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Excitation and control of chirped nonlinear ion-acoustic waves
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Large-amplitude ion acoustic waves are excited and controlled by a chirped frequency driving perturbation.
The process involves capturing into autoresonance (a continuous nonlinear synchronization) with the drive by
passage through the linear resonance in the problem. The transition to autoresonance has a sharp threshold on
the driving amplitude. The theory of this transition is developed beyond the Korteweg—de Vries limit by using
the Whitham’s averaged variational principle within the water bag model and compared with Vlasov-Poisson

simulations.

DOI: 10.1103/PhysRevE.89.053103

I. INTRODUCTION

Waves in continuous media can be excited by a variety of
processes involving resonant wave interactions. The approach
requires phase matching and the examples range from optical
fiber or superconducting parametric amplifiers [1,2] to the
formation of electrostatic waves in stimulated Raman (SRS)
and Brillouin (SBS) scattering in laser-plasma interactions [3]
and more. The nonlinearity, as well as variation of the
parameters of the background medium, shifts the frequencies
and the wave vectors of the excited waves and thus tends to
destroy the phase matching in resonant interactions leading
to saturation of the excitation process. Nevertheless, under
certain conditions, the nonlinearity and the variation of system
parameters may work in tandem to dynamically preserve
the phase matching. This phenomenon is called autoreso-
nance [4]. It was studied in many applications, such as particle
accelerators [5], fluids [6], planetary dynamics [7], atomic
systems [8], and optics [9]. In plasmas, the autoresonance idea
was used for generation of large-amplitude plasma waves in
beat-wave accelerators [10], excitation of the diocotron modes
in pure electron plasmas [11], in experiments at CERN on the
formation of cold antihydrogen atoms [12], and in the SRS
and SBS theory [13,14].

The ion-acoustic waves are low-frequency longitudinal
plasma density oscillations. They were predicted by Tonks
and Langmuir [15] in 1929 on the basis of the fluid theory and
observed experimentally by Revans in 1933 [16]. Since then,
this important branch of plasma waves was studied in a variety
of different contexts such as laser-plasma interactions [3]
and dusty [17], ionospheric [18], and ultracold [19] plasmas.
Stimulated Brillouin scattering is one of the most important
resonant three-wave interaction processes in laser fusion
plasmas involving ion-acoustic waves [3,20]. It describes the
decay of the incident high-power laser radiation (the pump)
in the plasma into the scattered electromagnetic wave and
an ion-acoustic wave. The process is one of the causes of
depleting and redirecting the incident laser flux. Despite its
importance, the theoretical understanding of this phenomenon
is still incomplete for plasmas characteristic of many present
experiments, the reason being the complexity involving such
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factors as the nonlinearity [21], plasma nonuniformity and time
dependence [22], and the effects of resonant particles [23].
All these factors affect the phase-matching condition between
the waves, while the kinetic effects lead to Landau damp-
ing, resonant trapping of plasma particles, and consequent
saturation. Can one preserve the phase matching and avoid
saturation of the ion-acoustic wave by autoresonance in the
system? This work is devoted to studying this question in the
small ion temperature limit 7; /7T, < 1 limit. Previous related
work used the long-wavelength fluid-type driven Korteweg—de
Vries (KdV) model [24,25]. We will advance the analysis
by allowing for arbitrary nonlinearity, longer wavelength
[kXp ~ O(1)], and finite ion temperature.

II. AUTORESONANT ION-ACOUSTIC WAVES
IN SIMULATIONS

This work is motivated by numerical simulations of the
following one-dimensional Vlasov-Poisson system describing
a driven ion-acoustic wave

Ffe—oufi =0, pu = exp(e + pa) — / Fdu. (1)

Here f and ¢ are the ion distribution and the electric poten-
tial and ¢; = € cos8,, where 6; = kx — fa)ddt is a small-
amplitude wavelike driving potential, having a slowly varying
frequency wy(¢). All dependent and independent variables
in (1) are dimensionless such that the position, time, and
velocity are rescaled with respect to the Debye length Ap =
u./w,, the inverse ion plasma frequency (m;/m,)"/ Zw;l, and
the modified electron thermal velocity (me/mi)l/ 2y4,. The
distribution function and the potentials are rescaled with
respect to (m;/m.)"*ng/u, and kgT,/e, respectively (here
kgT,; = me,iugi). We assume that the electrons follow a
Boltzmann distribution in the combined driven and driving
potentials. We also assume spatial periodicity of period 27/ k
associated with the driving wave and solve the time-evolution
problem, subject to the simplest initial equilibrium: ¢(x,0) =
0 and f(u,x,0) = Qmo?)~1/? exp(—u2/202), where o2 =
T;/ T,. Note that o and the driving parameters fully define
our rescaled, dimensionless problem. We applied our Vlasov
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FIG. 1. (Color online) Autoresonant ion distribution in the driv-
ing wave frame at three successive times. The horizontal red lines
show the location of the driving phase velocity.

code [26] for solving this problem numerically for a range
of parameters and show the results of the simulations in the
driving wave frame in Fig. 1 for 0 =0.03, ie., T; < T,.
We increase the driving frequency wy; = wo + at and use the
parameters k = 1, wy = 0.66, o« = 0.0001, and ¢ = 0.0022.
Our simulations show that after the driving frequency passes
the linear ion-acoustic frequency w, = k(1 4+ k?)~1/2, the
system phase locks to the drive and one observes the formation
of a growing-amplitude autoresonant deformation of the ion
distribution in the figure. The associated density perturbation
comprises a continuously-phase-locked, growing-amplitude
ion-acoustic wave. Note that at all stages in this example, the
driving phase velocity (its location is indicated by the straight
red line in the figure) is well outside the ion distribution and
thus the effect of resonant particles is negligible, until the
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FIG. 2. (Color online) Evolution of the amplitude a and phase
mismatch ® (a) and (b) above and (c) and (d) below the threshold. The
thin (red) lines show the theoretical results and the thick (blue) lines
the Vlasov-Poisson simulation. Time ¢ = O corresponds to w; = w,.
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final stage at ¢, = 1500, when some resonant particles can
be seen in the simulations. We found that the phase locking
was lost beyond this stage and that #, scales with the driving
frequency chirp rate as o~!. Figures 2(a) and 2(b) show
the time evolution of the amplitude a of the first harmonic
of the electric potential ¢ of the ion-acoustic wave and the
phase mismatch ® between the driven and driving waves as
obtained in the simulations (solid lines) and theory (dotted
lines) presented below. Importantly, we also found that the
autoresonant excitation as seen in Fig. 1 took place only if
the driving amplitude exceeded a threshold &, (¢;, = 0.0017
in our example). Below the threshold, the excitation saturates
[see Figs. 2(c) and 2(d) for ¢ = 0.0013] and the phase locking
discontinues.

III. AVERAGED LAGRANGIAN APPROACH

Our theory of the autoresonant evolution of the ion-acoustic
wave illustrated in Figs. 1 and 2 is based on the water
bag model [27] of the ion distribution. We assume that
the distribution is constant f(u,x,t) = 1/2A between two
trajectories u »(x,?) in phase space and vanishes outside these
trajectories (see Fig. 3). In this case, the problem can be
described by the following set of the momentum and Poisson
equations:

Uy + Uiy = —@x,

Uy + Uslpy = —@x, )
Oxx = eXP(ﬁ" + (Pd) - (M] - u2)/2A

If one defines n(x,r)=(u; —uy)/2A and u(x,t)=
(u1 + uy)/2, Egs. (2) yield

n; + (un), =0,

U+ un, = —¢, — A’nn,, A3)

@xx = exp(@ + ¢4) —n.

Thus, our water bag model is isomorphic to the fluid limit of
the driven ion-acoustic waves with Boltzmann electrons, the
adiabatic ion pressure scaling p ~ n®, and A? = 302

Next we observe that by defining the auxiliary potentials
Y12 via u12 = (Y12)x, Egs. (2) can be derived from the

f(u,x,t)=0

f(u,x,0)=1/(24) u (ux,0)

f(u,x,t)=0

U (U%,0)

X

FIG. 3. (Color online) Water bag model. The ion distribution is
confined between two limiting trajectories u; ;.
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variational principle with the following three-field Lagrangian

@ 1 2
L =" = Yay) — otea _
Y (Vix —Yox) — e 79x

1 1 3 3

AWt = Yacvo) + m(l/flx —¥5,). 4
This Lagrangian can be used in the Whitham averaged
variational principle [28] for studying the fluid limit of the
driven-chirped ion-acoustic waves. The idea is to average (4)
over the fast oscillations in the problem to get a new Lagrangian
characterizing adiabatic modulations of the autoresonant wave
parameters and thus describe the slow evolution of the system
trapped in resonance with the driving wave. In studying
the aforementioned autoresonance threshold phenomenon, we
limit our theory to a weakly nonlinear evolution stage and
consequently write the truncated harmonic decomposition of
the three potentials [28]: ¥; ~ & + % sin + 5t sin(26) and
@ = ap + a; sinf + a, sin(20). Here the amplitudes a;, b;,
and ¢; are assumed to be slow functions of time, the wave
phase 6 and auxiliary phases &; (necessary because v; enter
the Lagrangian via space-time derivatives only) are assumed
to be fast [but 6, =k and (§;), = y; are constants (given
by initial conditions)], and 6, = —w(t) and (&), = —a;(t)
are slow. Furthermore, we assume that the amplitudes of
the zero and second harmonics scale quadratically with the
amplitudes of the first harmonics. Then the substitution
into (4) [with e#*%¢ approximated as e?*% ~ 1 + ¢ + ¢*/2 +
©*/6 + ¢*/24 + e cos(§ — @), where the phase mismatch
® = 0 — 6, is assumed to be slow], averaging over 6 between
0 and 27, and truncating at fourth order in terms of the
fundamental harmonic amplitudes yields the averaged slow
Lagrangian

A = Ao(ao,12,b1 2,101 k.0,y12,012) + eajcos®  (5)

in the problem. Note that k£ and y; » in our problem are given.
Taking variations with respect to all slow amplitudes, @, yields
six algebraic equations dAy/dA,, = 0, where A,, represents
the set (ag.2,b1.2,¢1,2). These equations allow us to eliminate all
A,, from the problem and, after the substitution back into (5),
we obtain a new slow Lagrangian

A = Agar; 05— 6, (E12)x, — (E12)) + 3ea1 cos D (6)

involving the remaining amplitude a; and phases 6 (via
its derivatives and ®) and &;, (via their derivatives only).
Taking the variations with respect to & » yields two algebraic
equations dA(/do » = const, which allow us to eliminate «; »
and obtain the final Lagrangian of the form

A" = Aj(ar; ko) + Seaj cos ®. (7)

The evaluation of Aj(ai;k,w) [to O(a‘l‘)] in our problem in-
volves a lengthy algebraic manipulation, which we performed
by using Mathematica [29]. Here we present the final result in
the limit A = 0:

A = %B(k,a))a% - %C(k,a))a‘f + %sal cos &, (8)

where B = L (0? — w?), C = D/ {400 [k*(4 — 160%) — 40?1},

and D = 6k*w*—5k%w? —2w® + k2 wb(1— 4w?) — 4k3 (14 5?).
Next, we use (8) and take variations with respect to € and a;
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to get

d (0B , 1 .
—| —ai | = —z¢ea;sin P, ©)]
dit \ dw 2

B—Caf+zicosq>=o. (10)

aj

At this stage, we write ® = w, + Aw, assume proximity to the
linear resonance Aw/w, < 1, and expand B and C in Egs. (9)
and (10) around w, to lowest significant order in Aw to get

d (0B 1
E(%‘:a)alz) = —isal sin &,

-1
cb][aB(“’“)} )

dw,

(11)

2 &
Aw = | C(wy)a; — = cos
2611
Then, after evaluating 3B(w,)/dw, = k~'(1 +k*)*? and
C(wg) = (4 + 42k> + 93k* + 81kS + 24k®)/48k?, we have

da; ek in ®
— = ———————qysin
dr 41 + k232!
and (assuming passage
wg = wy + at)
do ek
dt 2(1 + k2)3/%a,
where C’ = C(wo)k(1 + k2)73/2. Finally, we define a =
a~12C"12q,, rescaled time T = «'/?¢, and rescaled driving
amplitude i = C""/?a=3/4¢. Note that Egs. (13) and (14) can
be combined into a single equation for ¥ = a exp(i ®):

iV, + (V) — )W = p.

13)

through the linear resonance

=Aw—at =Cla} —at — cos®, (14)

(15)

This one-parameter nonlinear Schrodinger-type equation is
characteristic of passage through linear resonance in many

FIG. 4. (Color online) Solutions of Eq. (15) for || just below
(u = 0.40) and above (u = 0.42) the threshold. The thin (red) line
shows the asymptotic autoresonant solution || ~ t'/2. The linear
resonance corresponds to T = 0.
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Eq.(16)

simulations

/

exp(0)=1+0
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FIG. 5. (Color online) Threshold for the autoresonant transition
vs k. The solid (blue) line shows Eq. (16), circles show simulations,
and the dashed (red) line shows the linear approximation in the
Poisson equation in Egs. (2).

dynamical systems and predicts transition to autoresonance for
w > e = 0.41 [4]. We illustrate this transition phenomenon
in Fig. 4, showing the evolution of || for u just below and
above ;. Returning to the original parameters in our driven
ion-acoustic wave problem (g;;, = 0.41a3/*C’~'/?), we obtain

_ 5.70%4(1 + k)74
T KV2(4 4 42k2 + 93k* + 81K6 + 24k8)1/2°

En (16)
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The numerical solutions of Eqs. (13) and (14) shown in Fig. 2
(&;n = 0.0017 in this example) are in an excellent agreement
with Vlasov-Poisson simulations until the amplitude of the
wave becomes large, in violation of our assumption of weak
nonlinearity. In Fig. 5 we compare &, from Eq. (16) with
Vlasov-Poisson simulations for different values of k. Finally,
we found that if one uses a linear expansion exp(¢ + ¢4) =
1 + ¢ + @, (the usual assumption in deriving the KdV limit in
the problem) instead of the fourth-order expansion used above,
then 4 + 42k? + 93k* + 81k® + 24k® in the denominator on
the right-hand side in Eq. (16) should be replaced by 3(1 +
k)33 + 8k?) (see the corresponding dashed line in Fig. 5).
This yields a significant difference in the threshold at smaller .

IV. SUMMARY

We have studied autoresonant excitation of nonlinear ion-
acoustic waves in the fluid approximation by passage through
the linear resonance in the problem. The weakly nonlinear
Whitham averaged variational principle was used in the
theory of the autoresonant transition, yielding good agreement
with Vlasov-Poisson simulations. Extension of the variational
approach to include larger ion-acoustic wave amplitudes,
resonant kinetics, and spatial nonuniformity effects seem to
be important directions for future research.
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