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Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows
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The pseudopotential lattice Boltzmann (LB) model is a popular model in the LB community for simulating
multiphase flows. Recently, several thermal LB models, which are based on the pseudopotential LB model and
constructed within the framework of the double-distribution-function LB method, were proposed to simulate
thermal multiphase flows [G. Házi and A. Márkus, Phys. Rev. E 77, 026305 (2008); L. Biferale, P. Perlekar, M.
Sbragaglia, and F. Toschi, Phys. Rev. Lett. 108, 104502 (2012); S. Gong and P. Cheng, Int. J. Heat Mass Transfer
55, 4923 (2012); M. R. Kamali et al., Phys. Rev. E 88, 033302 (2013)]. The objective of the present paper is to
show that the effect of the forcing term on the temperature equation must be eliminated in the pseudopotential
LB modeling of thermal flows. First, the effect of the forcing term on the temperature equation is shown via
the Chapman-Enskog analysis. For comparison, alternative treatments that are free from the forcing-term effect
are provided. Subsequently, numerical investigations are performed for two benchmark tests. The numerical
results clearly show that the existence of the forcing-term effect will lead to significant numerical errors in the
pseudopotential LB modeling of thermal flows.
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I. INTRODUCTION

In the past two decades, the lattice Boltzmann (LB) method,
which historically originates from the lattice gas automata [1],
has been developed into an efficient mesoscopic numerical
approach for simulating fluid flow and heat transfer [2–5].
Compared with the traditional numerical methods based on the
discretization of the Navier-Stokes equations, the LB method
has some distinct advantages, such as the simple form of
the governing equations, the easiness of programming, the
avoidance of nonlinear convective terms, and the inherent
parallelizability on multiple processors.

Owing to its distinctive advantages, the LB method is found
to be promising for simulating multiphase flows. Many multi-
phase LB models have been developed from a variety of points
of view [2,4,5]. Among these models, the pseudopotential LB
model proposed by Shan and Chen [6] has attracted much
attention because of its simplicity and the kinetic nature that the
phase segregation can emerge naturally in the pseudopotential
LB model as a result of particle interactions, without tracking
or capturing the interfaces between different phases [7].

In recent years, several thermal LB models [8–13], which
are based on the pseudopotential LB model, were proposed by
Házi et al. [8–10], Biferale et al. [11], and Cheng et al. [12,13]
for simulating thermal multiphase flows. Most recently, by
defining more complete and reasonable macroscopic source
terms in the energy equation, Kamali et al. [14] have also
proposed a thermal LB model based on the pseudopotential
LB model. From Refs. [8–14] it can be found that these
models share the feature that they are all constructed within
the framework of the double-distribution-function LB method:
a density distribution function is used to solve the density and
velocity fields, while the temperature field is solved by another
set of distribution function.

*Corresponding author: k.luo@ucl.ac.uk

Actually, for thermal LB equations, the forcing term of the
system will introduce an additional term into the macroscopic
temperature equation. Such an additional term exists in many
thermal LB models based on the temperature (or internal
energy) distribution function [15–19] and also in the above-
mentioned simulations of thermal multiphase flows [8–14] on
the basis of the pseudopotential LB model, although this term
was not shown in these studies. In most cases, the errors caused
by the additional term are very small. However, in the present
paper we shall show that the additional term, which represents
the effect of the forcing term on the temperature equation, must
be eliminated in the pseudopotential LB modeling of thermal
flows because it will lead to significant numerical errors.

The rest of the present paper is organized as follows. In
Sec. II, the pseudopotential LB model is briefly introduced.
The effect of the forcing term on the temperature equation
will be revealed through the Chapman-Enskog analysis. For
comparison, alternative treatments free from the forcing-term
effect are also provided. Numerical analyses will be conducted
in Sec. III and finally a brief conclusion will be made in Sec. IV.

II. THEORETICAL ANALYSES

A. The pseudopotential LB model

The LB equation with the Bhatnagar-Gross-Krook collision
operator [20] can be written as follows:

fi(x + eiδt , t + δt ) − fi(x, t)

= − 1

τf

[
fi(x, t) − f

eq
i (x, t)

] + δtFi(x, t), (1)

where fi is the density distribution function, f
eq
i

is its equilibrium distribution given by f
eq
i =

ρωi[1 + (ei · u)/c2
s + 0.5(ei · u)2/c4

s − 0.5|u|2/c2
s ], τf is

the corresponding relaxation time, t is the time, x is the spatial
position, ei is the discrete velocity along the i direction,
δt is the time step, and Fi is the forcing term, which is
used to incorporate a force F into the system [21]. In the
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pseudopotential LB model, the pseudopotential force F is
often given by [22,23]

F = −Gψ(x)
8∑

i=1

w(|ei |2)ψ(x + ei)ei , (2)

where ψ is the pseudopotential and w(|ei |2) are the weights.
For the nearest-neighbor interactions on the D2Q9 lattice, the
weights are w(1) = 1/3 and w(2) = 1/12. Using the Taylor
series expansion, it can be found that Eq. (2) gives

F = −Gc2
[

1
2 ∇ψ2 + 1

6c2ψ ∇(∇2ψ) + · · ·], (3)

where c = 1 is the lattice constant. The high-order term in
Eq. (3) yields the surface tension for multiphase fluids. To
obtain a desired equation of state, the pseudopotential ψ is
usually chosen as ψ(ρ) =

√
2(pEOS − p)/Gc2 [24,25], where

pEOS is the desired equation of state, while p = ρc2
s (cs =

c/
√

3) is the equation of state in the standard LB method. In
some studies [10,12,13], a mixed scheme is adopted for the
pseudopotential force,

F = −G

[
βψ(x)

8∑
i=1

w(|ei |2)ψ(x + ei)ei

+ 1 − β

2

8∑
i=1

w(|ei |2)ψ2(x + ei)ei

]
. (4)

It can be found that both Eqs. (2) and (4) satisfy F ≈
−Gc2 ∇ψ2/2 = −∇(pEOS − ρc2

s ).

B. The effect of the forcing term on the temperature equation

As previously mentioned, several thermal LB models were
recently proposed based on the pseudopotential LB model
for simulating thermal multiphase flows. In these models,
the temperature field is solved by another set of distribution
function gα . The target temperature equation can be written as
follows [8–10]:

∂t (ρcvT ) + ∇ · (ρcvT u) = ∇ · (λ∇T ) + φ∇ · u, (5)

where λ is the thermal conductivity, cv is the specific heat
at constant volume, and φ = −T (∂pEOS/∂T )ρ [8]. In these
models, the term φ∇ · u is realized by incorporating a source
term into the thermal LB equation. For simplicity, the term
φ∇ · u is omitted in the present study and such a choice will
not affect our analyses. The temperature equation is then given
by

∂t (ρcvT ) + ∇ · (ρcvT u) = ∇ · (λ∇T ). (6)

In the LB community, thermal LB equations for solving
Eq. (6) can be found everywhere [18,19]:

gi(x + eiδt , t + δt ) − gi(x, t) = − 1

τg

[
gi(x, t) − g

eq
i (x, t)

]
, (7)

where the equilibrium distribution function g
eq
i can be defined

as g
eq
i = cvTf

eq
i .

For thermal LB equations, the forcing term in Eq. (1) will
introduce an additional term into the macroscopic temperature
equation. To display this forcing-term effect clearly, the
Chapman-Enskog analysis of Eq. (7) is given here for general

readers. Through the Taylor series expansion, Eq. (7) will
become

δt (∂t + ei · ∇)gi + δ2
t

2
(∂t + ei · ∇)2gi + · · ·

= − 1

τg

(
gi − g

eq
i

)
. (8)

Using the following multiscale expansions,

∂t = ∂t0 + δt∂t1, gi = g
eq
i + δtg

(1)
i + δ2

t g
(2)
i , (9)

Eq. (8) can be rewritten in the consecutive orders of δt as
follows:

O(δt ) : (∂t0 + ei · ∇)geq
i = − 1

τg

g
(1)
i , (10)

O
(
δ2
t

)
: ∂t1g

eq
i + (∂t0 + ei · ∇)g(1)

i + 1

2
(∂t0 + ei · ∇)2g

eq
i

= − 1

τg

g
(2)
i . (11)

According to Eq. (10), we can rewrite Eq. (11) as

∂t1g
eq
i + (∂t0 + ei · ∇)

(
1 − 1

2τg

)
g

(1)
i = − 1

τg

g
(2)
i . (12)

Taking the summations of Eqs. (10) and (12), the following
equations can be obtained, respectively:

∂t0(ρcvT ) + ∇ · (ρcvT u) = 0, (13)

∂t1(ρcvT ) + ∇ ·
(

1 − 1

2τg

) (∑
i

eig
(1)
i

)
= 0. (14)

According to Eq. (10), we can obtain

∑
i

eig
(1)
i = − τg

[
∂t0

(∑
i

eig
eq
i

)
+ ∇ ·

(∑
i

eieig
eq
i

)]
.

(15)

Note that g
eq
i = cvTf

eq
i ; hence we have

∂t0

(∑
i

eig
eq
i

)
= ∂t0(ρcvT u) ≡ u∂t0(ρcvT ) + ρcvT ∂t0u,

(16)

∇ ·
(∑

i

eieig
eq
i

)
= ∇ · (ρcvT uu) + cvp∇T + cvT ∇p,

(17)

where p = ρc2
s . In Eq. (16), the term ∂t0(ρcvT ) can be

obtained from Eq. (13), while the term ρ∂t0u should be
evaluated as follows:

ρ∂t0u = ∂t0(ρu) − u∂t0ρ. (18)

Both ∂t0(ρu) and ∂t0ρ are related to the Chapman-Enskog
analysis of the LB equation for the density distribution
function, namely Eq. (1), which is an usual procedure in the LB
community and the following results can be readily obtained:

∂t0ρ + ∇ · (ρu) = 0, ∂t0(ρu) + ∇ · (ρuu) = −∇p + F.

(19)
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Using Eq. (19), we can obtain

ρ∂t0u = −ρu · ∇u − ∇p + F. (20)

According to Eqs. (13) and (20), Eq. (16) can be rewritten as

∂t0

(∑
i

eig
eq
i

)
= −u∇ · (ρcvT u) − ρcvT u · ∇u

− cvT ∇p + cvT F. (21)

Substituting Eqs. (21) and (17) into Eq. (15), we have∑
i

eig
(1)
i = −τg(cvp∇T + cvT F). (22)

Combining Eq. (13) with Eq. (14) and using Eq. (22), we can
obtain

∂t (ρcvT ) + ∇ · (ρcvT u) = ∇ · (λ∇T + ϑT F), (23)

where λ = (τg − 0.5)cvp is thermal conductivity and ϑ =
λ/p. Obviously, compared with Eq. (6), Eq. (23) contains
an unwanted term ∇ · (ϑT F), which is just the effect of the
forcing term on the temperature equation.

It is clear that the thermal LB equation (7) solves Eq. (23)
rather than Eq. (6). However, from the literature, it can be
found that using Eq. (7) or its variations to mimic Eq. (6)
has been widely practiced in the LB community. In most
cases, the numerical errors caused by the additional term in
Eq. (23) are very small. Unfortunately, this is not true for the
pseudopotential LB model. The problem arises from the fact
that the force F in the pseudopotential LB model may enable
the term ϑT F to be comparable with the heat flux term λ∇T .

To numerically quantify the forcing-term effect, two treat-
ments free from this effect are provided for comparison. A
simple treatment is adding a correction term into the thermal
LB equation so as to eliminate the unwanted term in Eq. (23).
The corrected thermal LB equation is then given by

gi(x + eiδt , t + δt ) − gi(x, t)

= − 1

τg

[
gi(x, t) − g

eq
i (x, t)

] + δtCi(x, t), (24)

where Ci is the correction term,

Ci =
(

1 − 1

2τg

)
ωicvT

(ei · F)

c2
s

. (25)

Since the unwanted term is generated by the force F,
the correction term should contain F so as to eliminate the
unwanted term. In addition, it can be found that

∑
i Ci = 0,∑

i eiCi = (1 − 0.5/τg)cvT F, and
∑

i eieiCi = 0. The fea-
ture that

∑
i Ci = 0 distinguishes the correction term Ci from

the usual source terms in the thermal LB equation, which are
employed to recover the macroscopic source terms in the target
temperature equation [8–14]. The Chapman-Enskog analysis
of Eq. (24) is given in the Appendix, which shows that the
required temperature equation can be correctly recovered.
Actually, in the literature the first author of the present
paper and his co-workers [26] have briefly mentioned that
an additional term is needed for thermal LB equations in the
presence of a body force.

Furthermore, another treatment is also considered: using
the finite-difference method to solve Eq. (6), which can be

rewritten as

∂tT = −u · ∇T + 1

ρcv

∇ · (λ∇T ) ≡ K(T ). (26)

The second-order Runge-Kutta scheme is adopted for time
discretization:

T n+1 = T n + δt

2
(h1 + h2), h1 = K(T n),

(27)

h2 = K

(
T n + δt

2
h1

)
.

The isotropic central schemes are employed to evaluate the
first-order derivative and the Laplacian [27]. It is expected that
the forcing-term effect on the temperature equation can be
quantified by comparing the results obtained by Eq. (7) with
the results of Eqs. (24) and (26).

III. NUMERICAL RESULTS

In this section, numerical simulations are carried out to
investigate the forcing-term effect in the pseudopotential
LB modeling of thermal flows. Due to the complexity of
thermal multiphase flows with the nonideal equations of
state such as pEOS = ρRT/(1 − bρ) − aρ2, available ana-
lytical solutions and benchmark tests are very rare. This
is the reason why few quantitative validations were given
in Refs. [8–13]. To achieve quantitative comparisons, in
the present study the ideal equation of state pEOS = ρRT

is utilized, which corresponds to single-phase fluids. To
minimize the influence of the higher-order terms (which yield
the surface tension for multiphase fluids but give errors for
single-phase fluids) in the force, we use β = 0 in Eq. (4).
Then F = −0.5G

∑8
i=1 w(|ei |2)ψ2(x + ei)ei , where ψ2(ρ) =

2(pEOS − ρc2
s )/Gc2. For ψ2(ρ), the parameter G is taken as

G = 1.

A. Planar flow between parallel plates

First, we consider a two-dimensional planar flow between
parallel plates at rest. Uniform velocity and temperature
profiles, Uin and Tin, are applied at the inlet, while the
hydrodynamically and thermally fully developed condition is
imposed at the outlet. Two different cases of thermal boundary
conditions are considered at the plates. Case A: the upper
and lower plates are kept at the uniform temperature Tw; and
Case B: the upper plate is kept at the temperature Tw while
the lower plate is adiabatic (qw = 0). For these two cases
of thermal boundary conditions, the corresponding analytical
Nusselt numbers in the thermally fully developed region are
Nu = 7.54 and Nu = 4.86 [28], respectively.

In simulations, a Nx × Ny = 500 × 60 lattice system is
adopted. The dynamic viscosity μ = ρc2

s (τf − 0.5) is set
to 0.1 and the Prandtl number is fixed at Pr = 0.71. The
parameters Tin, Tw, Uin, c, and δt are chosen as follows (in
lattice units): Tin = 1.03, Tw = 0.97, Uin = 0.05, c = 1, and
δt = 1. The characteristic temperature Tc is taken as Tc =
(Tin + Tw)/2 and then R is determined via c = √

3RTc = 1
[16]. It can be seen that the temperature variation is very
small: (1 ± 0.03)Tc. Under such a condition, the flow is near
the incompressible limit. The obtained local Nusselt numbers
along the flow direction are plotted in Fig. 1. The local Nusselt
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FIG. 1. (Color online) The local Nusselt number distribution
along the flow direction for two different cases of thermal boundary
conditions. Case A: the upper and lower plates are kept at the
temperature Tw; Case B: the upper plate is kept at the temperature Tw

while the lower plate is adiabatic.

number is defined as Nu(x) = Dhqw/[λ(Tw − Tb)], where Dh

is the hydraulic diameter of the channel, qw = λ(∂T /∂y)w is
the local heat flux at the wall, λ is the thermal conductivity, and
Tb = ∫ H

0 ρuxT dy/
∫ H

0 ρuxdy is the local bulk temperature.
From Fig. 1 we can see that in both cases there are

no apparent differences between the results obtained by the
corrected thermal LB equation (24) and the finite-difference
solution of Eq. (26), while the results given by the thermal LB
equation (7) significantly deviate from the results of Eqs. (24)
and (26). Quantitatively, the predicted Nusselt numbers in the
thermally fully developed region given by Eqs. (24) and (26)
are compared with the analytical solutions in Table I, from
which good agreement can be observed. On the contrary, in

TABLE I. Comparison of the Nusselt number in the thermally
fully developed region.

Corrected Finite-difference
Case thermal LB Eq. (24) Eq. (26) Analytical [28]

A 7.51 7.51 7.54
B 4.91 4.91 4.86

the region near the outlet the Nusselt numbers obtained by
Eq. (7) are around Nu = 13 and 12.5 for Cases A and B,
respectively, which are much larger than the corresponding
analytical results.

B. Natural convection in a square cavity

Now we consider another test: the natural convection
in a two-dimensional square cavity. In this problem, the
sidewalls of the cavity are maintained at constant but different
temperatures, whereas the bottom and top walls are adiabatic.
The natural convection can be characterized by the Prandtl
number and the Rayleigh number, which is defined as [29]

Ra = gβρ2
0 (Th − Tl)L3 Pr

μ2
, (28)

where g is the gravity acceleration, Th and Tl are the
temperatures of the left and right walls, respectively, L

is the distance between the walls, and β = 1/Tc is the
thermal expansion coefficient, where Tc = (Th + Tl)/2 is the
characteristic temperature.

 (a) thermal LB Eq. (7) 

(b) corrected thermal LB Eq. (24) 

(c) finite-difference Eq. (26) 

FIG. 2. Isotherms obtained by different treatments at Ra = 103

(left) and Ra = 104 (right).
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(a) thermal LB Eq. (7) 

(b) corrected thermal LB Eq. (24) 

(c) finite-difference Eq. (26) 

FIG. 3. Streamlines obtained by different treatments at Ra = 103

(left) and Ra = 104 (right).

Since the ideal equation of state pEOS = ρRT is employed
in the pseudopotential, the Boussinesq assumption is not
needed and the buoyancy force G = (0,−ρg) can be directly
added to the forcing term. The temperatures Th and Tl are
chosen as Th = 1.03 and Tl = 0.97. The dynamic viscosity
μ is set to μ = 0.1 and the Prandtl number is fixed at
Pr = 0.71. Two different Rayleigh numbers are considered:
Ra = 103 and 104. The corresponding lattice systems are
Nx × Ny = 100 × 100 and 150 × 150, respectively.

The isotherms given by the three different treatments are
illustrated in Fig. 2. From the figure we can see that the results
obtained by the corrected thermal LB equation (24) and the
finite-difference solution of Eq. (26) are nearly the same, while
the results given by Eq. (7) are obviously different. To be
specific, from Fig. 2(a) we can find that in the results of Eq. (7)
the temperature gradients (∂xT ) near the left and right walls are
much larger than those in Figs. 2(b) and 2(c). Meanwhile, due
to the coupling between the velocity and the temperature fields,
the streamlines given by Eq. (7) also significantly deviate from
the results of Eqs. (24) and (26), which can be seen in Fig. 3.

TABLE II. Natural convection in a square cavity: Comparison of
the average Nusselt number.

Thermal Corrected Finite-difference Barakos
Ra LB Eq. (7) thermal LB Eq. (24) Eq. (26) et al. [30]

103 4.884 1.118 1.118 1.114
104 8.431 2.246 2.242 2.245

In fact, according to Eq. (23) we have monitored the
coefficient λeff,x = (λ∂xT + ϑT Fx)/∂xT and found that, near
the left and right walls, λeff,x is very small as compared with λ.
In other words, the forcing-term effect will cause the modeled
Rayleigh numbers near the left and right walls to be much
higher than the defined Rayleigh number. This is the reason
why in Fig. 2(a) the isotherms near the left and right walls
are very dense. Quantitatively, the average Nusselt number at
the hot wall is computed. The results obtained by the three
different treatments are listed in Table II together with the
benchmark solution in Ref. [30]. As can be seen in Table II,
the results of Eqs. (24) and (26) are in good agreement with the
data reported by Barakos et al. [30], while the Nusselt numbers
given by Eq. (7) are apparently inaccurate. Specifically, the
relative error at Ra = 104 is larger than 250%.

IV. CONCLUSIONS

In summary, we have investigated the effect of the forcing
term on the temperature equation in the pseudopotential LB
modeling of thermal flows. First, theoretical analyses have
been conducted to reveal the forcing-term effect on the
temperature equation. It is shown that, due to the forcing-term
effect, an unwanted term ∇ · (ϑT F) exists in the macroscopic
temperature equation. Numerical analyses have been carried
out for two benchmark tests: thermally fully developed flows
between parallel plates and the natural convection in a square
cavity. The numerical results clearly show that the existence of
the forcing-term effect on the temperature equation will lead
to significant numerical errors.

On the basis of the numerical results, we can conclude
that the forcing-term effect on the temperature equation
must be eliminated in the pseudopotential LB modeling of
thermal flows. It has been shown that, within the double-
distribution-function LB framework, the forcing-term effect
can be eliminated by adding a correction term into the thermal
LB equation. Meanwhile, the forcing-term effect can also be
avoided by using traditional numerical methods such as the
finite-difference method to solve the temperature field, which
falls into the hybrid thermal LB framework. Furthermore, it is
worth mentioning that the multispeed high-order LB approach
[31–33], which is another approach for constructing thermal
LB models [34–36], also does not suffer from the mentioned
problem when a correct forcing term is employed.
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APPENDIX: THE CHAPMAN-ENSKOG
ANALYSIS OF EQ. (24)

The Chapman-Enskog analysis of Eq. (24) is similar to that
of Eq. (7). Firstly, through the Taylor series expansion, Eq. (24)
will yield

δt (∂t + ei · ∇)gi + δ2
t

2
(∂t + ei · ∇)2gi + · · ·

= − 1

τg

(
gi − g

eq
i

) + δtCi. (A1)

Using Eq. (9), we can rewrite Eq. (A1) in the consecutive
orders of δt as follows:

O(δt ) : (∂t0 + ei · ∇)geq
i = − 1

τg

g
(1)
i + Ci, (A2)

O
(
δ2
t

)
: ∂t1g

eq
i + (∂t0 + ei · ∇)g(1)

i + 1

2
(∂t0 + ei · ∇)2g

eq
i

= − 1

τg

g
(2)
i . (A3)

With the help of Eq. (A2), Eq. (A3) can be rewritten as

∂t1g
eq
i + (∂t0 + ei · ∇)

(
1 − 1

2τg

)
g

(1)
i + 1

2
(∂t0 + ei · ∇)Ci

= − 1

τg

g
(2)
i . (A4)

Taking the summations of Eqs. (A2) and (A4) leads to,
respectively,

∂t0(ρcvT ) + ∇ · (ρcvT u) = 0, (A5)

∂t1(ρcvT ) + ∇ ·
[(

1 − 1

2τg

) ∑
i

eig
(1)
i + 1

2

∑
i

eiCi

]
= 0.

(A6)

From Eq. (A2), the following equation can be obtained:

∑
i

eig
(1)
i = −τg

[
∂t0

(∑
i

eig
(0)
i

)
+ ∇ ·

(∑
i

eieig
(0)
i

)

−
∑

i

eiCi

]
. (A7)

According to Eqs. (21) and (17), we can obtain

∂t0

(∑
i

eig
(0)
i

)
+ ∇ ·

(∑
i

eieig
(0)
i

)
= pcv∇T + cvT F.

(A8)

From Eqs. (A7) and (A8), we have(
1 − 1

2τg

)∑
i

eig
(1)
i + 1

2

∑
i

eiCi

= −
(

τg − 1

2

)
(pcv∇T + cvT F) + τg

∑
i

eiCi . (A9)

Substituting Eq. (A9) into Eq. (A6) and noting that
∑

i eiCi =
(1 − 0.5/τg)cvT F, we can obtain

∂t1(ρcvT ) = ∇ · (λ∇T ). (A10)

With Eqs. (A5) and (A10), the following macroscopic temper-
ature can be recovered:

∂t (ρcvT ) + ∇ · (ρcvuT ) = ∇ · (λ∇T ). (A11)
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