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Capillary filling dynamics of viscoelastic fluids
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We consider the filling of a capillary by a viscoelastic fluid described by the Phan-Thien–Tanner (PTT)
constitutive behavior. By considering both vertical capillary filling and horizontal capillary filling, we demarcate
the role played by gravity and fluid rheology towards long-time oscillations in the capillary penetration depth.
We also consider the isothermal filling of the capillary for a closed channel and thus bring out the fundamental
differences in the nature of capillary filling for PTT and Newtonian fluids for closed channels in comparison to
open channels. Through a scaling analysis, we highlight a distinct viscoelastic regime in the horizontal capillary
filling which is in contrast to the Washburn scaling seen in the case of Newtonian fluids. Such an analysis with a
very general constitutive behavior is therefore expected to shed light on many areas of microfluidics which focus
on biofluids that are often well described by the PTT constitutive behavior.
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I. INTRODUCTION

In recent times, there has been a focus on development
of “lab-on-a-chip” (LOC) devices which facilitate fast and
reliable on-site analysis with extremely small quantities of
samples and reagents [1]. A very fundamental design feature
of such LOC devices is the pumping (transport) of liquids
(either reagents or samples). Depending on the type of liquid, it
may be driven by several mechanisms such as the mechanical
pressure pump [1,2], electro-osmosis [3,4], thermal pumps
[5–7], etc. As is evident, such actively driven devices neces-
sitate an external source of power and intrusion into the flow
field which are likely to render the LOC device complex and
prone to failure. As an alternate to such active devices, one may
have passive pumping wherein surface tension, in conjunction
with the high surface area to volume ratio, can be exploited to
initiate the flow by advantageously tuning surface properties
such as wettability and the geometric parameters such as the
introduction of micro- or nanopillars [8–15]. Such passive
pumping does not rely on any external sources for activation
and hence can work autonomously.

Recognizing the importance of such a process, several
studies have been reported on the analysis of the filling of
capillaries which cover not only numerical [16–21], experi-
mental [22–24], and analytical modeling [3,4,10,25–28], but
also evidence from molecular dynamics [29–31]. Differences
between the capillary filling in open and closed channels has
also been a topic of interest in recent times [32,33]. While
such theoretical and numerical considerations have improved
our understanding of the basic regimes of flow, most of these
analyses remain limited by the fact that the fluid is considered
to be Newtonian in nature. From a point of view of applications
in LOC devices (which typically handle biological fluids),
it is of paramount importance to consider the appropriate
deviation of the fluid from Newtonian behavior. To the authors’
knowledge there are very few works pertaining to the filling of
capillaries by non-Newtonian fluids, most of which deal with
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power-law constitutive behavior [34–36] or simple viscoelastic
models [37].

From a point of view of modeling, rheologically, the Phan-
Thien–Tanner (PTT) model [38] which models viscoelastic
fluids is able to encompass a wide variety of non-Newtonian
fluids ranging from polymer solutions to complex biofluids
such as blood [35,39–42]. Several other constitutive behaviors
can be modeled as limiting cases of the PTT model [43] and
hence, the analysis of a PTT fluid would help in advancing the
current understanding of capillary imbibition.

Here we consider the filling of a capillary by a PTT fluid.
We first derive a governing equation by considering a reduced
order model. By assuming a fully developed velocity profile,
we obtain the shear stress acting on the liquid column. In
the present analysis, we have accounted for both horizontal
and vertical filling. We also derive the governing equation
for isothermal capillary filling in the case where the capillary
is closed. We demonstrate the differences between capillary
filling for a PTT fluid and a Newtonian fluid by considering first
the numerical solution for the governing differential equations
and then by a scaling estimate. Through our scaling estimates,
we obtain an intermediate regime between the inertial capillary
regime and the Washburn regime which is a characteristic of
the PTT fluid. In addition to this, we also linearize the pertinent
governing equation around the Jurin (equilibrium) height.
From this, we predict the onset of an oscillatory behavior
in the case of near-Newtonian fluids for vertical filling of both
open and closed capillaries.

II. MATHEMATICAL FORMULATION

As a physical system for the present analysis, we chose a
capillary, consisting of two parallel plates, kept at a distance
of 2H . In the present study we will consider both vertical
and horizontal orientations of the capillary. We will further
consider the cases of a closed capillary, where one end of the
channel is blocked, with trapped air being present inside it.
The length of the capillary is taken as L, which is much larger
than the spacing between the plates (L � 2H ). In cases of
an open capillary, we can make L → ∞ to virtually render
the effect of the entrapped gas negligible. We will consider a
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FIG. 1. Schematic of the problem. The PTT fluid front penetrates
into a distance x into a capillary with either closed or open end. The
contact angle between the fluid and the wall is θ . The channel height
is 2H .

case where the capillary is being filled by a pure viscoelastic
fluid, demonstrating a rheological behavior described by the
linear Phan-Thien–Tanner model (PTT) [44]. The density of
the fluid is taken as ρ, the equilibrium contact angle at the
fluid-solid-gas interface is taken to be θ , the viscosity of
the fluid is denoted by η, while the surface tension at the
fluid-gas interface is taken as γs . For simplicity we will only
consider cases where the contact angle at the solid-liquid-gas
interface remains constant. Since, in the present analysis we are
considering a closed capillary, we have to take into account
the effects of entrapped air inside the channel. Again, in an
effort to make the analysis algebraically simple, yet without
sacrificing the essential physics, we consider the entrapped gas
to be an ideal gas. We will track the pressure volume changes
of the gas by applying Boyle’s law, supposing the process
of capillary filling to be isothermal in nature and neglecting
the heat generation from viscous dissipation. In the present
analysis, we will employ a lumped model, in order to bring out
the essential features of capillary dynamics, when the filling
fluid is viscoelastic in nature (PTT model). A schematic of
the system under consideration has been depicted in Fig. 1.
As evident from the figure, we place the origin at the channel
centerline, where the x axis runs along the axial direction and
the y axis is the cross-channel coordinate.

We start by deriving the velocity profile of a PTT fluid,
under the action of a steady pressure gradient in a parallel plate
channel, with an assumption that the flow is fully developed.
We follow the considerations by Oliveira and Pinho [44] in
deriving the necessary expressions for the stress at the walls.
The constitutive relation for the PTT model is given by [44]

f (Tr (τ ))τ + λτ∇ = 2ηD, (1)

where Tr(A) denotes the trace of a tensor A, f signifies the
extent of nonlinearity in the PTT model, λ is the characteristic
relaxation time, η is the dynamic viscosity of the fluid, D is the
strain rate tensor, and τ∇ is the Gordon-Schowalter derivative
given as τ∇ = Dτ

Dt
− τ · ∇u − ∇uT · τ , where τ is the stress

tensor, u is the velocity field, and T in the superscript denotes
the transpose of a tensor. In the case of linear PTT model, the
function f is given by f (Tr (τ )) = 1 + ελ

η
Tr (τ ), where ε is the

elongation parameter. In contrast to the linear PTT model, we
may also have the exponential PTT model which is given by
f (Tr (τ )) = exp ( ελ

η
Tr (τ )). It is quite obvious from the above

discussion that under the limiting cases of small values of
ελ
η

Tr (τ ), the exponential or the nonlinear PTT model may

be approximated by the linear PTT model. Considering a fully
developed flow (please refer to the Appendix for a justification
of the assumption of a fully developed steady state flow) of a
PTT fluid, the stress-strain relations take the form [44]

f (τkk) τxx = 2λu,yτxy, (2a)

f (τkk) τyy = 0, (2b)

f (τkk) τxy = ηu,y + ητyyu,y. (2c)

Here, τkk = τxx + τyy . Therefore, from Eq. (2b) we have τyy =
0 and hence τkk = τxx . Combining Eqs. (2a) and (2c), we
finally get

τxx = 2λ

η
τ 2
xy. (3)

With these considerations, the Cauchy’s equation of motion
can be written as

0 = −P,x + τxy,y, (4)

where the notation A,x denotes the partial derivative of A

with respect to x. We can easily solve for τxy from Eq. (4)
to obtain τxy = P,xy. Substituting this in Eq. (3), we obtain
τxx = 2λ

η
P 2

,xy
2. Note that for deriving the solution for τxy we

have used the symmetry condition at the channel centerline.
The strain rate (γ̇ ) can be defined as [from Eq. (2c)]

γ̇ ≡ du

dy
= 1

η
f (τxx) τxy = 1

η
P,xy f

(
2λ

η
(P,xy)2

)
. (5)

For a linear PTT model, the velocity profile can be deduced
by simply integrating Eq. (5) to obtain

u = − 1

2η
H 2P,x

{
1 −

(
y

H

)2

+ ελ2P 2
,xH

2

η2

[
1 −

(
y

H

)4]}
.

(6)

For nondimensionalizing the velocity profile we adapt the
following reference values: uref = − 1

2η
H 2P,x ; Lref = H . We

further define σ = 4ελ2

H 2 . Hence, the velocity profile can be
represented in terms of these variables in the following way:

u = uref
[
(1 − ȳ2) + σu2

ref(1 − ȳ4)
]
. (7)

We now obtain the average velocity by integrating Eq. (7)
across the channel. The average velocity is given by

ū = uref

2

[
4

3
+ σu2

ref
8

5

]
. (8)

As mentioned earlier, in the present analysis, we will follow
a reduced order model [22,28,32,33,45–48] for capillary
filling dynamics. Therefore, in an effort to evaluate the
viscous forces, we will replace the average velocity with
the velocity of the capillary front; i.e., dx

dt
= ū and x is the

position of the capillary front at time t . Towards this, we
first attempt to obtain an expression for uref in terms of the
average velocity. This is achieved from a simple solution of
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the cubic equation (8), which reads

uref =
[(

135ū + 5
√

40+729ū2σ
σ

)
σ 2
]1/3

6σ

− 5

3
[(

135ū + 5
√

40+729ū2σ
σ

)
σ 2
]1/3

. (9)

Note that the other two roots of Eq. (8) are complex; hence
we discard them. The viscous stress on the walls is then given
by

τxy |−H = τxy |H = 2η

H
uref . (10)

Combining Eqs. (9) and (10), one can express the total
viscous resistance to the motion of the capillary front in the
following way:

Fvisc = 2τxyx = 4ηx

H
uref . (11)

Here, uref is given by the expression (9). Now, we move
towards the equation governing the capillary dynamics, which
can be expressed as a force balance given as

d

dt

(
2ρHx

dx

dt

)
= Fst − Fvisc − Fgrav − Fgas. (12)

In Eq. (12), Fst, Fvisc, Fgrav, and Fgas, respectively, denote
surface tension force (the driving force), viscous resistance,
gravitational force, and retarding force exerted by the en-
trapped gas in a closed capillary. Note that Eq. (12) has been
written for unit depth of the capillary in the z direction. The
surface tension force is given by

Fst = 2γs cos θ. (13)

The viscous force has already been expressed in Eq. (11).
The gravitational force is given by

Fgrav = 2ρgHx. (14)

Fgas, i.e., the force exerted by the entrapped gas in the
capillary (closed) is given by [33]

Fgas = 2H (pt − p0) . (15)

In Eq. (15), pt is the pressure of the entrapped gas and p0

is the atmospheric pressure. The pressure pt of the entrapped
gas can be found out from Boyle’s law (assuming the gas to
behave as an ideal gas, as stated earlier), which reads

2pt (L − x) H = 2p0LH. (16)

Therefore, Fgas can be expressed as

Fgas = 2p0H

(
x

L − x

)
. (17)

Combining Eqs. (12)–(17), the governing equation for
capillary motion can be expressed in the following way:

d

dt

[
(2ρHx)

dx

dt

]
= 2γs cos θ − 4ηx

H
uref − 2ρgHx

− 2p0H

(
x

L − x

)
. (18)

For nondimensionalizing equation (18), we adapt the
following scheme: x̄ = x/H and t̄ = t/tref , where tref is given
by tref =

√
ρH 3/γs . Enforcing this scheme in Eq. (18), the

final nondimensional equation can be expressed as

d

dt̄

[
(x̄)

dx̄

dt̄

]
= cos θ − 2ηβx̄

γs

h̄

(
dx̄

dt̄

)
− gρH 2

γs

x̄

− ξ

(
x̄

L̄ − x̄

)
. (19)

In Eq. (19), β =
√

γs

ρH
, ξ = p0H/γs , and

h̄

(
dx̄

dt̄

)
=

⎛
⎜⎝ 1

6 (δ)1/3

⎡
⎣135

dx̄

dt̄
+ 5

√
40 + 729

(
dx̄
dt̄

)2
δ

δ

⎤
⎦

1/3

− 1

(δ)2/3

⎧⎪⎪⎨
⎪⎪⎩

5/3

[
135 dx̄

dt̄
+ 5

√
40+729

(
dx̄
dt̄

)2
δ

δ

]1/3

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠ .

(20)

In Eq. (20), δ = β2σ . Note that for horizontal orientation
of the capillary, the gravitation force is absent, which can be
represented by enforcing g = 0. For the cases of open capillary,
where no entrapped gases are present, we can make either
ξ = 0 or L̄ → ∞ to render Fgas zero. In the next section we
will highlight the effects of these forces on the motion of the
capillary in detail.

III. RESULTS AND DISCUSSIONS

Reiterating the focus of this work, in this section we attempt
to discuss the implications of fluid rheology on capillary filling
and compare them with the Newtonian counterparts. Towards
this, we note that the fluid rheology, in the case of a PTT fluid, is
most aptly described by the elongational parameter (ε) and the
relaxation time (λ), apart from the other dynamical properties
such as viscosity (η) and density (ρ). Therefore, our main
aim will be to investigate the effects of these two properties
(ε and λ) on the capillary dynamics of a PTT fluid. A close
review of Eqs. (19) and (20) also suggests that apart from the
viscosity η, another parameter which shapes the viscous force
is σ which is expressed as σ = 4ελ2

H 2 , combining the influences
of the elongational parameter and relaxation time. We will
further investigate the effects of gravity and entrapped air on
the motion of the capillary front in the case of a PTT fluid, by
looking into the motion of the same with and without these
forces. Later in this section, we will also attempt to linearize the
governing equation (19) in an effort to investigate the motion
of the front near the Jurin height (the so-called long-time
solution) and in particular focus on the possibilities of capillary
front oscillation. We further attempt to bring forward a scaling
analysis of the capillary front motion, in order to highlight
the effects of various forces in different regimes for a PTT
fluid. Throughout the analysis, we have taken the following
parameters to be constants (liquid water), η = 10−3 Pa s, p0 =
101.32 kPa, ρ = 1000 kg/m3, g = 9.81 m/s2, γs = 0.072 N/m,
and a contact angle of 0° (perfectly wetting). We also mention
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FIG. 2. (Color online) Capillary penetration distance as a function of time for different PTT fluid parameters. The subplots (a)–(c) represent
the cases for open vertical filling in channels having H = 200, 100, and 50 μm, respectively. The subplots (d)–(f) represent the cases for open
horizontal filling in channels having H = 200, 100, and 50 μm, respectively. The elongation parameter is fixed at ε = 0.1 in all the subplots.

that for ease of representation we will drop the bar signs
from the nondimensional variables in the subsequent sections.
However, all the values of the dimensional parameters have
been mentioned along with proper units in the forthcoming
discussions.

A. Filling dynamics: Open channel

We start our discussion with Fig. 2, where we investigate the
capillary penetration distance as a function of time for filling
in open capillaries. The first row of plots depicts the filling
dynamics for open vertical capillaries of different channel
heights (200, 100, and 50 microns) whereas the second row
depicts the filling dynamics for open horizontal capillaries
of different channel heights (200, 100, and 50 microns). The
relaxation time is varied in each case from 1 to 10−4 s. It
can be observed that regardless of the capillary orientation,
the initial regime of filling is largely independent of the
PTT rheology as apparent from all the subplots. This initial
regime is the inertial regime where the capillary filling is
driven by the balance of the surface tension forces and the
inertial forces [45]. At longer times however, the capillary
filling is mainly dictated by the fluid rheology. In the case
of vertical filling, it can be seen that a larger relaxation time
leads to large amplitude oscillations near the Jurin height.
As the relaxation time decreases (i.e., behavior tends to that
of a Newtonian fluid), the amplitudes of the oscillations
decrease. The aforementioned high amplitude oscillations of
the capillary front may be attributed to the enhanced average
velocity of the front on account of the parameter σ = 4ελ2

H 2

as seen in Eq. (7). As the channel height is decreased, it is
seen that with properties remaining the same, the oscillations

begin to disappear even for large relaxation times. This can be
attributed to the fact that as we decrease the channel height (H ),
the viscous forces get stronger (Fvisc ∼ β ∼ H−1/2) and hence
are able to prevent the overshooting of the capillary front’s
movement. For all the cases, the filling distance is higher for
fluids with larger relaxation times, although the equilibrium
height (or the Jurin height) remains the same for all the fluids,
in cases of vertical capillary filling. Similar trends can be seen
in the case of capillary filling in open horizontal channels. The
initial filling regime is not rheologically driven. However, the
long-time dynamics is clearly rheologically driven as evident
from a larger filling distance for the PTT fluid having a
larger relaxation time. We will elaborate more on the different
regimes of filling at small times and long times in a more
qualitative way in the subsequent discussions.

In Fig. 3, we depict the capillary penetration distance
as a function of time for different elongation parameters.
Once again, the top row depicts the capillary filling in open
vertical channels and the bottom row depicts the capillary
filling in open horizontal channels. The three columns are
representative of different channel heights (200, 100, and
50 microns, respectively). As with the case in Fig. 2, the
influence of channel height is apparent in inducing the long-
time oscillations in open vertical channels. As the channel
height is increased, the long-time oscillations die down and
become largely damped, a facet which we shall study in great
detail in the later subsections. We further observe that larger
values of the elongational parameter lead to oscillations of
the capillary front near the Jurin height, as evident from Figs.
3(a)–3(c). For the case of horizontal capillaries, the filling is
much faster for fluids with larger elongation parameter values.
As mentioned in the previous section, an increase in the values
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FIG. 3. (Color online) Capillary penetration distance as a function of time for different PTT fluid parameters. The subplots (a)–(c) represent
the cases for open vertical filling in channels having H = 200, 100, and 50 μm, respectively. The subplots (d)–(f) represent the cases for open
horizontal filling in channels having H = 200, 100, and 50 μm, respectively. The relaxation time is fixed at λ = 0.01 s in all the subplots.

of either λ or ε results in an increase in σ , leading to significant
departure from simple Newtonian behavior. Since σ varies
with �λ2 and �ε, the effect of increasing λ or the relaxation
time is more drastic than varying ε, as evident from Figs. 2
and 3. Therefore in essence, departure from Newtonian
behavior, quantified by the variation of σ , implicates faster
filling and presence of oscillations near the equilibrium height,
with the other dynamical properties remaining the same as
Newtonian models.

B. Filling dynamics: Closed channel

In order to assess the implications of a closed channel on
capillary filling, we consider the variation of the filling distance
as a function of time for PTT fluid (ε = 0.1, λ = 0.01 s) and
Newtonian fluid, in a closed vertical channel, as depicted in
Fig. 4. It can be seen that as compared to the filling in open
channels, the capillary penetration distance for both PTT and
Newtonian fluids in closed channels is drastically attenuated
as attributable to the added filling dependent pressure which
acts as a retarding force on the capillary front. Interestingly,
both Newtonian and PTT fluids undergo oscillations near
the equilibrium height, when entrapped air is present inside
the channel, i.e., the channel is closed. The amplitudes
of oscillations are higher for PTT fluids as compared to
Newtonian ones, whereas the frequency of oscillation for both
remains almost the same. Therefore, a closed capillary triggers
oscillations more quickly, as compared to an open channel. For
all the filling properties, the long-time behavior is unaltered
by the nature of the rheology owing to the lower strain rates
near the Jurin (equilibrium) height.

In view of the previous discussion regarding filling in
closed vertical channels, we consider capillary filling in closed
horizontal channels in Fig. 5. We consider a PTT fluid of the
same parameters as that of the previous case and compare
it against the Newtonian counterpart. The channel height
is 200 microns and L̄ is 1000. As expected, the filling in
the case of closed capillaries yields a faster convergence
to the equilibrium position with early oscillations induced

100 101 102 103 10410−1

100

101

102

103

t

x

H = 200μm

 

 
PTT, open capillary
PTT, Closed capillary, L̄ = 1000
Newtonian, closed capillary, L̄ = 1000
Newtonian open capillary

= 0.1, λ = 0.01 s

FIG. 4. (Color online) Capillary filling distance as a function of
time for the PTT fluid and Newtonian fluid for a closed vertical
capillary. The PTT parameters are fixed as ε = 0.1 and λ = 0.01 s.
The channel height is 200 microns and the ratio of the length of
the closed capillary to the channel half height is 1000. Density and
viscosity of the Newtonian fluid have been taken the same as the PTT
fluid (values given at the beginning of this section).
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FIG. 5. (Color online) Capillary filling distance as a function of
time for the PTT fluid and Newtonian fluid for a closed horizontal
capillary. The PTT parameters are fixed as ε = 0.1 and λ = 0.01 s.
The channel height is 200 microns and the ratio of the length of
the closed capillary to the channel half height is 1000. Density and
viscosity of the Newtonian fluid have been taken the same as the PTT
fluid (values given at the beginning of this section).

due to the presence of the retarding pressure from the
entrapped gas. However, for open channels, the capillary front
keeps on moving forward with an ever decreasing velocity.
Subsequently we demonstrate that after a long time, the x

versus t curve asymptotically approaches that of a Newtonian
fluid, in an open horizontal capillary. Combining Figs. 4 and
5, one can easily infer that the amplitude of the oscillations
near the equilibrium position is strongly dependent on fluid
rheology. In general, we can conclude that a pure PTT fluid
moves faster in a capillary as compared to a Newtonian fluid
with the same density and dynamic viscosity. In addition
to this, oscillations are expected to occur for PTT fluids as
compared to Newtonian fluids at much smaller channel height.
We elaborate more on this phenomenon of oscillation in the
forthcoming subsection.

C. Linearized analysis: Onset of oscillations

In the previous subsection we have highlighted the essential
features of capillary filling for PTT fluids as compared
to corresponding Newtonian fluids, with similar dynamical
properties. The results of the previous sections demonstrate
that onset of oscillation comes very early for PTT fluids,
in comparison to the Newtonian ones, for similar channel
geometries and fluid properties. Figures 2 and 3 in particular
depict that as the fluid properties are made increasingly similar
to a Newtonian fluid, the tendency to undergo oscillation near
the Jurin height decreases drastically. Additionally, we also
note that in cases of closed capillaries the tendency to undergo
oscillations increases, even in the absence of gravity, as evident
from Figs. 4 and 5 in the previous subsections. In this section
we look into the occurrences of oscillations near the Jurin or
equilibrium height or length in greater detail. Towards this, we
will linearize Eq. (19) around the Jurin or equilibrium length
and attempt to pinpoint the cases when oscillations are likely
to occur. In this aspect it should be noted that oscillations of
capillary front near and around the Jurin height have previously

been verified experimentally [45], albeit for Newtonian fluids.
Recently, the issue of capillary oscillations was addressed
from a theoretical perspective and the necessary conditions for
oscillations were specified in terms of the ratio of Bond number
(Bo = ρgH 2/γs) and Ohnesorge number (Oh = √

η/ργsH )
[46]. Here, we undertake a more quantitative approach to point
out the regimes of oscillations from the governing equation
itself.

We first find out the Jurin height for the front, when
entrapped air is present. Towards this, we first write the main
governing equation (19) in the following form:

d

dt̄

[
(x̄)

dx̄

dt̄

]
= cos θ − Ax̄h̄

(
dx̄

dt̄

)
− Bx̄ − C

(
x̄

L̄ − x̄

)
.

(21)

In Eq. (21), A = 2ηβ/γs , B = ρgH 2/γs , and C = p0H/γs .
Now, the Jurin height can be very easily evaluated by equating
dx̄/dt̄ and d2x̄/dt̄2 to zero in Eq. (21). This results in a
quadratic equation in J̄ (Jurin height); however, since J̄ has to
be less than L̄, we get the corresponding Jurin height as

J̄ = BL̄ + cos θ + C −
√

(BL̄ + cos θ + C)2 − 4BL̄ cos θ

2B
.

(22)

In the absence of gravity, i.e., in a horizontal channel, the
Jurin length becomes [putting B = 0 in Eq. (21)]

J̄ = L̄ cos θ

C + cos θ
. (23)

Here, we recast Eq. (21) in terms of another coordinate
x̃ = J̄ − x̄, which essentially measures the distance of the
capillary from the equilibrium height. We additionally assume
that x̃/J̄ 	 1 and dx̃

dt̄
	 1 so that we can neglect the nonlinear

terms involving x̃. In the same spirit we also linearize any
power series involving x̃ or dx̃/dt̄ using the approximation:
(1 + z)n ∼ 1 + nz ∀ z 	 1. Quite intuitively, this approxi-
mation is used in linearizing the terms involving viscous
resistance and force exerted by the entrapped gas. Enforcing
the linearization scheme, we finally obtain an equation for
x1 = x̃/J̄ (i.e., we have rescaled x̃), which reads

d2x1

dt2
+ 3A

2

dx1

dt
+
[
B

J̄
+ CL̄

J̄ (L̄ − J̄ )2

]
x1 = 0. (24)

This is an equation for damped oscillation, with natural

frequency ω =
√

B

J̄
+ CL̄

J̄(L̄−J̄)2 . Since A denotes the strength

of viscous forces, it is quite intuitive that for strong viscous
forces, the system will be overdamped and there will be no
oscillations or overshooting near the Jurin height. Assuming a
solution of the type x1 = exp (mt̄), it follows that

m = −α ± √
α2 − 4ω2

2
, (25)

where α = 3A/2. Equation (25) clearly predicts that there
will be oscillations, when α2 − 4ω2 < 0 and in cases of
α2 − 4ω2 > 0, the capillary will reach the equilibrium height
without any oscillations. In the absence of any entrapped air,
i.e., for open capillaries, the condition for oscillations to occur

053024-6



CAPILLARY FILLING DYNAMICS OF VISCOELASTIC FLUIDS PHYSICAL REVIEW E 89, 053024 (2014)

thus turns out to be

H >

(
9η2γs cos θ

4ρ3g2

)1/5

. (26)

When entrapped gases are present in the channel, the corre-
sponding condition, however, becomes algebraically involved.
There are several other interesting points to note from Eq. (24).
Firstly, the effects of rheology are absent in the equation,
which suggests that the oscillations near the Jurin height are
rheology independent, which, of course, is not true as we show
subsequently. To be more specific, this equation is identical to
that obtained for a Newtonian fluid, near the Jurin height (this
can be verified by applying the same procedure to the Lucas-
Washburn equation). This is understandable, since for typically
low velocities, signified by the assumption dx̄/dt̄ 	 1, i.e.,
for low shear rates, viscoelastic fluids behave similarly to
Newtonian fluids, which is the genesis of Eq. (24). Therefore,
the preceding analysis can be predicted to hold well for
Newtonian fluid, although for PTT fluids, this simple equation
perhaps cannot capture the phenomenon of oscillations. To
verify this, we first do a simple test for the Newtonian
model, with H = 260 μm (α2 − 4ω2 = 1.41 × 10−4 > 0)
and 400 μm (α2 − 4ω2 = −0.0016 < 0) and plot x versus
t in Fig. 6(a). We clearly observe that for the cases of
H = 260 μm, no oscillations occur, whereas oscillations are
witnessed for H = 400 μm. This is clearly in accordance with
the predictions of our linearized equations. In Fig. 6(b) we
do a similar test for a PTT and a Newtonian fluid, for H =
270 μm, for which α2 − 4ω2 = 3 × 10−5 > 0. Here, we see
that although for Newtonian fluid no oscillations are observed,
which is in accordance with the linear analysis, overshooting
and oscillations are observed for PTT fluid, which does not

follow the present linear theory. This phenomenon underlines
the importance of rheology in the capillary dynamics, which
dictates the occurrence of oscillations through the nonlinear
terms in the viscous resistance force, which we have neglected
in deriving Eq. (24). Quite intuitively the aforementioned
departure from the linear model is more when the parameter
σ which is dictated by the values of relaxation time and
elongational parameter is higher.

The second major implication of Eq. (24) is that the
natural frequency increases when entrapped air is present in
the channel, as evident from the expression of ω mentioned
previously. It also becomes apparent from the linear analysis
that entrapped air helps in triggering oscillations in the
capillary filling, by increasing the value of ω. In addition to
this, we can also infer that the natural frequencies of oscillation
for both PTT and Newtonian fluids are the same, as predicted
by the linear analysis. All these predictions are confirmed
in Figs. 4 and 5, where we clearly witness the occurrence
of oscillations when entrapped air is present, whereas no
oscillations occur in cases of open capillary, both with and
without gravity (of course, without gravity oscillations will
never occur). Therefore, in conclusion we can infer that the
linearized equations offer a good qualitative estimate of the
behavior of the capillary front near the Jurin height, for both
closed and open capillaries. However, when dealing with PTT
fluids, the present simple linear analysis fails to predict the
occurrence of oscillations, thus underlining the influence of
rheology in the process.

D. Scaling estimates: Role of rheology

In an effort to pinpoint the implications of fluid rheology on
capillary dynamics as evident from Figs. 2 and 3, we attempt
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FIG. 6. (Color online) (a) Variation of capillary penetration distance as a function of time for two different channel heights of 400 and
260 microns. (b) Variation of the capillary penetration distance as a function of time for PTT (ε = 0.1, λ = 0.01 s) and Newtonian fluid in
horizontal channels without entrapped air. Density and viscosity of the Newtonian fluid have been taken the same as the PTT fluid (values
given at the beginning of this section).
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FIG. 7. (Color online) Capillary filling distance as a function of
time for PTT fluid (ε = 0.1, λ = 0.1 s) and Newtonian fluid depicting
the various scaling regimes. Three distinct regimes (A), (B), and (C)
are seen for the PTT fluid in contrast to the inertial and Washburn
regimes for the Newtonian fluid. The dashed line represents the
numerical solution for PTT fluid and the solid line represents the
numerical solution for the Newtonian fluid. The red (thick gray) lines
depict the scaling solutions. Density and viscosity of the Newtonian
fluid have been taken the same as the PTT fluid (values given at the
beginning of this section). The height of the capillary H = 100 μm.

to shed light on some qualitative aspects of the same through
a scaling estimate of the various forces acting on the liquid
column. Towards this we note that, in order to demarcate the
different scaling regimes, it is better to have sustained capillary
filling for a long time. However, considerations of gravity
(vertical channels) and entrapped air (closed capillary) lead to
onset of oscillations, which we have already discussed in detail
in the previous subsection. Further, the motion of the capillary
is also not sustained for a long time, when these forces are
included in the governing equation. Therefore, we consider the
capillary motion in a horizontal channel without the retarding
effects of gravity and entrapped air. In the early regime, the
motion of the capillary front is driven by the balance of the
inertial force and the surface tension force. Clearly, this regime
is independent of the fluid rheology and has been previously
verified by a number of researchers [45–48]. Therefore, in
this regime, one may write x ∼ t . This can be clearly seen in
Fig. 7 where we have depicted the capillary filling distance
as a function of time for the PTT fluid and the Newtonian
fluid. The regime (A) is the aforementioned linear inviscid
regime which is also seen for Newtonian fluid as well (as
corroborated from Figs. 2 and 3). As seen from Fig. 7, the linear
regime lasts much longer for the PTT fluid than the Newtonian
case with a much larger displacement. As time progresses, the
viscous forces begin to dominate over the inertial forces. Thus,
this regime is a balance of the surface tension force and the
inertial force which results in the classical Washburn regime
for Newtonian fluids. In stark contrast to the Washburn regime,
for the PTT model, we can clearly see a deviation. In order to
qualitatively explain this departure from the Washburn regime,
we appeal to the viscous stress induced by the PTT fluid on the
capillary walls. The shear stress is given by τxy = P,xy and
the reference velocity is given by uref = −H 2

2η
P,x which can be

simplified as

uref =
[(

135ū + 5
√

40+729ū2σ
σ

)
σ 2
]1/3

6σ

− 5

3
[(

135ū + 5
√

40+729ū2σ
σ

)
σ 2
]1/3

,

as was shown in Sec. II. For the long-time dynamics, for
the cases where σ is significant, the first term in uref plays a
dominant role over the second which results in the order of
magnitude of uref as ū1/3. As a consequence of this, one can
write the shear stress to be of the order of τxy ∼ ū1/3 ∼ x1/3

t1/3

which results in the total viscous force acting on the liquid
column as xτxy ∼ x4/3

t1/3 . Upon equating this with the surface

tension force, we obtain γs ∼ x4/3

t1/3 which finally yields the
intermediate regime (B) as x ∼ t1/4. This intermediate 1/4
regime is unique to PTT fluids and is clearly seen in Fig. 7.
Far from this intermediate regime, the velocity (and hence
the shear rates) become so small that the PTT behavior
asymptotically tends to Newtonian behavior and hence the PTT
fluid also shows a delayed Washburn dynamics for very long
times [Regime (C)], where the variation x ∼ √

t is observed.

IV. CONCLUSIONS

In this work, we have demonstrated the capillary filling for
viscoelastic fluids described by the most general constitutive
behavior through the framework of the Phan-Thien–Tanner
model, for both horizontal and vertical channels. We have
demonstrated that the onset of oscillations near the Jurin height
occurs in much narrower channels for PTT fluids as compared
to Newtonian fluids. We also depicted that in general, for a pure
PTT fluid, the capillary filling process is faster as compared
to that for a Newtonian fluid. We then proceeded to show the
influence of trapped air on the isothermal capillary filling of
PTT fluids. Through a linearized analysis we further explained
that the presence of entrapped air helps trigger oscillations of
the capillary front near the Jurin height. In addition to this,
through a scaling estimate we highlight an intermediate 1/4
scaling regime which is a unique hallmark of PTT fluids; this
is followed by the classical Washburn regime.

APPENDIX: JUSTIFICATION FOR THE QUASISTEADY
UNIDIRECTIONAL FLOW FIELD ASSUMPTION

The approach towards modeling of capillary filling involves
three distinct flow regimes—the entry regime, the Poiseuille
regime, and the surface traction regime (for a detailed
discussion, please see [34,49,50]). Out of these three regimes,
the Poiseuille regime is the most dominant regime and hence
in such a case, the viscous drag acting on the liquid column
is found by considering a unidirectional steady flow [see,
for example, the seminal works by Lucas and Washburn
[51] and the book by Bruus [52], Chap. 7, Sec. 7.3.2, Eq.
(7.23)]. This approximation has been widely used in all the
literature concerning the capillary filling of Newtonian [51–53]
as well as non-Newtonian fluids [34,37,54]. The procedure
followed is that the total viscous resistance on the liquid
column is proportional to the cross-sectional average steady
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state velocity, which is considered to be the velocity of the
capillary front.

The average velocity and the viscous stress are found by
solving for the steady unidirectional momentum equation for
the concerned fluid (Navier-Stokes for the Newtonian case
and Cauchy’s momentum equation for non-Newtonian cases).
A number of previous works have validated this approach
with already existing experimental data on capillary filling for
various operation conditions [26,33,51,55].

In an effort to delve deeper into such propositions we
perform a simple scaling analysis of the governing momentum
equations, i.e., the Cauchy’s equation of motion. The momen-
tum balance equation, accounting for the temporal term can
be written in the following form (assuming u to be a function
of y and t):

ρ
∂u

∂t
= −∂p

∂x
+ ∂τyx

∂y
. (A1)

The symbols bear their usual meaning. We now perform a
scaling estimate of the various terms in the equation, for the
cases of capillary filling and in the process attempt to show that
the temporal term is quite small as compared to the viscous
term on the right-hand side, as a result of which it can be
neglected in evaluation of the viscous stress. Towards this we
first note that ρ ∂u

∂t
∼ ρuf

tf
, where uf and tf are characteristic

filling velocity and time, respectively. Additionally, we note
that uf ∼ J/tf , where J (=γ cos θ/ρgH ) is the Jurin height
or the equilibrium height. Therefore, the temporal term
becomes ρ ∂u

∂t
∼ ρJ

t2
f

. In a similar way one can scale the viscous

term on the right-hand side of Eq. (A1): ∂τyx

∂y
∼ μuf

H 2 ∼ μJ

H 2tf
,

where H is the channel dimension and μ is the viscosity of the
fluid. The relative importance of the two terms can be easily
evaluated by taking the ratio of the two terms, which comes
out to be Temporal term

Viscous term ∼ ρH 2

tf μ
. This number is also referred to as

the Weissenberg number (or equivalently the time dependent
Reynolds number).

We now evaluate the order of magnitude of this term for
some typical cases of capillary filling, based on previously
reported experimental data on capillary filling and demonstrate
that the Weissenberg number is extremely small. Following
the seminal work of Quere [45] for the filling of silicone
oil the typical time for capillary filling is �O(100) s; the
properties of silicone oil are ρ = 980 kg/m3, μ = 0.5 Pa s,
J = 10.4 mm, γ = 0.02116 N/m, while the channel radius
was R = 421 μm. Substituting these values in the Weissenberg
number, we obtain ρH 2

tf μ
∼ 10−6. We report another short case

study following the experiments of Radiom et al. [33], which
considers entrapped air in the capillary. In their experiments, a
glycerol–de-ionized (DI) water mixture was considered, with
varying concentrations of glycerol. For the present purpose,
we chose the data set for 80% glycerol-DI water mixture,
with the following properties: μ = 0.08 Pa s (calculated
from Tables 1 and 3 in Ref. [33]), ρ = 1208 kg/m3, R

(channel radius) = 300 μm, while the filling time was in
the tune of �0.5–1 s. Putting these values in the Weissenberg
number we get ρH 2

tf μ
∼ 10−3. The two aforementioned sample

calculations indeed demonstrate that the temporal term can
be safely neglected as compared to the viscous terms, which
play a dominant role in dictating the velocity. This implies
that the liquid motion can be described by a quasisteady
process, wherein the time over which velocity and pressure
appreciably change is very slow and therefore, the liquid can
instantaneously adjust to the changing pressure gradient.

Assumption of quasisteady state is a widely used approxi-
mation for slow movement of liquid, even if the conditions or
forces change with time (for example, deformation of drops in
creeping flows for low capillary numbers; see Chap. 8, Sec. C
in [56], etc). In our present work we have adopted this same
approach, where we evaluate the viscous drag on the liquid
column, based on the steady state solution of unidirectional
Cauchy’s momentum equation for a PTT fluid, as outlined in
Eqs. (2)–(8) and (11).
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