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Semiempirical wide-range conductivity model with exploding wire verification
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Based on well-established physical relationships, a semiempirical set of equations dictating the electrical
conductivity of dense, strongly coupled, partially ionized copper is presented. With the empirical coefficients, the
model is tuned to experimental conductivity data obtained from exploding wire experiments [A. W. DeSilva and
J. D. Katsouros, Phys. Rev. E 57, 5945 (1998)]. The result is a wide-range conductivity model, with demonstrated
accuracy from room temperature-density conditions to 0.01 g/cm3 and 30 kK. Using magnetohydrodynamic
simulation the ability to utilize the conductivity model for predictive simulations is demonstrated. A complete
electrical conductivity dataset for copper has been made available to the public.
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I. INTRODUCTION

Development of accurate conductivity models for plasma
has been a topic of study for several decades [1,2]. More-
over, the development of conductivity models for dense
metal plasmas with non-negligible Coulomb interaction (i.e.,
strongly coupled plasma or nonideal plasma) has proved to be
particularly challenging [3–5]. Most often the plasma ideality
parameter � is defined as the ratio of potential energy to kinetic
energy given as � = e2/(kBTrD), where e is the elementary
charge, kB is Boltzmann’s constant, T is the temperature,
and rD is the Debye radius. A plasma is said to be nonideal
when the ideality parameter is on the order of or above unity.
Often, conductivity models relevant here are derived from
theoretically rigorous methodologies, with limited validity
ranges. As an example, the well-known Spitzer conductivity
has been shown to be accurate for higher temperatures and
lower density [1,3–5], whereas the Ziman formula has been
shown to be accurate in the high-density regime [3–6].
However, few models show promise for maintaining accuracy
through a wide temperature-density span.

With a semiempirical approach, Lee and More developed a
means of calculating transport properties through a very wide
parameter range with several approximations made within
each range of interest [7]. Though rigorously theoretically
justified, the Lee-More model uses semiempirical estimates
for parameters that remain a priori unknown. In more recent
efforts Redmer utilized a chemical potential and linear
response model to predict transport properties of dense
plasmas [8]. Further development of this model by Kuhlbrodt
et al. [9,10] produced COMPTRA, a publicly available software
package for the calculation of composition and transport
properties of dense plasma. For the Lee-More-Desjarlais
(LMD) model, using the calculations of Redmer [8], experi-
mental conductivity of DeSilva [11], and quantum molecular
dynamics (QMD) data [12], Desjarlais refined the Lee-More
model to more accurately address the performance in the
metal-nonmetal (MNM) transition regime [13]. Here the data
referred to as QLMD indicate a tuned version of the LMD
model to quantum molecular dynamic results, compiled by
Cochrane and Desjarlais of Sandia National Laboratories.
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Nonetheless the availability of accurate conductivity data
over a wide parameter range remains limited. For instance in
1976, Bakulin, Kuropatenko, and Luchinskii (BKL) presented
an empirical equation of state and transport model, which even
today demonstrates reasonable accuracy [14]. Much of the
exploding wire community continues to use the BKL model
or other obsolete models, often owing to the lack of availability
of an alternative [15–21].

It is the aim of the presented work to utilize theoretical
formulations to develop a platform for a practical, semiem-
pirical model, from which an arbitrary phase conductivity
dataset is generated. This model is shown to be consistent
with various other models [10,13,22], QMD simulations [23],
and experimental conductivity data [11]. The results of these
calculations have been made available to the public [24] and
are also available from the Supplemental Material included
with this publication [25].

In a previous publication a one-dimensional magnetohy-
drodynamic (MHD) model was benchmarked against exper-
imental exploding wire (EW) data to assess the accuracy
of the QLMD data as well as the Knoepfel model in the
sub-eV regime and densities from solid density (8.94 g/cm3) to
0.05 g/cm3 [26]. This technique is again applied here to
demonstrate the accuracy of the semiempirical model.

II. BACKGROUND THEORY

As stated the goal is to develop a model to calculate
electrical conductivity in the arbitrary phase approximation
as a function of temperature T and mass density ρ. For high
density, the electrical conductivity is known to be inversely
proportional to the temperature [27]. Further, from evaluating
QMD simulation results it was observed that for densities
above the critical point the conductivity exhibits �ρ7/3

dependence [12]. These relationships are well represented
by a modified form of the conductivity equation given by
Knoepfel [28];

σ1 = σ0

1 + β(T − T0)

(
ρ

ρ0

)α(T )

. (1)

It was found that

α(T ) =
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5 kK for 300 K � T � 5 kK
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(2)
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produced the best fit with experimental data available in the
open literature. Here σ1 is the conductivity at high density,
and σ0 is the conductivity at room temperature T0 and density
ρ0. The parameters α and β are empirical coefficients where
α is defined by Eq. (2), and β is taken to be a constant
5 × 10−4 K−1.

Equation (1) provides a reasonable approximation for elec-
trical conductivity for densities in the vicinity of liquid-solid
densities approaching ρ0. Approximation of the conductivity
in the vapor (ionized) regime requires a more involved
approach. For this region, the Saha equation can be used to
approximate the electron density, ne.

K = 2
�+

�

1

�3
e

exp

{
− Wiz

kBT

[
1 −

(
1.5e2

WizRws

)1.5]}
, (3)

and

ne = 1
2 (

√
K2 − 4nT K − K). (4)

Note that for the higher densities of interest here, the
Saha equation invokes the density modification factor in the
exponential proposed by Desjarlais [13]. This behavior is well
documented in literature and most commonly referred to as
a reduction of the ionization potential due to inter-Coulomb
interaction between charged particles [3]. Here nT is the
total density of heavy particles, both neutrals and ions. The

partition functions of the atom and ion are given as � and
�+, respectively. The ionization potential is Wiz, and Rws =
(3/4πnT )1/3 is the Wigner-Seitz radius. The electron thermal
wavelength is denoted as �e = (h2/2πmekBT)1/2, where h is
the Planck constant and me is the electron mass. With this the
electrical conductivity in the region relative to the modified
Saha equation σ2 can be estimated using the generic electrical
conductivity equation,

σ2 = nee
2τe

me

. (5)

The average time between electron momentum transfer
collisions τe is calculated using an empirical modification to
the hard-sphere approximation.

τe = 1

nT σHSvth

(
ρ

ρ0

)0.15+0.15 T
30kK

. (6)

Here σHS indicates the characteristic hard-sphere cross section
assumed to be constant and equal for both ions and neutrals.
A momentum transfer cross section of 3 × 10−15 cm2

was found to provide the best result which is reasonably
consistent with the hard-sphere cross section given by Des-
jarlais [13]. The average electron thermal velocity is given as
vth = (3kBT/me)1/2.

FIG. 1. (Color online) Empirically calculated conductivity isotherms versus mass density with comparison to QLMD [12], Kuhlbrodt and
Redmer [9], Tkachenko and Fernández de Córdoba (TF) [22], Clérouin (QMD) [23], DeSilva (experimental) [11].
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Equation (1) provides a decent approximation to conductiv-
ity for liquid-solid densities, while Eq. (5) is more appropriate
for the modified Saha regime. By comparison with available
conductivity data both theoretical and experimental, the
following equation was found to provide a smooth transition
between σ1 and σ2.

σ = σ1

(
ρ

ρ0

)γ

+ σ2

(
1 − ρ

ρ0

)γ

, (7)

where γ is an empirical factor taken to be 0.15. The final
conductivity σ provides an accurate means of approximation to
the electrical conductivity from room temperature and density,
up to 30 kK and densities as low as 0.01 g/cm3.

III. DISCUSSION

The results of the formulations given in Sec. II are depicted
in Fig. 1 along with the experimental data available. As a
general rule, the model was optimized to best capture the
results of experimental conductivity data and QMD simulation
results. Additional theoretical models were used as an attempt
to demonstrate either validity or potential limitations in the
empirical model.

For each of the isotherms given, it is shown that the
conductivity model is capable of reasonably capturing the
behavior exhibited by the experimental data of DeSilva [11].

Due to the overall scarcity of data only limited optimization
was possible. The model is in fair agreement with the QLMD
data, with notable departures at lower densities of �0.1 g/cm3

and below. Similar observations are made when the model
given in Sec. II is compared with data from Kuhlbrodt et al.
This indicates low-density limitations in the Sec. II model, a
consequence of its semiempirical nature. Further comparison
with the data given by Tkachenko and Fernández de Córdoba
(TF) indicates merely fair agreement at 10 and 30 kK, with
notable deviations at 20 kK. Given the agreement between all
other theoretical formulations, QMD data, and experimental
data at 20 kK, the TF data have to be considered inaccurate at
20 kK.

In a previous study a simple capacitor discharge circuit was
utilized to explode a single EW in air at atmospheric pressure
[26]. The system capacitance and inductance were 1.85 μF
and 2.7 μH, respectively. By varying the initial voltage on
the capacitor, different temperature-density trajectories were
achieved in the sub-eV regime. Comparison of experimental
voltage and current with MHD predicted voltage and current
provided a means of verifying the conductivity models applied
within the MHD simulation. It was revealed that using
QLMD data yielded strong agreement between the measured
voltage and current waveforms and the MHD predicted voltage
and current waveforms, whereas simulations with Knoepfel
conductivity demonstrated obvious limitations [26]. The MHD

FIG. 2. (Color online) Experimental and MHD predicted voltage and current waveforms from capacitor discharge EW experiments with a
127-μm-diameter 18-cm-long copper wire in air at various initial capacitor voltages.
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FIG. 3. (Color online) Conductivity contour plot (�−1 m−1) with temperature-density trajectories from EW experiments in Fig. 2 (solid
lines), experimental conductivity data (triangles) [11], and QMD simulated data (circles) [23].

simulation waveforms using the QLMD data are included
Fig. 2, along with additional waveforms demonstrating the
performance of the MHD model with the Sec. II conductivity
model.

Using MHD with the empirical model, each of the exper-
imental waveforms is replicated within a reasonable degree
of accuracy. For the lower initial capacitor voltages V0 =
7.5 kV and 10 kV, negligible error is observed, with QLMD
based simulations holding no significant advantage over the
empirical conductivity based simulations. At the higher initial
capacitor voltages V0 = 15 kV and 20 kV, the voltage and
current are better represented by the QLMD based simulations.
Nonetheless, the empirical conductivity model based MHD
simulations were still able to capture the voltage and current
behavior to a moderate degree of accuracy.

Figure 3 depicts the empirical conductivity versus both
temperature and density, including the temperature-density
trajectories from the EW experiments shown in Fig. 2, the
experimental conductivity data points from DeSilva et al. [11],
and the QMD simulation points from J. Clérouin et al. [23].
Ultimately, the experimental and QMD data along with the
temperature-density trajectories indicate the regions at which
the presented model has demonstrated reasonable accuracy.

As stated previously, few models exhibit the ability to
transition from high-density degenerate regimes to low-density
regimes largely owing to the starkly different conduction
mechanisms in action. As a more advanced approach, QMD
presents the ability to treat electrons without discriminating

between bound and free states; thus all conduction mech-
anisms are captured. Otherwise, no theoretical model has
demonstrated the ability to transition across the regimes of
interest while maintaining a high degree of accuracy. Even in
the QLMD derivations empirical blending is used to transition
from the Thomas-Fermi regime to the modified Saha regime.
This work provides a simplistic approach to calculating the
electrical conductivity over a wide temperature-density span.
It is expected that this model will exhibit limitations in the
high-density and high-temperature extreme due to a limited
validity of Eq. (1). This could be addressed with the application
of a more appropriate model. However, this region is highly
atypical, for instance, in most exploding wire experiments.

Obviously, the developed semiempirical model has limita-
tions in its accuracy as discussed; however, this is expected
given its basic foundation. The ultimate goal was to derive
a straightforward conductivity model, capable of covering
a broad temperature-density span with practical accuracy.
The developed model, wholly defined within a few basic
equations, was shown to be in reasonable agreement with
data from numerous conductivity resources through a wide
temperature-density span. Moreover, the calculated conductiv-
ity demonstrated predictive capabilities via MHD simulation
of an exploding wire. Though further verification of this model
is necessary, in its present state, the model is suitable for a
broad range of applications requiring accurate conductivity
data in the range of 300 K–30 kK, 0.01–8.94 g/cm3, and
possibly beyond.
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