ui ≡ 1

na

∫
uifad

3u, (26)

(u − ū)i(u − ū)j ≡ 1

na

∫
(u − ū)i(u − ū)j fad

3u, (27)

where ui is the ith component of momentum and the bar above
a quantity represents an ensemble average. Assuming there are
no external fields, the Boltzmann equation is given simply as
∂fa/∂t = Ca/b. The rate of momentum loss is then calculated
by taking the time derivative of the first moment. This gives

dui

dt

∣∣∣∣
t=0

=
(

F
a/b

i

ma

+ ∂

∂uk

D
a/b

ik

)
u=u0

.

Omitting the zero subscripts (as is done for subsequent results)
and substituting for Fa/b and Da/b, we arrive at

du
dt

= −�a/b

u3

(
1

γ
μ0 + ma

mb

μ1

)
u (28)

[cf. Eq. (1)]. Note that, outside the classical limit, the
mean force acting on the test particle Fa ≡ madu/dt is not
proportional to the force of dynamical friction Fa/b. This
should not be of concern as the latter is no more than a
mathematical construct; the former is the physical force acting
on the particle. Similarly considering the time derivative of the

second moment yields

d

dt
(u − ū)i(u − ū)j

∣∣∣∣
t=0

= (
2D

a/b

ij

)
u=u0

,

from which the parallel and perpendicular momentum diffu-
sion rates may straightforwardly be shown to be

d

dt
(u − ū)2

‖ = 2�a/bγ c2

u3
�bμ1, (29)

d

dt
(u − ū)2

⊥ = 2�a/bc2

γ u3

[
u2

c2
(μ0 + γ�bμ

′
1) − �bμ1

]
(30)

[cf. Eqs. (2) and (3)].
The rate of energy exchange between the two species is

defined as [22]

dEa

dt
≡ 4πmac

2
∫ ∞

0
(γ − 1)Ca/bu2du, (31)

in which we take fa(u) = naδ(u − u0)/4πu2, where u0 =
|u0|; generalizing to the isotropic distribution is possible as
the energy exchange does not depend on the direction of the
particle beam. In this case,

Ca/b = − 1

u2

∂

∂u

(
u2 F

a/b

u,0

ma

fa − u2D
a/b

uu,0

∂fa

∂u

)
.

(All other components vanish.) Substituting for Fa/b and Da/b

and evaluating the integral yields for the energy change of the
test particle

dε

dt
= 1

na

dEa

dt
= �a/bma

γ u

(
�bμ

′
1 − ma

mb

μ1

)
(32)

[cf. Eq. (4)].
The relation between the four relaxation rates can be found

by writing the rate of change of energy of the test particle as

dε

dt
= mac

2 d

dt
(γ − 1)

= mac
2 lim

δt→0
[γ (u + δu) − γ (u)]/δt,

which, after calculating the second order Taylor expansion of
γ (u + δu), may be rewritten as

dε

dt
= ma

2γ

(
2u · du

dt
+ 1

γ 2

d

dt
(u − ū)2

‖ + d

dt
(u − ū)2

⊥

)
(33)

[cf. Eq. (5)]. This expression is, as required, consistent with
the relaxation rates previously derived.

For completeness, we note that the rate of thermal equilibra-
tion between two Maxwellian populations may also be found
using Eq. (31). In this case, we take fa = faM and fb = fbM ,
which yields

dEa

dt
= �a/bmana

mbc3

kB(Tb − Ta)

K2(1/�a)K2(1/�b)

×
[

2(�a + �b)2 + 1

�a + �b

K1(z) + 2K0(z)

]
, (34)

where z = (�a + �b)/�a�b. It may easily be seen
that this expression satisfies energy conservation:
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dEb/dt = −dEa/dt . This result has been obtained previously
by Stepney [6].

IV. LIMITS OF VALIDITY

Finally, we discuss the limits of validity of this work. As we
have assumed a stationary Maxwellian [Eq. (15)], these results
are valid only in the rest frame of the background plasma
(species b). Test particle momenta should first be transformed
into this frame before using the relaxation rates. (The same
restriction applies in the classical case.)

The relativistic Fokker-Planck collision operator is valid
for energies E 
 (ln �/α)1/2mc2, where α is the fine struc-
ture constant [12]; otherwise, the process of bremsstrahlung
becomes significant and collisions can no longer be considered
to be elastic. As with the nonrelativistic theory, ln � � 1 is
required for the small-angle scattering approximation to be
valid. We note that, under this condition, the Fokker-Planck
collision operator is highly consistent with the full quantum
mechanical expression [24] (calculated using, e.g., the Møller
cross section for electron-electron scattering, Bhabha cross
section for electron-positron scattering [25]); discrepancies
between the two are smaller than or, at most, of the same
order as the inaccuracies introduced from neglecting moments
higher than the second in the expansion of the collision
operator (∼1/ ln �).

V. CONCLUSIONS

In summary, we have presented in Eqs. (16)–(18) the
dynamical friction and diffusion coefficients for a relativis-
tic Maxwellian plasma. From these the rates of momen-
tum loss, parallel and perpendicular momentum diffusion
and energy change for a test particle have been obtained
[Eqs. (28), (29), (30), and (32)]. These are presented in a
simple form, such that may be used straightforwardly in
the semianalytical modeling of high-temperature plasmas.
They reduce to Trubnikov’s well-known results (1)–(4) in the
classical limit.
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APPENDIX A: THE jl[k]∗ FUNCTIONS

We catalog the jl[k]∗ functions as given by Braams and
Karney [21] for l = 0,1:

j0[1]0 = σ/z, j0[1]1 = 1, j0[1]2 = γ,

j0[2]02 = (zγ − σ )/4z, j0[2]11 = (γ σ − z)/2z,

j0[2]22 = [−zγ + σ (1 + 2z2)]/8z,

j0[3]022 = [−3zγ + σ (3 + 2z2)]/32z,

j1[1]0 = (γ σ − z)/z2, j1[1]1 = (zγ − σ )/2z2,

j1[1]2 = z/3, j1[2]02 = [−3γ σ + 3z + z3]/12z2,

j1[2]11 = [−3zγ + σ (3 + 2z2)]/8z2,

j1[2]22 = [−σγ (3 − 6z2) + 3z − 5z3]/72z2,

j1[3]022 = [σγ (15 + 6z2) − 15z − 11z3]/288z2,

where z = u/c, γ = (1 + z2)1/2, and σ = sinh−1 z =
cosh−1 γ .

APPENDIX B: DERIVATION OF RELATIVISTIC
FOKKER-PLANCK COEFFICIENTS FOR A

MAXWELLIAN BACKGROUND

To derive the simplified form of the dynamical friction
coefficient F

a/b

u,0 , we begin by rewriting Eq. (12) with the
explicit forms of the jl[k]∗ functions (see Appendix A) in the
case of a Maxwellian background fb = fbM :

F
a/b

u,0 = − �a/b

c3�bK2(1/�b)

m2
a

mb

×
{∫ u

0

(
γ 2 − γ ′ sinh−1(u′/c) − (u′/c)

(u′/c)

)

× 1

u2

u′2

γ ′ e−γ ′/�bdu′

+
∫ ∞

u

u′

u

(
(u/c)γ − sinh−1(u/c)

(u/c)

)
e−γ ′/�bdu′

}
.

(B1)

Making the change of variable sinh φ = (u′/c) for the former
integral and γ ′ = (1 + u′2/c2)1/2 for the latter yields

F
a/b

u,0 = − �a/b

�bK2(1/�b)

m2
a

mb

1

u2

{∫ sinh−1(u/c)

0
(γ 2 sinh φ

− (φ cosh φ − sinh φ)) sinh φe− cosh φ/�bdφ

+ [(u/c)γ − sinh−1(u/c)]
∫ ∞

γ

γ ′e−γ ′/�bdγ ′
}
.

(B2)

The latter integral may be straightforwardly integrated by
parts. The former is more involved, but may also be evaluated
analytically (at least in part) by noting

d

dφ

(
sinh φ

φ

)
= 1

φ2
(φ cosh φ − sinh φ).

Following this program through, we find

F
a/b

u,0 = − �a/b

�bK2(1/�b)c

m2
a

mb

1

u2

[
−L0

(
1

2
+ �2

b + γ 2

2

)

−L1�b + L2

(
1

2
+ γ 2

2

)
+ γ u�be

−γ /�b (γ + �b)

]
,

(B3)

where

Lν(u,�b) = c

∫ sinh−1(u/c)

0
e− cosh φ/�b cosh(νφ)dφ
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is the general form of the Lν functions. Using their recurrence
relation

Lν+1 = 2ν�bLν− [(u/c + γ )2ν − 1]

(u/c + γ )ν
c�be

−γ /�b+Lν−1, (B4)

and simplifying gives, finally, Eq. (16). The sim-
plified forms of the parallel and perpendicular dif-
fusion coefficients may be obtained in a similar
manner.
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