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Elastic fingering in rotating Hele-Shaw flows
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The centrifugally driven viscous fingering problem arises when two immiscible fluids of different densities
flow in a rotating Hele-Shaw cell. In this conventional setting an interplay between capillary and centrifugal forces
makes the fluid-fluid interface unstable, leading to the formation of fingered structures that compete dynamically
and reach different lengths. In this context, it is known that finger competition is very sensitive to changes in
the viscosity contrast between the fluids. We study a variant of such a rotating flow problem where the fluids
react and produce a gellike phase at their separating boundary. This interface is assumed to be elastic, presenting
a curvature-dependent bending rigidity. A perturbative weakly nonlinear approach is used to investigate how
the elastic nature of the interface affects finger competition events. Our results unveil a very different dynamic
scenario, in which finger length variability is not regulated by the viscosity contrast, but rather determined by
two controlling quantities: a characteristic radius and a rigidity fraction parameter. By properly tuning these
quantities one can describe a whole range of finger competition behaviors even if the viscosity contrast is kept
unchanged.
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I. INTRODUCTION

The traditional viscous fingering instability [1,2] is driven
by the viscosity difference between fluids. More precisely, it
manifests itself when a less viscous fluid pushes a more viscous
one in the narrow gap separating parallel plates of a motionless
Hele-Shaw cell. Under radial flow circumstances [3–9] an
initially circular fluid-fluid interface deforms, and patterned
structures presenting multiple fingertip splitting emerge.

An alternative form of fingering instability in Hele-Shaw
geometry arises when there exists a difference in density
between the fluids, and the cell is put in motion. This occurs
when a fluid, surrounded by another of lower density, is located
in a Hele-Shaw cell that rotates about an axis perpendicular
to the cell plates. Centrifugal forces act upon the density
difference between the fluids, and a morphological instability
results. A great variety of patterned shapes is obtained in
this rotating Hele-Shaw setup [10–18], leading to fingering
structures that are very distinct from the ones detected in
viscosity-driven Hele-Shaw flows.

In contrast to the viscosity-driven problem the most
prominent pattern-forming mechanism in the density-driven,
rotating Hele-Shaw case is not finger tip splitting, but the
competition (or the finger length variability) among the
interfacial fingers. Weakly nonlinear analysis [19] and fully
nonlinear numerical simulations [13,20] have verified that
the viscosity contrast A [dimensionless viscosity difference
between the fluids, where −1 � A � 1 as defined in Eq. (2)]
plays a crucial role in determining the resulting fingered
structures, in the sense that finger competition dynamics
changes significantly when the magnitude and sign of A are
varied. It has been found that increasingly larger values of
A > 0 (A < 0) lead to enhanced competition among outward-
(inward-) pointing fingers. In addition, finger competition is
significantly suppressed when A → 0.
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In this work we revisit the rotating Hele-Shaw cell
problem in a different scenario: inspired by recent studies in
viscosity-driven radial Hele-Shaw flows [21–24], we consider
that the interface separating the fluids acts like an elastic
membrane which has a curvature-dependent bending rigidity.
The formation of a flexible gellike layer between the fluids is
induced by a chemical reaction that occurs at the interface. In
this framework, interfacial instabilities can be triggered by the
own elastic nature of the fluid-fluid boundary. In Refs. [21–24]
it has been shown that the existence of an elastic interface
has a strong impact on the dynamics and morphology of
the emerging interfacial patterns. In fact, the conventional
branched, tip-splitting patterns observed in Refs. [3–9] are
replaced by a variety of other interfacial forms, exhibiting
mushroom-shaped structures and tentacle-like fingers. It is
worth noting that a similar type of investigation focusing on
the influence of the interface elasticity on pattern-forming
phenomena under the centrifugally driven flow in rotating
Hele-Shaw cells still needs to be performed. This is in fact
the main purpose of our present work.

Here we are interested in examining the influence of the
elastic interface on the most relevant dynamic features of the
centrifugally driven fingering patterns. We focus our attention
on investigating how elasticity effects interfere in the finger
competition events that usually arise in rotating Hele-Shaw
flows. The role of the viscosity contrast in determining finger
competition behavior in the presence of an elastic interface is
also discussed. To address these important issues we study
both linear and weakly nonlinear stages of the dynamics.
This is done by employing a second-order mode-coupling
perturbative scheme [8,24] which offers useful analytical
insights into the onset of pattern formation and fingering in
this complex elastic interface system.

II. WEAKLY NONLINEAR EQUATIONS

Consider a Hele-Shaw cell of gap spacing b containing
two immiscible, incompressible, viscous fluids (see Fig. 1).
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FIG. 1. (Color online) Perspective view of a rotating Hele-Shaw
cell with an elastic interface separating fluids 1 and 2.

Denote the densities and viscosities of the inner and outer
fluids, respectively as ρ1, μ1 and ρ2, μ2. We focus on the
centrifugally induced motion where ρ1 > ρ2 but allow the
inner fluid to be either more or less viscous than the outer
fluid. The cell rotates with constant angular velocity � about
an axis perpendicular to the plates (z axis) and passing through
the center of the cell. Due to a chemical reaction there exists a
gellike interface separating the two fluids. As in Refs. [22–24]
we treat the interface as an elastic membrane, presenting a
curvature-dependent bending rigidity.

The perturbed fluid-fluid interface is described as R(θ,t) =
R + ζ (θ,t), where θ represents the azimuthal angle, and
R is the radius of the initially circular fluid-fluid interface
at t = 0. Here ζ (θ,t) = ∑+∞

n=−∞ ζn(t) exp (inθ ) denotes the
net interface perturbation with Fourier amplitudes ζn(t) and
discrete wave numbers n. Our perturbative approach keeps
terms up to the second order in ζ . In the Fourier expansion
of ζ we include the n = 0 mode to maintain the area of
the perturbed shape independent of the perturbation ζ . Mass
conservation imposes that the zeroth mode is written in terms
of the other modes as ζ0 = −(1/2R)

∑
n�=0 |ζn(t)|2.

For the effectively two-dimensional geometry of the Hele-
Shaw cell, the flow velocity vj = −∇φj , where φj represents
the velocity potential in fluids j = 1,2. The equation of
motion of the interface is given by Darcy’s law [1,2], properly
augmented by a centrifugally driven term [10,11]

A

(
φ2 + φ1

2

)
+

(
φ2 − φ1

2

)

= b2

12(μ1 + μ2)

[
1

2
(ρ1 − ρ2)�2r2 − �p

]
, (1)

where the dimensionless parameter

A = μ2 − μ1

μ2 + μ1
(2)

is the viscosity contrast, pj represents the pressure, and
r denotes the radial distance from the axis of rotation.
Additionally, we have that

�p = (p1 − p2)|r=R − (p1 − p2)|r=R, (3)

where (p1 − p2)|r=R denotes the pressure jump on the per-
turbed interface, while (p1 − p2)|r=R represents the pressure
jump on the unperturbed interface.

To include the contributions coming from the elastic nature
of the fluid-fluid interface, similarly to what was done in

Refs. [22–24], we consider a generalized Young-Laplace
pressure boundary condition, which expresses the pressure
jump across the perturbed fluid-fluid interface as

(p1 − p2)|r=R = − 1
2ν ′′′κ2κ2

s − ν ′′(3κκ2
s + 1

2κ2κss

)
− ν ′( 1

2κ4 + 3κ2
s + 2κκss

)
− ν

(
1
2κ3 + κss

)
, (4)

where

ν = ν(κ) = ν0[Ce−λ2κ2 + 1 − C] (5)

is the bending rigidity function, ν0 is the maximum rigidity
that expresses the largest resistance to disturbances, and
0 � C < 1 is the rigidity fraction, which measures the fraction
of intramolecular bonds broken through surface deformation.
Note that the constant rigidity limit is reached in Eq. (5) by
setting C = 0. In Eq. (5) κ denotes the interface curvature
in the plane of the cell, which in polar coordinates is
given by [8]

κ =
[
r2 + 2

(
∂r
∂θ

)2 − r ∂2r
∂θ2

]
[
r2 + (

∂r
∂θ

)2]3/2 , (6)

and λ > 0 is a characteristic radius [22]. We can think of the
quantity 1/λ as being a characteristic curvature beyond which
ν(κ) has a substantial decrease. In Eq. (4) the primes indicate
derivatives with respect to the curvature κ , while the subscripts
of κ indicate derivatives with respect to the arc length s.

To obtain a mode-coupling differential equation for the
evolution of the perturbation amplitudes, we adapt a weakly
nonlinear approach originally developed to study the dynamics
in motionless Hele-Shaw flows inducted by injection [8] to the
current rotating cell problem presenting an elastic fluid-fluid
interface. First, we define Fourier expansions for the velocity
potentials, which obey Laplace’s equation ∇2φj = 0. Then we
express φj in terms of the perturbation amplitudes ζn by con-
sidering the kinematic boundary condition n · ∇φ1 = n · ∇φ2,
which refers to the continuity of the normal velocity across
the interface. Substituting these relations, and the modified
pressure jump condition Eq. (4) into Eq. (1), always keeping
terms up to second order in ζ , and Fourier transforming, yields
the dimensionless mode-coupling equation (for n �= 0)

ζ̇n = �(n)ζn +
∑
m�=0

[F (n,m)ζmζn−m + G(n,m)ζ̇mζn−m], (7)

where the overdot denotes total time derivative,

�(n) = |n|
{
1 + B

2
(n2 − 1)[A1(C,λ)(n2 + 1) + A2(C,λ)]

}
(8)

is the linear growth rate, and

B = ν0

(ρ1 − ρ2)�2R5
(9)

measures the ratio of elastic to centrifugal forces,

A1(C,λ) = Ce−λ2
(−4λ4 + 10λ2 − 2) − 2(1 − C) (10)
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and

A2(C,λ) = Ce−λ2
(8λ4 − 22λ2 + 5) + 5(1 − C). (11)

The second-order mode-coupling terms are given by

F (n,m) = |n|{ 1
2 − B[Ce−λ2

(B1(n,m) + λ2B2(n,m)

+ λ4B3(n,m) + 2λ6B4(n,m))

+ (1 − C)B1(n,m)]
}

(12)

and

G(n,m) = A|n|[1 − sgn(nm)] − 1, (13)

where the sgn function equals ±1 according to the sign of
its argument. The expressions for the functions B1(n,m),
B2(n,m), B3(n,m), and B4(n,m) are given in the Appendix.
Note that in Eqs. (7)–(13) lengths are rescaled by R and
time by R/U , where U = [b2R(ρ1 − ρ2)�2]/[12(μ1 + μ2)]
is a characteristic velocity. From this point on we use the
dimensionless version of all the equations.

Equations (7)–(13) represent the mode-coupling equations
of the elastic fingering instability problem in a rotating
Hele-Shaw cell, considering that the interface has a curvature-
dependent bending rigidity. This set of nonlinear equations
allows one to investigate analytically how the important
mechanism of finger competition respond to the interplay
between centrifugal and elastic forces at the fluid-fluid
boundary.

III. ELASTIC INTERFACE EFFECTS: LINEAR
AND NONLINEAR REGIMES

A. Linear stage

For the sake of completeness, before discussing the in-
herently nonlinear effects related to the finger competition
dynamics, we briefly discuss the linear part of Eq. (7), more
specifically the linear growth rate �(n). The first term in Eq. (8)
is connected to the destabilizing centrifugal force, while the
second term expresses the bending rigidity contribution. For a
given n, in the limit of constant rigidity (C = 0) the quantity
[A1(C,λ)(n2 + 1) + A2(C,λ)] is negative, and the bending
forces tend to stabilize the interface. In this case, the parameter
ν0 acts like an effective surface tension, similarly to what one
has in the usual rotating Hele-Shaw problem [10–18]. How-
ever, if 0 < C < 1 the quantity [A1(C,λ)(n2 + 1) + A2(C,λ)]
can become positive, and the effect of the curvature-dependent
bending rigidity may lead to interface destabilization. In
this work we focus on situations in which −1 � A � 1 and
0 < C � 0.5 [we point out that �(n) can be unbound if
C > 0.5], so that bending forces are destabilizing.

We stress that the values we take for our parameters
throughout this work are consistent with typical physical
quantities used in real experiments in rotating Hele-Shaw
cells [11,12,14,16] and with related experimental and theoret-
ical studies involving the development of the elastic fingering
instability in injection-driven radial flow geometry [21–23].

The typical destabilizing nature of the bending forces is
expressed by Fig. 2, which plots the linear growth rate �(n)
as a function of the Fourier mode n, for C = 0.1,0.3, and 0.5,
and λ = 1 (dotted curves) and 0.7 (dashed curves). We take

C 0.1

C 0.3

C 0.5

0.7 dashed curves
1 dotted curves

2 4 6 8

4

2

0

2

4

n

n
FIG. 2. Linear growth rate �(n) as a function of mode n, for three

values of C and two values of λ. Here B = 2.5 × 10−3.

B = 2.5 × 10−3. By inspecting Fig. 2 it is clear that, for a fixed
value of λ, both the band of unstable modes and the mode of
largest growth rate increase as C is increased. This is due to the
fact that the bending rigidity function ν(κ) varies linearly with
C. For a fixed C and variable λ we have regions in which the
band of unstable modes and the mode of largest growth rate
increase (see Fig. 2), or in which both decrease. This occurs
because ν(κ) depends on λ as a Gaussian [Eq. (5)]. Finally, it
is also evident that when C → 0 the dotted and dashed curves
tend to overlap, so that the width of the band of unstable modes
tends to a minimal value.

B. Weakly nonlinear stage

In this section we use our mode-coupling approach to inves-
tigate the interface evolution at second order. We demonstrate
the usefulness of our weakly nonlinear analysis in elucidating
key aspects related to the finger competition behavior under the
action of interfacial elastic effects. To simplify our discussion
we rewrite the net perturbation in terms of cosine and sine
modes

ζ (θ,t) = ζ0 +
∞∑

n=1

[an(t) cos(nθ ) + bn(t) sin(nθ )], (14)

where an = ζn + ζ−n and bn = i(ζn − ζ−n) are real-valued.
Without loss of generality we may choose the phase of the
fundamental mode so that an > 0 and bn = 0.

We focus on the effects of the interface elasticity on
finger competition events. We follow Ref. [8] and consider
finger length variability as a measure of the competition
among fingers. Within our approach the finger competition
mechanism can be described by the influence of a fundamental
mode n, assuming n is even, on the growth of its subharmonic
mode n/2. By using Eqs. (7)–(13) the equations of motion for
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CARVALHO, GADÊLHA, AND MIRANDA PHYSICAL REVIEW E 89, 053019 (2014)

the subharmonic mode can be written as

ȧn/2 = {λ(n/2) + C(n)an}an/2, (15)

ḃn/2 = {λ(n/2) − C(n)an}bn/2, (16)

where

C(n) = 1

2

{[
F

(
− n

2
,
n

2

)
+ λ(n/2)G

(
n

2
, − n

2

)]

+
[
F

(
n

2
,n

)
+ λ(n)G

(
n

2
,n

)]}
(17)

is the finger competition function. Observing Eqs. (15)
and (16), and recalling that an > 0, we verify that C(n) > 0
increases the growth of the cosine subharmonic an/2, while
inhibiting growth of its sine subharmonic bn/2. The result
is an increased variability among the lengths of fingers of
fluid 1 pushing the less dense fluid 2. This effect describes
enhanced competition of the outward-pointing fingers of fluid
1. Sine modes bn/2 would vary the lengths of fingers of fluid 2
penetrating into fluid 1, but it is clear from Eq. (16) that their
growth is suppressed if C(n) > 0.

Reversing the sign of C(n) would exactly reverse these
conclusions, such that modes bn/2 would be favored over
modes an/2. Therefore, C(n) < 0 would indicate increased
competition among the inward moving fingers of fluid 2.
Regardless of its sign, the magnitude of the function C(n)
as given by Eq. (17) measures the strength of the competition:
increasingly larger values of C(n) lead to enhanced finger
competition.

To examine the influence of the elastic interface effects on
finger competition at second order, in Fig. 3 we plot the finger
competition function C(n) [as given by Eq. (17)] in terms
of λ, for three characteristic values of the viscosity contrast
A, B = 2.5 × 10−3, and C = 0.5. As in Ref. [19], to observe
growth of the fundamental mode and also to allow growth of its

A 1
A 0
A 1

C 0.5

P1

P2

P3

0 1 2 3
30

15

0

15

30

λ

n

FIG. 3. (Color online) Finger competition function C(n) plotted
in terms of λ, for B = 2.5 × 10−3, C = 0.5, and three values of
A = 1,0, and −1.

subharmonic, we carry out our analysis considering that mode
n obeys the condition �(n) = 0. The most interesting feature
revealed by Fig. 3 is the fact that, no matter what value of A one
considers, for a given fixed value of the viscosity contrast the
function C(n) can be positive, negative, or zero as one varies the
magnitude of λ. This is in striking contrast to what is observed
in the conventional rotating Hele-Shaw problem (for which the
interface is not elastic) [10–18], where the finger competition
function can change only if the viscosity contrast is varied. This
means that under the consideration of an elastic interface the
parameters λ and C, and not the viscosity contrast A, determine
the finger competition behavior. For instance, in Fig. 3 when
A = 0 one can see situations in which we have (1) enhanced
competition among outward-pointing fingers [see point P1

where C(n) is large and positive]; (2) restrained competition
of both outward- and inward-pointing fingers [see point P2

where C(n) is zero]; and (3) enhanced competition among
inward-pointing fingers [see point P3 where C(n) is large and
negative]. In fact, this is true for all values of the viscosity
contrast A. Notice that the behaviors for A = 1 and A = −1
are also illustrated in Fig. 3. It is worth pointing out that for
a given value of A in Fig. 3, the finger competition function
C(n) does not change sign if larger values of λ are considered.

In order to verify the predictions indicated in the discussion
of Fig. 3, in Fig. 4 we plot the weakly nonlinear evolution of the
interfaces for A = 0 that correspond to the points P1 where λ =
0.8 [Fig. 4(a)], P2 where λ = 0.926 [Fig. 4(b)], and P3 where
λ = 1.05 [Fig. 4(c)]. In Fig. 4 we take the initial perturbation
amplitudes as an(0) = 1/400 and an/2(0) = bn/2(0) = 1/800.
In addition, as in Fig. 3 B = 2.5 × 10−3, and C = 0.5. All
patterns shown in Fig. 4 are plotted for 0 � t � 1.25, in equal
time intervals �t = 0.125.

By inspecting Figs. 4(a)–(c) we observe the evolution of
initially nearly circular shapes that deform and develop fingers
as time progresses. It is evident that in Fig. 4(a) one notices the
enhanced competition among outward-pointing fingers. On the
other hand, in Fig. 4(b) one clearly observes that the lengths of
the outward-moving fingers are not that different. This is also
true for the inward-moving fingers, which have similar sizes.
Finally, by examining Fig. 4(c) one sees that there is greater
finger length variability among the inward-pointing fingers.
All these observations are in line with the predictions extracted
from Fig. 3. We stress that we have verified similar kind of
behaviors for any other values of the viscosity contrast A.

To illustrate these finger competition features in a more
quantitative fashion, in Fig. 5 we take the same physical param-
eters used in Fig. 4 and plot the dimensionless radial coordinate
R of the finger tips for each inward- and outward-pointing
fingers, in terms of the polar angle θ at time t = tf . The finger
competition features we have discussed above, by visually
inspecting the patterns shown in Fig. 4, are fully confirmed
by Fig. 5: even though the viscosity contrast is constant
(A = 0), by changing the value of λ we do recover the cases
in which one obtains enhanced competition among outward
fingers [Fig. 5(a)], suppressed competition of both inward and
outward fingers [Fig. 5(b)], and favored competition among
inward fingers [Fig. 5(c)]. This indicates that, in the presence
of an elastic interface, the competition among the emerging
fingering structures is primarily determined by the parameters
λ and C, and not by the viscosity contrast.
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a b c

FIG. 4. (Color online) Snapshots of the evolving interface for the interaction of the fundamental mode n = 6 and its subharmonic mode
n = 3 for the situations corresponding to points P1 (a) λ = 0.8, P2 (b) λ = 0.926, and P3 (c) λ = 1.05 that have been indicated in Fig. 3 for
A = 0. The interfaces are plotted in intervals of tf /10, where tf = 1.25 is the final time. The darker interfaces correspond to t = tf .

We proceed by investigating the behavior of the finger
competition function C(n) when we consider a fixed value of
A and vary the magnitude of the rigidity fraction C. Without
loss of generality in Fig. 6 we take A = 0 and depict how C(n)
responds to variations in λ, when C decreases from 0.5 to 0.1.
As in Fig. 3, we consider that B = 2.5 × 10−3. From Fig. 6
we see that when C = 0.5, one reproduces the C(n) curve
already shown in Fig. 3 for A = 0: initially the competition
function is positive, reaches a maximum value, and then starts
to decrease. Eventually, C(n) crosses zero, begins to assume
negative values, and reaches a minimum. After that, it crosses
zero again and becomes positive for larger values of λ. When
C = 0.4 a similar type of general behavior is detected, with
C(n) assuming positive, zero, and negative values. However, if
C keeps decreasing, for instance, when C = 0.3 or C = 0.2,
the function C(n) varies in such a way that it still oscillates
but assumes just positive values as λ is changed. Finally, for
smaller values of C, say, for C = 0.1 (dashed horizontal line),
the competition function is basically insensitive to variations

in λ. In the limit C → 0 we have verified that C(n) also
does not depend on λ, and we recover something similar to
the conventional rotating Hele-Shaw case [10–18] in which
the constant bending rigidity works like an effective surface
tension, and where C(n) varies only if A is changed. We
emphasize that all the findings of Fig. 6 (obtained for A = 0)
are quite general and can be reproduced for any allowed value
of the viscosity contrast A.

Other useful information can be extracted from Fig. 7 that
shows the variation of the finger competition function C(n)
as the viscosity contrast is varied (−1 � A � 1), for C = 0.5
and the three values of λ that have been used to plot Figs. 4
and 5: 0.8, 0.926, and 1.05. As before we take B = 2.5 × 10−3.
Despite the dominant, nonmonotonic response of λ while
determining the finger competition, as clearly shown in Fig. 3,
the monotonicity and linearity of C(n) with the viscosity
contrast A are still preserved. This linearity of the finger
competition with the viscosity contrast is reminiscent from
the classical rotating Hele-Shaw system for a nonelastic in-

Outward fingers

Inward fingers

0 π 2 π 3π 2 2 π
0.6
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1

1.2

θ

a

Outward fingers

Inward fingers
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b

Outward fingers

Inward fingers

0 π 2 π 3π 2 2 π
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1

1.1
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FIG. 5. (Color online) Dimensionless radial coordinate R of the finger tips for each inward- and outward-pointing fingers, as a function
of the polar angle θ , when (a) λ = 0.8, (b) λ = 0.9286, and (c) λ = 1.05. These data are taken from the corresponding patterns plotted in
Figs. 4(a)–(c) at t = tf , and A = 0.

053019-5
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FIG. 6. Finger competition function C(n) plotted in terms of λ,
for B = 2.5 × 10−3, A = 0, and five values of C.

terface [19]. Interestingly, the viscosity contrast influences the
finger competition in an almost identical manner, regardless
of the values of λ. Note that the slope of the lines for different
λ in Fig. 7 shows minor variations. This further demonstrates
that the finger competition is governed by a partial decoupling
between elastic and viscosity parameters, characterized by a
superposition of elastic dominant nonmonotonic effects with
the linear monotonicity arising from viscosity contribution.
Furthermore, the region delimited by the curves λ = 0.8 and
λ = 1.05 provides a map in the parameter space (λ,A) for all

0.8
0.926
1.05

C 0.5

1 0.5 0 0.5 1

20

10

0

10

20

30

A

n

FIG. 7. Finger competition function C(n) as a function of the
viscosity contrast A, for C = 0.5, and three different values of λ.
These are the values of λ utilized to get the interfacial evolutions
presented in Figs. 4 and 5.

possible finger competition morphologies, recalling that the
values of λ that maximize or minimize C(n) do not depend
on the viscosity contrast A, as shown in Fig. 3. Hence, the
viscosity contrast A may be tuned to exacerbate, for instance,
a desired competition behavior imposed by λ. Finally, C

acts only to reduce the area between the curves λ = 0.8 and
λ = 1.05 in Fig. 7, as deduced from Fig. 6.

After contemplating the findings of Figs. 5–7, we close this
section by revisiting Fig. 4, and discussing it a bit further.
One noteworthy feature of Fig. 4 is the rapid growth of the
absolute value of the curvature for both inward- and outward-
pointing fingers, together with the lack of symmetry between
the curvature [as given by Eq. (6)] of inward- and outward-
moving fingers for all values of λ. This is a direct consequence
of the strong influence of the bending weakening effect while
exponentially reducing the interfacial bending rigidity, which
causes ν(κ) to reach its minimum value rapidly with |κ|, given
the κ2 dependence in Eq. (5). The variability in length between
fingers is a result of a “tug of war” between outward- and
inward-pointing fingers, Eqs. (15) and (16). The increased
variability on the radial finger length depends on how rapidly a
given finger (outward or inward) increases its mode amplitude,
and consequently its local curvature, as expressed by Eqs. (15)
and (16). In other words, outward- (inward-) growing fingers
will compete if their curvature increases more rapidly than the
inward- (outward-) moving finger.

Similarly, when the rate of growth of both inward and
outward fingers are comparable, the finger competition is
absent [see Eqs. (15) and (16)]. Nevertheless, the rate of
bending rigidity decay is regulated by the characteristic
curvature 1/λ. This weakening effect on the bending rigidity
tends to increase the curvature of a growing finger due to the
locally reduced elastic bending resistance. When λ = 0.8 in
Fig. 4(a), the outward fingers reach the minimum ν(κ) more
rapidly than the inward fingers, since the initially circular
shape of the interface forces inward fingers to switch the
sign of the curvature before growing considerably, resulting in
this way in a competition between outward-pointing fingers.
When λ is increased to 0.926 in Fig. 4(b), a smaller magnitude
of the absolute curvature now has access to lower bending
rigidity values, favoring an equal rate of finger growth for
both outward and inward fingers, and thus inducing zero
finger competition phenomenon. Moreover, notice that the
bending weakening effect does not privilege a particular
sign of curvature, having therefore an equal effect for both
outward- and inward-pointing fingers for the same magnitude
of curvature. When the characteristic curvature is reduced
further in Fig. 4(c), inward-moving fingers have faster access to
the low bending rigidity values, resulting in an inward finger
length variation, while considerably reducing the length of
outward-moving fingers.

Finally, when λ is increased beyond 1.05, the bending
weakening effect saturates at its minimum value very rapidly
throughout the elastic interface, but for a small magnitude
of curvature. In this case, the finger competition is solely
governed by ν0, and the varying bending rigidity interface
behaves as an interface with a constant bending rigidity [see
Fig. 3]. In the latter, the viscosity contrast reemerges as
the dominant parameter for the finger competition behavior,
as expected from the classical rotating Hele-Shaw case
[10–18].
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IV. CONCLUDING REMARKS

Traditional studies of fingering instabilities in rotating
Hele-Shaw cells have focused on the interplay of capillary,
centrifugal, and viscous effects in dictating pattern formation
behavior. In this framework, it has been shown that the
viscosity contrast plays a major role in determining the finger
competition dynamics of the system. If the viscosity contrast
is positive (negative) the competition, or equivalently the
finger length variability, among outward- (inward-) pointing
fingers is increased. On the other hand, if the viscosity
contrast tends to zero finger competition is restrained, so
that both inward and outward pointing fingers have similar
sizes.

Our current investigation, on the other hand, is concerned
with a variant of the conventional rotating Hele-Shaw problem.
Here we considered the situation in which the fluid-fluid
interface is elastic and presents a curvature-dependent bending
rigidity. In this new scenario, elastic, centrifugal, and viscous
forces act to dictate the ultimate behavior of the emergent
fingering structures. Through a second-order mode-coupling
approach, we have derived the appropriate dimensionless
form of the governing equations, containing four relevant
parameters: a viscosity contrast A, a coefficient B that
measures the relative strength between elastic and centrifugal
effects, a rigidity fraction C, and a characteristic radius λ.
In contrast to the usual rotating Hele-Shaw problem, our
analytical results show a strong dependency of the finger
competition dynamics on the parameters C and λ. The general
observation is that, even if A and B are kept constant, by
properly tuning the values of C and λ, one can reproduce a
whole range of finger competition behaviors (i.e., enhanced
competition among inward and outward fingers, or situations
of restrained finger variability).
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APPENDIX: FUNCTIONS APPEARING IN THE
MODE-COUPLING TERM F(n,m)

This Appendix presents the expressions for the functions
B1(n,m), B2(n,m), B3(n,m), and B4(n,m), which appear in
Eq. (12):

B1(n,m) = −3 + 15
4 m(n − m) + 10(n − m)2

− 9
2m2(n − m)2 − 6m(n − m)3

− 4(n − m)4, (A1)

B2(n,m) = 39
2 − 30m(n − m) − 71(n − m)2

+ 81
2 m2(n − m)2 + 54m(n − m)3

+ 32(n − m)4 − 12m2(n − m)4

− 12m3(n − m)3, (A2)

B3(n,m) = −14 + 25m(n − m) + 54(n − m)2

− 36m2(n − m)2 − 48m(n − m)3

− 26(n − m)4 + 18m2(n − m)4

+ 18m3(n − m)3, (A3)

and

B4(n,m) = 1 − 2m(n − m) − 4(n − m)2

+ 3m2(n − m)2 + 4m(n − m)3

+ 2(n − m)4 − 2m2(n − m)4

− 2m3(n − m)3. (A4)
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CARVALHO, GADÊLHA, AND MIRANDA PHYSICAL REVIEW E 89, 053019 (2014)
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