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Instabilities in the wake of a circular disk
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2Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH) [UMR 7636 Centre National de la Recherche Scientifique
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Flow past a disk was investigated experimentally in a low-velocity water channel in the range of intermediate
Reynolds numbers. Systematic experiments with flow visualization and particle image velocimetry measurements
are presented. Different disks with the aspect ratio χ = d/h varying from 1 to 24 were investigated. The
measurements were made in the range of Reynolds numbers from 0 to 500, where stationary and oscillatory
instabilities appear. The influence of the aspect ratio on the value of onset instability, the evolution of perturbation,
and the obtained vorticity bifurcation branches of the instability were identified.
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I. INTRODUCTION

Vortex shedding behind a general three-dimensional (3D)
axisymmetric bluff body is an interesting research subject
because it shows three-dimensional structures at the onset
of instability. Similar behavior is seen behind spheres, disks,
and bullets. These observations differ from vortex shedding
behind very elongated bodies, e.g., transversal cylinders, for
which coherent structures with spanwise vorticity appear at
the onset. We note [1] that only few experiments exist for
flow instabilities behind fixed disks normal to the flow [2–5].
Such instabilities have been mainly investigated numerically
for disks of different thickness. Previous works distinguished
at least four different flow regimes. The first regime has a
steady axisymmetric base flow with a toroidal recirculation
zone. After a first transition, the flow remains steady but
the wake includes a pair of streamwise vortices. The second
bifurcation forms a transition to the unsteady flow. Numerical
simulations show different phenomena in this regime: Auguste
et al. [6] observed vortices twisted around an axis of symmetry,
Meliga et al. [7] observed shifted, double-sided hairpins, and
Shenoy et al. [8] described 3D periodic flow with regular
rotation of the separation region. The fourth regime, described
similarly in all papers, constitutes an unsteady flow with
regular hairpin shedding. To confirm these results and to
increase our understanding of this interesting problem, it
is crucial to investigate it experimentally. One of the main
objectives of the present paper is to perform a full systematic
study of the nonlinear evolution of the streamwise vorticity
induced by the subsequent flow instabilities.

II. EXPERIMENTAL SETUP

The experiments were performed in a low-velocity water
channel. The cross section of the channel was 10 × 10 cm. The
diameter of the disk was d = 1.2 cm, which corresponds to
a blockage ratio of 0.12 (disk diameter divided by channel
width). Typical velocities were below 4 cm/s while the
corresponding range of Reynolds numbers was between 50 and
500. The Reynolds number was defined as Re = Ud

ν
, where

U stands for the free stream velocity normal to the disk and
ν is the kinematic viscosity of water. The disk was supported

by a rigid bent tube mounted 10 cm in front of the disk. The
cylindrical tube, with diameter of 0.2 cm, was hollow to allow
injection of colorant. Six disks with thicknesses h = 1.2, 0.9,
0.6, 0.4, 0.2, and 0.05 cm were investigated. To visualize the
flow patterns, the laser-induced fluorescence (LIF) was used
with fluorescein as a colorant. Measurements of the velocity
field were made using a particle image velocimetry (PIV)
system from LaVision R©. The flow was seeded with spherical
particles of a typical diameter of 11 μm. The standard PIV
employed in experiments involved a charge-coupled device
(CCD) camera operating at 15 Hz, a double-pulsed YAG laser,
a timer box for synchronizing the laser with the camera, and
an optical module for producing the laser sheet.

Almost all PIV measurements were performed in the
back-view configuration (laser sheet was perpendicular to the
mean flow velocity) with an interrogation window of 32 × 32
pixels and an overlap of 50%. The distance between the two
adjacent vectors in the plane of measurements was equal to
about 0.8 mm.

The most important parameter in the present work is the
longitudinal component of vorticity ωz. Therefore, it is relevant
to describe the measurement error of this quantity. One of the
sources of uncertainty in PIV measurements is the velocity
gradient. In case of the flow, investigated in this paper, velocity
gradients are small as we are far from walls—the region of
interest is in the middle of the channel (Lazar et al. [9]). As
the transversal velocities of the flow are almost one order of
magnitude lower than the longitudinal velocities, the number
of the out-of-plane events is very small. The distortion of the
view scene recorded by the camera lens, in the back view, is
very weak as its influence is significant in the areas close to the
edge of the image and spatially decreases towards the center
of the image. This fact was taken into account, as the disk
was placed in the center of captured images while the camera
remained relatively far from the plane of measurement (1.1 m).
As the main interest concerns the evolution of vorticity, another
source of uncertainty has to be considered which is the
truncation error associated with second-order finite difference
scheme, in the estimation of vorticity (Lourenco et al. [10]. The
velocity fluctuations, present in the obtained PIV velocity field,
were randomly distributed in time with the standard deviation
of δv = 0.13 mm/s. Taking into account spatial discretization
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FIG. 1. (Color online) Visualization patterns (streaklines) for dif-
ferent flow regimes. Images at top and bottom are the side view
and top view, respectively. (a) Steady axisymmetric flow (Re = 50).
(b) Steady flow with planar symmetry (Re = 135). (c) Unsteady flow
with hairpin shedding (Re = 180) for a disk with d/h = 6.

�x = 0.8 mm one may determine the instantaneous vorticity
error to be �ωz = 0.23 s−1.

III. EXPERIMENTAL RESULTS

A. Flow regimes

Three different flow regimes were distinguished experimen-
tally for each disk (Fig. 1). The first is a steady axisymmetric
flow with a toroidal recirculation zone behind the body. As
the Reynolds number increases, the flow remains steady after
a first transition, the toroidal recirculation zone distorts and
becomes nonaxisymmetric while two longitudinal counter-
rotating vortices are observed in the wake. With a subsequent
increase in flow velocity, a second transition leads to unsteady
flow with a regular hairpin shedding.

B. Onset values for different aspect ratios

To determine the onset values, the transversal velocity
field was measured in a channel cross section to obtain the
corresponding streamwise vorticity field. This measurement
was possible because the end section of the channel has a
transparent window perpendicular to the flow, which allows
optical access without distortion. The longitudinal component
of vorticity ωz was measured in planes perpendicular to the
mean flow velocity at different distances from the disk. The
maximum value of vorticity was observed at a distance of
1.25d behind the disk (see Fig. 2).

The first bifurcation from the steady axisymmetric base
flow (ωz = 0) to the steady planar symmetric flow with two
counter-rotating vortices in the wake (ωz �= 0) is illustrated
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FIG. 2. (Color online) Maximum magnitude of longitudinal vor-
ticity as a function of distance from the disk (d/h = 2, Re = 221).
Blue squares correspond to negative vorticity (clockwise eddy). Red
circles correspond to positive vorticity (anticlockwise eddy).
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FIG. 3. (Color online) PIV images. (left) Steady axisymmetric
flow (d/h = 24, Re = 54). (right) Steady asymmetric flow with
two counter-rotating vortices (d/h = 24, Re = 129), obtained in a
channel cross section at z = 1.25d .

in Fig. 3. The onset values of the steady instability Rec1 are
presented for different disks, with different ratios of d/h in
Table I as well as in Fig. 5, showing higher onset for thicker
disks.

The subsequent second bifurcation leads to unsteady flow
with periodic shedding in the form of hairpins. The time
evolution of the obtained longitudinal vorticity field for this
regime is shown in Fig. 4. The onset of unsteady instability is
shown in Fig. 5 by circles. The onset dependence on Reynolds
number is qualitatively similar as for the case of the first
bifurcation.

For the thickest disks (d/h = 1.33 and d/h = 1), the first
onset occurs for the highest Reynolds number, and in these
cases it is possible to identify how the instabilities appear, first
with small oscillations of the wake (values of onset given by
triangles in Fig. 5) and later with hairpins. This is the same
phenomenon described by Gumowski et al. [11] as “peristaltic
oscillations.”

From the hydrodynamic point of view, increasing h pro-
vides more space to develop a thicker boundary layer. For
the same Re value this implies lower shear strength U0/δ

and in consequence higher Re of the onset for the same
regime of shear instability. This effect is strongly amplified by
the opening of the streamlines behind a thicker body, which
weaken the shear (Roshko [12]).

C. Effect of disk aspect ratio on magnitude of vorticity

The maximum magnitude of longitudinal vorticity max ωz

was chosen as an order parameter for further investigation.
This value was extracted from 100 frames of successive PIV
measurements (which corresponds to nearly two cycles of
oscillations in the unsteady regime). In the case of a steady
regime with two counter-rotating vortices, the maximum

TABLE I. Onset values.

Rec1 Reperistaltic Rec2

d/h = 24 108 146
d/h = 6 120 172
d/h = 3 142 202
d/h = 2 179 238
d/h = 1.33 218 305 317
d/h = 1 230 310 333
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FIG. 4. (Color online) Vorticity fields for unsteady regime; one
period of hairpin shedding (d/h = 24, Re = 220).

value of the vorticity component was determined from the
averaged vorticity field. Thereby, the estimated relative error
in this regime was less than 1%. In the unsteady regime,
the maximum value of vorticity was searched in each frame.
The average value of maxima present in the signal was taken
as the more approximate contribution to the vorticity from
the legs of the hairpins, parallel to the horizontal base flow.
Two maximum values were determined for each snapshot,
one corresponding to clockwise vorticity and the second
corresponding to anticlockwise vorticity. The measurement
error in this regime was estimated to be less than 5%.

Figure 6(a) shows typical bifurcation branches for a disk
with d/h = 3. After the first bifurcation, the vorticity increases
regularly in the regime with two steady counter-rotating
vortices. After a second unsteady bifurcation, a significant
change in the slope can be observed. This behavior was
identified for different disk aspect ratios, as presented in
Fig. 6(b). The behavior of maximum vorticity, by crossing
the onset, seems to suggest a weak discontinuity. However,
no systematic measurements were performed to identify the
hysteresis of this phenomenon (by increasing and decreasing
the Reynolds number). This weak jump may still result from
inefficient resolution of the measurements. In the case of
disks with d/h = 1 and d/h = 1.33, we did not observe a
significant difference between the cases of steady flow with
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FIG. 5. (Color online) Onset values for different disks.
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FIG. 6. (Color online) (a) Vorticity bifurcation branches for the
disk with aspect ratio d/h = 3 (note the error bar for the typical
measurement). (b) Vorticity magnitude for different disks.

planar symmetry and unsteady flow with hairpin shedding,
corresponding to the peristaltic oscillations regime.

Returning to the stationary regime, we calculated the square
of longitudinal vorticity (Fig. 7) and compared it with the
predictions of a Landau model, where ωz ∼ (Re − Rec1)1/2,
as discussed in the conclusions.

From the evolution of the maximum of ω2
z as a function

of Re, we estimated the law of the nonlinear evolution as
max ωz = g−1/2[(Re − Rec1)/Rec1]1/2, where g stands for the
Landau constant, presented in Table II. We are aware that
the disk support and the marginal inclination of the disk [13]
introduce additional weak vorticity into the flow. However,
following earlier results of Gumowski et al. [11], we expect
that these perturbations are responsible only for fixing of the
symmetry plane and producing the imperfect supercritical
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FIG. 7. (Color online) Square of maximum longitudinal vorticity
for steady regime with two counter-rotating vortices for disk with
d/h = 3 (broken line denotes the prediction of a Landau model).
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TABLE II. Landau coefficients.

g (first g (second
instability) instability) (c0 − c2)/(2�τ0)

d/h = 24 0.390 8.15 × 10−3 0.222
d/h = 6 0.395 5.94 × 10−3

d/h = 3 0.252 6.40 × 10−3

d/h = 2 0.189 4.98 × 10−3 0.310
d/h = 1.33 0.189 2.38 × 10−3 0.498
d/h = 1 0.097 2.20 × 10−3 0.546

bifurcation (the same effect was identified by Klotz et al.
[14]). This imperfect bifurcation can be observed in Fig. 7
in which deviation from a quadratic law can be observed for
lower Reynolds numbers. This conclusion is strengthened by
the fact that the first supercritical bifurcation is observed in
earlier numerical investigations [6–8].

D. Recirculation zone

To estimate the length of the recirculation zone behind the
disk, the laser sheet for the PIV measurements of the vz and vy

components was placed in a plane of symmetry, between two
counter-rotating vortices (Fig. 8).

By using the obtained streamlines, it was possible to
determine the length of the recirculation zone (Fig. 9). In
the case of the unsteady regime, with hairpin shedding, results
were averaged over an integer number of oscillation periods
(red circles). In addition, the maximum and minimum length
of the recirculation zone (black squares and magenta triangles
respectively) was calculated. The present results were obtained
in experiments with a disk having d/h = 1.33.

In the steady axisymmetric and steady asymmetric regimes,
the length of the recirculation zone increases nearly linearly
with the Reynolds number. In the regime of an unsteady flow
with hairpin shedding, the recirculation length decreases with
growing Re. The same behavior was observed by Zielińska
et al. [15] for the flow behind a circular cylinder, for which
the mean flow modification (zero mode) from nonlinearities is
described at the origin of this stretching. However, our results
clearly show that the stationary streamwise vortex makes
negligible contribution to this mean flow modification. Similar
results were observed in direct numerical simulation (DNS) of
flow behind spheres by Bouchet et al. [16]. In addition, we
observed that the contribution of the hairpin to this nonlinear
effect is weak, as compared to similar effects for the flow
behind a cylinder.

Further work is planned to characterize the azimuthal
vorticity ωθ max inside the recirculation loop and thus to
compare it with the criteria of Ref. [17] to predict the regular
transition when ωθ max/(2U/d) reaches an onset. This onset is
expected to weakly depend on the Reynolds number.

Laser cutting
     plane

top view

FIG. 8. (Color online) Placement of cutting laser plane.
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FIG. 9. (Color online) Length of the recirculation zone Lr as
a function of Reynolds number (d/h = 1.33). In the inset, it is
possible to observe the nonsymmetric recirculation zone. Red circles,
black squares, and magenta triangles denote average, maximum, and
minimum length Lr of the recirculation zone, respectively.

IV. DATA ANALYSIS—AZIMUTHAL FOURIER
DECOMPOSITION

A. Spatial analysis

To characterize in detail the evolution of main features of
the flow with the growing Re, we performed an azimuthal
Fourier decomposition of the longitudinal vorticity field. This
field was obtained through PIV measurements at z = 1.25d

(see also Ref. [18]). In the first step axial vorticity ωz is
interpolated from a Cartesian to a polar grid, providing ωz

for a discrete set of radii rj and angles θn. In the second step a
sequence of one-dimensional azimuthal Fourier transforms is
evaluated

ω̂azim(rj ,m) =
∑

n

ωz(rj ,θn) exp(−imθn), (1)

and subsequently integrated in the radial direction:

ω̂m =
∑

j

ω̂azim(rj ,m)rj δr, (2)

yielding the azimuthal modal coefficients of the longitudinal
vorticity.

B. Mode patterns

Examples of this decomposition for an instantaneous field
of the axial vorticity are shown in Figs. 10 and 11. The patterns
of the first four main polar modes are presented for two
different flow regimes: the regime with two stationary counter-
rotating vortices in the wake (Fig. 10) and the unsteady regime
with hairpin shedding (Fig. 11). As the flow preserves planar
symmetry, it is not surprising that the mode m = 1 contains
most of the flow energy and resembles with satisfactory
accuracy the full PIV streamwise vorticity image.
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FIG. 10. (Color online) PIV vorticity field and mode patterns in the regime with two steady counter-rotating vortices (d/h = 2, Re = 239).

The same observation can be made for flows with hairpin
shedding. Again the pattern of the mode m = 1 is very similar
to the original PIV image as the hairpin shedding preserves
the plane symmetry for the range of Reynolds numbers that
we have explored.

C. Time evolution of mode energy and vortex shedding
frequency

The energy of different azimuthal modes (Fig. 12) was
determined as a function of time for a fixed Reynolds number.
The mode m = 1 makes the strongest contribution to the flow
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FIG. 11. (Color online) PIV vorticity field and mode patterns in the regime of hairpin shedding (d/h = 2, Re = 303).
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FIG. 12. (Color online) Time evolution of energy of first five
azimuthal modes in the regime of hairpin shedding (d/h = 24, Re =
204).

containing most of the flow energy as the system preserves
a planar symmetry. Other higher modes are also displayed.
The analysis was concentrated on the first five modes (m =
0, 1, 2, 3, and 4), which contain most of the energy and are
physically significant. It can be observed that modes 2, 3, and
4 have higher frequency f (smaller period). The experimental
results indicate that the frequency of higher modes can be
expressed as fm = mf1.

The increased longitudinal vorticity with the hairpin shed-
ding regime arises from the periodic contribution of the legs
of these coherent structures. We can suppose that the variation
in ωz, observed for the mode m = 1 in Fig. 12, can be
explained as follows: When the legs are nearly horizontal, they
contribute the maximum energy to the longitudinal ωz, while
the minimum corresponds to the moment when the vorticity
is almost transversal, to the plane of measurement as the head
of the hairpin crosses this plane. The increase in longitudinal
vorticity comes from the superposition of the unsteady leg
vorticity and the steady counter-rotating vortex, which are
issues of regular bifurcation.

We study how the frequency, in the unsteady regime
with hairpin shedding, changes with Reynolds number and
determine the influence of the disk aspect ratio on this
parameter.

For each time sequence of the velocity field, the period
of hairpin shedding was determined by measuring the time
interval between maxima present in the signal. The estimated
frequency depends linearly on Reynolds number (Fig. 13).
Equation (3) describes the best fit for the case of the disk with
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FIG. 13. (Color online) Hairpin shedding frequency as a function
of Re for d/h = 1.

150 200 250 300 350 400 450
0.1

0.12

0.14

0.16

0.18

0.2
χ = 24
χ = 2
χ = 1.33
χ = 1

Re

S
r

FIG. 14. (Color online) Strouhal number of hairpin shedding as
a function of Re, for different values of aspect ratio χ of the disk.

d/h = 1:

f = 0.38 + 16 × 10−4(Re − 333)[s−1]. (3)

The initial Strouhal number Sr (where Sr = f d

U
) obtained

when the Reynolds number is close to Rec2, is 0.15 for the
investigated disks with d/h = (1, 1.33, 2, 24) (Fig. 14).

D. Mode energy bifurcations

It was also determined how the maximum energy of
different modes changes with the Reynolds number. The
maximum energy was defined as the maximum energy present
in the signal of a particular mode. Three different aspect ratios
were analyzed: d/h = 24 (Fig. 15), d/h = 1.33 (Fig. 16), and
d/h = 1 (Fig. 17).

For all disks, the greatest change in the mode behavior
was observed during the transition to the unsteady regime.
However, for the disk with d/h = 1, the mode 1 for 310 <

Re < 333 grows slower than for Re > 333. The same phe-
nomenon observed by Gumowski et al. [11] was described as
an unsteady regime with peristaltic oscillations. The identical
behavior is observed in the case of the disk with d/h = 1.33,
but the range (�Re) of this regime is shorter. This phenomenon
is not observed at larger aspect ratios.
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FIG. 15. (Color online) Mode energy bifurcation curve for
d/h = 24.
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FIG. 16. (Color online) Mode energy bifurcation curve for
d/h = 1.33.

V. COMPARISON WITH NUMERICAL SIMULATIONS

The growing possibilities of computational fluid dynamics
have recently allowed the analysis of the wake instability
in a flow around the disk ([6–8,19]) by employing 3D
Navier–Stokes simulations. These works have reported the
stationary axisymmetric regime as well as the stationary
nonaxisymmetric regime followed by a regime of vortex
shedding in which the symmetry plane either rotates in time [6]
or kinks [8] or, alternatively, a shifted hairpin shedding occurs
[7]. This latter regime has a very short range �Re between 5
and 10, as observed in Refs. [6–8,19]. It depends on the aspect
ratio and is followed by an unsteady hairpin shedding regime
characterized by a fixed plane of symmetry. Despite the narrow
range of Reynolds numbers, which is difficult to observe in the
experiment, we do not observe this behavior, perhaps due to
the (mentioned earlier) influence of disturbances produced by
the disk support system.

One of the disks that we have investigated experimentally
had d/h = 3. Because the same disk was analyzed in Ref. [6],
it is worth comparing the results.

The bifurcation curve for the disk with d/h = 3 is presented
in Fig. 18. The first transition was observed for Rec1 = 142,
while the numerical prediction indicates Rec1 = 160. The
second onset, which corresponds to a transition to unsteady
flow with hairpin shedding, was experimentally observed
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FIG. 17. (Color online) Mode energy bifurcation curve for
d/h = 1.
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FIG. 18. (Color online) Vorticity bifurcation curve for d/h = 3.

for Rec2 = 202, while Ref. [6] predicted this transition at
Rec2 = 180.1

The initial Strouhal number, for each analyzed disk, re-
mained close to 0.15, which exceeds the numerical predictions
by over 30%. Auguste et al. [6] obtained Sr = 0.11 for a
disk with d/h = 3, and Shenoy and Kleinstreuer [8] obtained
Sr = 0.113 for a disk with d/h = 10.

The influence of the disk aspect ratio was studied by
Fernandes et al. [20]. The dependence of the first onset
as a function of the disk aspect ratio was determined
as Rec1(d/h) = 116.5[1 + (d/h)−1]. Experimentally, we ob-
tained the relation Rec1(d/h) = 115[1 + (d/h)−1]. However,
the results concerning the second onset are less consistent with
the predictions of Fernandes et al. In the case of the thickest
disk, the extension of the second regime range is almost five
times what numerical prediction indicates.

In addition, we determined that another bifurcation can
be observed for thicker disks. It leads to unsteady flow with
peristaltic small oscillations of the two longitudinal vortices.
This kind of wake behavior has previously not been obtained
numerically.

VI. CONCLUSIONS

This paper presents detailed measurements of the velocity
field around disks having different aspect ratios. From these
data, we were able to obtain well-defined values for the
onset of the successive bifurcations occurring in this flow.
First, we showed that the stronger shear developing in the
thinner disk first destabilizes the stationary axisymmetric (a
lower aspect ratio corresponds to a higher critical Reynolds
number) recirculation region behind the disk, then destroys
the homogeneous toroidal shape, producing a deformed torus
with a varying, near-circular cross section. Simultaneously,
two threads of longitudinal vorticity are generated in the small
recirculation zone. The same behavior was observed for the
onset of the unsteady second instability, with vortex (hairpin)
shedding from one side of the disk. In addition, we observed

1They observed, in the Reynolds interval [184, 215], four different
nonstationary regimes with broken reflectional symmetry, before
the recovery of oscillations in a fixed plane, as we observed
experimentally.
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that the range between these two onsets increases when the
aspect ratio reduces, opening the possibility to explore in
greater detail the interesting region of peristaltic fluctuations
that we discovered earlier in the case of flow around spheres
[11]. For the first time the experiments allowed us to obtain
the values of the Landau coefficients for different disk aspect
ratios. These values were obtained both for the first stationary
instability as well as for the unsteady Hopf bifurcation. For
this, we give also the laws of the nonlinear variation in the
frequency with the Reynolds number. We can fully describe
nonlinearities in terms of Landau coefficients, if the complex
amplitude equations are written as

τ0
dA

dt
= ε0(1 + ic0)A − g(1 + ic2)|A|2A, (4)

where A = ρeiϕ , ρ stands for the maximum of the order
parameter, while ωf and dϕ

dt
denote the frequency and its

nonlinear increase at the onset. This model seems to compare

well with the Eq. (3), in which

f = f0 + c0 − c2

2πτ0Rec2
(Re − Rec2).

One of the most important results obtained in this paper
is the confirmation of the increase in longitudinal streamwise
vorticity observed in the hairpin shedding regime, as observed
in Fig. 12. Indeed, this value varies between a maximum, which
is the contribution of the legs of the hairpins, and a minimum,
which is the extrapolated value of the stationary streamwise
vorticity of the regular steady regime. We earlier observed the
same behavior in the case of a wake around a sphere [11] as
well as a cube [14], and this behavior seems to be a universal
trend for the wake instability reported also by other authors
for 3D bodies such as oblate spheroids [21], elongated finite
cylinders [22], and jets in crossflows [23].
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