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Coupled self-organization: Thermal interaction between two liquid films undergoing
long-wavelength instabilities
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The effects of thermal coupling between two thin liquid layers separated by a gas layer are discussed. The liquid
layers undergo long-wavelength instabilities driven by gravitational and thermocapillary stresses. To study the
dynamics, both a linear stability analysis and a full numerical solution of the thin-film equations are performed.
The results demonstrate that the stability properties of the combined system differs substantially from the case
where both layers evolve independently from each other. Most prominently, oscillatory instabilities, not present
in single-liquid layer configurations, may occur.
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I. INTRODUCTION

The principles of self-organization (SO), implying the
autonomous increase of order in a system, is omnipresent in
technological and biological entities [1,2]. Typically, SO is
driven by gradients in thermodynamic potentials so that cor-
responding processes occur under nonequilibrium conditions.
During the organizational process, small fluctuations present in
an initially disordered system grow selectively. This results in
a long-distance coherent behavior. In pattern-forming systems,
this coherence is manifested in characteristic features of the
emerged patterns, which are independent of the exact form of
the initial fluctuations. Hence, such characteristics can be used
to classify the system.

The analysis of self-organizing systems is also motivated
by their frequent occurrence in nature. Among others, SO
appears in hydrodynamic instabilities [2], concentration pat-
terns during chemical reactions [3], as well as biological
evolution and cellular processes [4]. Self-organizing systems
(SOSs) also find various applications such as in the pro-
duction of supramolecular structures [5], self-organization
of organic semiconductors [6], and producing structured
surfaces [7].

While there is extensive work addressing the characteristics
and dynamics of single SOSs, there is comparably little work
on coupled processes. In a similar fashion as the interaction
of the components of a single SOS lead to the macroscopic
coherent behavior of the SOS itself, the communication
between these systems may result in a nontrivial collective
behavior as well. So far, to the best of our knowledge,
such an analysis has only been performed for SO chemical
reactions. Specifically, both theoretical and experimental work
has been done for the coupling of chemical oscillators [3]
and extensively for Turing instabilities. The latter occur in
a two-component reaction-diffusion system used as a model
system for pattern-forming reactions [8]. In the work of
Yang et al. [9], two separated liquid films were theoretically
analyzed, where the same two-component chemical reaction
was taking place in each film. The time dependence of the
concentrations was described with the equations proposed by
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Turing. The coupling between the layers was achieved by
allowing one of the reactants to diffuse through the membrane
separating the liquids. The numerical analysis of this system
predicted the emergence of oscillatory patterns, which do not
appear in the single-layer configuration. However, the Turing
equations are inappropriate for the complete description of
a nonequilibrium system in steady state, since the need for
constant supply of reactants and removal of products is not
considered [2]. Moreover, the emergence of the patterns
requires the two reactants to have considerably different
diffusion coefficients [3]. Despite the difficulties, coupled
Turing patterns have been experimentally analyzed, and the
emergence of superlattice patterns was observed [10]. Hence,
for the Turing instability it is confirmed that the coupled system
has properties significantly different from the individual SOS.
This motivates the search for the effects of coupling in other
physical systems.

To this end, facilitated by the extensive literature on
self-organization in thin liquid films, the coupling of a
long-wavelength (or deformational) Bénard–Marangoni in-
stability with a long-wavelength Rayleigh–Taylor instability
is analyzed. Research on instabilities in liquid layers is
widespread: next to their importance in coating technologies,
they are still rich in unresolved scientific questions, while their
theoretical description can nevertheless be performed with the
Navier–Stokes equations and other well-established transport
equations. Furthermore, both instabilities forming the basis of
this article have been examined in detail by numerous authors
[11–13]. Herein, the coupling between the layers is achieved by
the modulation of heat transfer, while mechanical interaction,
e.g., by viscous forces, is negligibly small. The evolution
of coupled liquid instabilities has already been examined
[14–18]. However, the purpose of these works was not to
illuminate synergistic effects, as the coupling mechanisms
were usually quite complicated and a clear separation into
individual subsystems was not readily possible. By contrast,
for the system under discussion in this article, the dynamics of
the films can be described with qualitatively identical evolution
equations, facilitating the examination of the effects induced
by the coupling. As the evolution equations remain reasonably
transparent, one can clearly distinguish the two self-organizing
subsystems and immediately isolate the effects which are
caused by the coupling alone.
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MIKLÓS VÉCSEI, MATHIAS DIETZEL, AND STEFFEN HARDT PHYSICAL REVIEW E 89, 053018 (2014)

T2

T1

h

d
λ

0

0

y
x

z

h

char g

FIG. 1. (Color online) Double-layer configuration comprising a
liquid and a gas film of thicknesses h0 and d0 − h0, respectively,
confined between two walls maintained at different but constant
temperatures (T1 > T2 ).

II. GOVERNING EQUATIONS

A. Double-layer configuration

This section focuses on the evolution equation of the long-
wavelength instability for a double-layer system (Fig. 1). Two
distinct types of instabilities exist in liquid films driven by a
variation of surface tension with temperature. In corresponding
systems, the film with an initial thickness of h0 is typically
heated from below, while the free interface of surface tension
σ is cooled from the top. For thicker films (h0 = 0.1 to 1 mm),
the short-wavelength Bénard–Marangoni (BM) instability is
dominant, for which the characteristic pattern wavelength λchar

is of the same order as h0, whereas the deformation of the
interface is negligible. For the second type, the so-called
long-wavelength or deformational BM instability, λchar is
much larger than h0, and the interface undergoes significant
deformation. Experimentally, this mode of instability is more
difficult to observe since the commonly observed short-
wavelength mode needs to be suppressed by either a small
value of h0 [19] or by using very viscous films such as polymer
[20] or metal melts [21]. Equivalently, depending on h0,
there exist two types of buoyancy-driven instabilities in liquid
films. Of particular interest herein is the long-wavelength
Rayleigh–Taylor (RT) instability [12]. As will be described
below and except for the sign of the buoyancy term, the
evolution equations for the long-wavelength BM instability
and the long-wavelength RT instability are qualitatively the
same, if in the latter case the film is exposed to a transverse
thermal gradient. This was used in Ref. [13] to prevent the
dripping of liquid films from ceilings.

The derivation of the evolution equation is based on
the incompressible Navier–Stokes equations. The detailed
analysis is available in multiple papers, therefore we will
only summarize the main steps and results. For further details
the reader is referred to Refs. [11,12,22]. The momentum
equations in the bulk of the layer and at the interface read
[23]

dρv
dt

= −∇ · Pliq + ρF, (1)

dρsv
dt

= −(∇s · n̂)n̂σ + ∇sσ + (Pliq − Pgas)n̂, (2)

where ρ is the density, v is the liquid velocity, and the effects of
gravity and other bulk forces are collected in F. The substantial
derivative is expressed by d(.)/dt = ∂(.)/∂t + v · ∇(.). The
stress-tensor is denoted by Pliq, which is composed of a (scalar)

equilibrium pressure pliq and the viscous stress tensor, namely,

Pliq = pliqI + Eν,
(3)

Eν
ij = −μ

(
∂vi

∂xj

+ ∂vj

∂xi

)
, i,j ∈ [1,2,3],

where μ is the dynamic viscosity and Newtonian behavior
is assumed. The subscripts 1, 2, and 3 represent the x, y,
and z directions, respectively. In Eq. (2), ρs is the surface
density, which is usually negligible and will not be considered
in this work. The derivative along the surface is denoted by ∇s ,
while n̂ is the normal vector of the surface pointing towards
the air layer. Thus the first term on the right-hand side of
Eq. (2) is the capillary pressure and the second term is the shear
stress induced by an inhomogeneity of the surface tension.
Compared to liquids, the viscosity of gaseous materials is
usually negligible so that the stress tensor can be approximated
by Pgas = pgasI. This assumption is not necessarily valid for
very thin layers of gas, where substantial viscous stresses might
appear. Nevertheless, the Knudsen number in such thin gas
films is no longer small, and additional physical phenomena
emerge, such as a velocity slip and a temperature jump at the
gas-liquid interface. These effects are beyond the scope of this
paper and will not be further discussed.

At the bottom of the liquid layer the no-slip boundary
condition is imposed, i.e., v|z=0 = 0. At the liquid-gas interface
the kinematic condition reads vz|z=h = ∂h/∂t + vx∂h/∂x +
vy∂h/∂y.

Using the characteristic quantities from Fig. 1 we introduce
the following nondimensional parameters: X = x/λchar, Y =
y/λchar, Z = z/h0, and H = h/h0. The characteristic flow
velocity in the lateral direction vc is utilized as the scaling
factor for the velocities in the form of Vx = vx/vc, Vy =
vy/vc, and Vz = (λchar/h0)vz/vc. The time variable is rescaled
according to τ = tvc/λchar. Finally, P = pah0/(μvc) is the
nondimensional form of the pressure, with a = h0/λchar. The
dimensionless surface tension is denoted by � = aσ/(μvc).

With the nondimensionalized velocities the continuity
equation remains qualitatively unchanged

∂Vx

∂X
+ ∂Vy

∂Y
+ ∂Vz

∂Z
= 0. (4)

The dimensionless bulk momentum equations are given by

aRe
dVx

dτ
= a2

(
∂2Vx

∂X2
+ ∂2Vx

∂Y 2

)
+ ∂2Vx

∂Z2
− ∂P

∂X
,

aRe
dVy

dτ
= a2

(
∂2Vy

∂X2
+ ∂2Vy

∂Y 2

)
+ ∂2Vy

∂Z2
− ∂P

∂Y
, (5)

a3Re
dVz

dτ
= a4

(
∂2Vz

∂X2
+ ∂2Vz

∂Y 2

)
+ a2 ∂2Vz

∂Z2
− ∂P

∂Z

− Bo

Ca
.
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Furthermore, the dimensionless surface momentum equa-
tions read

∂�

∂X
= ∂Vx

∂Z
+ a2 ∂H

∂X

∂Vz

∂Z
,

∂�

∂Y
= ∂Vy

∂Z
+ a2 ∂H

∂Y

∂Vz

∂Z
, (6)

P = 2a2

(
∂H

∂X

∂Vx

∂Z
+ ∂H

∂Y

∂Vy

∂Z
+ ∂Vz

∂Z

)
− ∇2

‖H

Ca
.

In the long-wavelength limit, a is assumed to be small
so that a2 � 1. Furthermore, the characteristic velocity vc

is typically low and the Reynolds number Re = ρh0vc/μ

can be assumed to be of order a or smaller. The effect of
gravity is captured by the term proportional to Bo/Ca, where
Bo = gρλ2

char/σ is the Bond number, Ca = μvc/(σa3) is the
capillary number and ∇‖ = (∂/∂X,∂/∂Y ) is the gradient along
the lateral coordinates.

The gradient of the dimensionless surface tension ∇‖� is
defined by the variance of the temperature along the interface,
i.e., ∇‖� = a/(μvc)∇‖σ = −aσT /(μvc)∇‖T |Z=H . Here, σ is
assumed to be a linear function of the temperature and σT =
−dσ/dT . The nondimensional equivalent of the temperature
is defined according to 	 = (T − T2)/(T1 − T2), where T1 and
T2 are the substrate temperatures of the lower and the upper
substrate, respectively, and T1 > T2. Thus the surface tension
gradient can be expressed by ∇‖� = −Ma∇‖	|Z=H . The
dimensionless Marangoni number Ma = aσT (T1 − T2)/(μvc)
characterizes the variance of the surface tension with tem-
perature. This definition of the Marangoni number differs
from the one used in the short-wavelength Bénard–Marangoni
instability [12]. In the latter case, Ma∗ = σT 
T ∗h0/(μα),
where α is the thermal diffusivity and 
T ∗ = T1 − T (h0) is
the temperature drop across the liquid layer.

For the long-wavelength approximation, terms of order a2

and a4 are assumed to be negligible. For Re � O(a), the
momentum equations together with the boundary conditions
and the continuity equation can be transformed into [22]

∂H

∂τ
+ ∇‖

{
H 3

3Ca
[∇‖(∇2

‖H ) − Bo∇‖H ]

− Ma
H 2

2
∇‖(	|Z=H )

}
= 0. (7)

The temperature distribution in the liquid and gas layers can
be calculated with the energy equation. In the long-wavelength
approximation of the double-layer configuration the Péclet
numbers Pel = Re × Pr = h0vc/α of the liquid and Peg =
Reg × Prg = h0,gvc,g/αg of the gas layers are assumed to be
small, at least to order a. The quantities α and αg stand for the
thermal diffusivity of the liquid and gas layers, respectively.
In nondimensional form, the energy equation reads

a Pel/g

d	

dτ
= a2

(
∂2	

∂X2
+ ∂2	

∂Y 2

)
+ ∂2	

∂Z2
, (8)

where Pel/g is either Pel or Peg , depending on which phase
Eq. (8) refers to. The first terms on the right-hand side and the
left-hand side of Eq. (8) can be omitted, as they are proportional
to a2. Assuming continuity in the temperature and in the heat
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FIG. 2. (Color online) Schematic of triple-layer configuration
with initial liquid thicknesses of h0,1, h0,2 and plate separation d0.

flux at the interface, the temperature at Z = H is given by

	
∣∣
Z=H

= D0 − H

D0 + (1/κ − 1)H
, (9)

where κ = kliq/kgas denotes the ratio of the heat conductivities
of the two layers. The distance between the two substrates is
given by D0 = d0/h0.

Substituting this into Eq. (7) leads to a nonlinear partial-
differential equation for H . For the linear analysis one assumes
that the deviation from the equilibrium configuration (H = 1)
is small so that H = 1 + 
H , where 
H 2 � 1. With this the
equation for 
H takes the following form:

∂
H

∂τ
+

1
κ
D0Ma

2(D0 + 1/κ − 1)2
∇2

‖
H

+ 1

3Ca
∇2

‖ (∇2
‖
H − Bo
H ) = 0. (10)

B. Triple-layer configuration

In the system shown in Fig. 1, thermocapillarity destabilizes
the film, while gravity stabilizes it. If the film is placed
on the upper substrate, gravity destabilizes it while thermo-
capillarity stabilizes it. This circumstance was utilized in
the thermocapillarity-driven dripping prevention from ceilings
[13]. Note that this system can be described by simply inverting
the sign in front of the gravity term in Eq. (7). Inspired
by the work of Srivastava et al. [24], in the following, two
films opposite to each other on separated substrates with a
thin gas layer in between are considered (Fig. 2). As for the
two-layer system, the lower substrate is hotter than the upper
one so that the lower film is subjected to the gravity-stabilized
long-wavelength BM instability, whereas the upper film is
subjected to the thermocapillarity-stabilized long-wavelength
RT instability. Experimental verification of the core principle
of coupled self-organization based on a similar system as the
one presented herein is on its way. In that context, it has to
be noted that, for the coupled system, the in situ measurement
of the individual film height distributions without disturbing
the coupling is experimentally very challenging. In the focus
of the subsequent analysis are the consequences of thermal
coupling between the two films which cannot be observed for
the isolated systems.

Due to the negligibly small viscosity of the gas, there is no
direct mechanical connection between the layers. Therefore,
the momentum equations of the two systems remain indepen-
dent and the coupling will only appear through the energy
equation. As will be shown, the layers are thermally coupled
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in a nontrivial way, as the deformation of one liquid layer
changes the local surface temperature of the other one.

Hereafter it is assumed that the long-wavelength ap-
proximation is valid for both liquids. Consequently
(h0,1/λchar,1)2 � 1 and (h0,2/λchar,2)2 � 1, where h0,i and
λchar,i represent the initial thicknesses and the characteristic
deformation wavelengths of the two liquid layers, respectively.
Hence, the evolution equations for the dimensionless liquid
thicknesses H1 = h1/h0,1 and H2 = h2/h0,2 can be derived
in an equivalent fashion as for Eq. (7). Moreover, we suppose
that the thicknesses of the two liquid layers are of the same
order of magnitude, and that this assumption remains valid
for the characteristic wavelengths, too. Therefore, the ratio
of the initial thicknesses χ = h0,2/h0,1 = O(1) and the same
scaling lengths can be used in the lateral direction. For
the calculation of the dimensionless groups, h0,1 is used
for nondimensionalization. Accordingly, the film evolution
equations of both liquid layers are given by

∂H1

∂τ
+ ∇‖

{
H 3

1

3Ca1
[∇‖(∇2

‖H1) − Bo1∇‖H1]

− Ma1
H 2

1

2
∇‖(	

∣∣
Z=H1

)

}
= 0, (11)

∂H2

∂τ
+ ∇‖

{
χ3 H 3

2

3Ca2
[∇‖(∇2

‖H2) + Bo2∇‖H2]

−χMa2
H 2

2

2
∇‖(	|Z=D0−H2 )

}
= 0. (12)

The effect of the different liquid thicknesses are captured
by χ alone. Using the one-dimensional (1D) heat diffusion
equation, derived in the previous section, the continuity of the
temperature and the heat flux density at the interfaces leads to
the following expressions for the interfacial temperatures:

	|Z=H1 = −H1

κ1(D0 − H1 − χH2) + H1 + κ1
κ2

χH2
+ 1,

	|Z=D0−H2 = χH2

κ2(D0 − H1 − χH2) + χH2 + κ2
κ1

H1
, (13)

where κi = kliq,i/kgas. The surface gradients of the interfacial
temperatures are

∇‖	|H1 = −ε1∇‖H1 − ε2∇‖H2, (14)

where

ε1 = κ1
[
D0 − χH2

(
1 − 1

κ2

)][
κ1 (D0 − H1 − χH2) + H1 + κ1

κ2
χH2

]2 ,

ε2 = κ1χH1
(
1 − 1

κ2

)[
κ1(D0 − H1 − χH2) + H1 + κ1

κ2
χH2

]2 ,

and

∇‖	|D0−H2 = φ1∇‖H1 + φ2∇‖H2, (15)

where

φ1 = κ2χH2
(
1 − 1

κ1

)[
κ2(D0 − H1 − χH2) + χH2 + κ2

κ1
H1

]2 ,

φ2 = κ2χ
[
D0 − H1

(
1 − 1

κ1

)][
κ2(D0 − H1 − χH2) + χH2 + κ2

κ1
H1

]2 .

Note that ε1,ε2,φ1,φ2 > 0 and ε1φ2 > ε2φ1.
For the linear analysis we introduce the notation

H1 = 1 + 
H1 and H2 = 1 + 
H2 and assume again that

H 2

1 , 
H 2
2 � 1. Neglecting the second- and higher-order

terms in 
H1 and 
H2 leads to the linearized evolution
equations, reading

∂
H1

∂τ
+

(
ε1Ma1

2
− Bo1

3Ca1

)
∇2

‖
H1

+ε2Ma1

2
∇2

‖
H2 + 1

3Ca1
∇4

‖
H1 = 0,

∂
H2

∂τ
+

(
−φ2χMa2

2
+ χ3 Bo2

3Ca2

)
∇2

‖
H2

−φ1χMa2

2
∇2

‖
H1 + χ3

3Ca2
∇4

‖
H2 = 0.

(16)

Here, ε1, ε2, φ1, and φ2 are evaluated at H1 = 1 and H2 = 1,
respectively.

III. LINEAR AND NUMERICAL ANALYSIS
OF EVOLUTION EQUATIONS

In this section, the properties of Eq. (16) are analyzed.
This will provide useful information for the qualitative and
quantitative description of the emerging patterns as well as the
stability behavior of the SOS [2].

Equation (16) indicates that the linear evolution of the
liquid layers is qualitatively similar. The main difference
lies in the interchanged roles of the thermocapillary and
gravitational force. While the Ma1 term in the first equation
destabilizes the lower layer by giving positive feedback to a
deformation, the Ma2 term in the second layer stabilizes the
upper layer by damping deformations. The opposite is true for
the gravitational body force, i.e., it stabilizes the lower layer
but destabilizes the upper layer.

For a better understanding of some of the results presented
later in this work, it is helpful to consider a simplified version
of the triple-layer configuration, where the upper liquid layer
is assumed to be rigid (
H2 = 0). In this case the second
equation in Eqs. (16) turns into an identity, while the first one
simplifies to

∂H1

∂τ
+

1
κ1

D0Maeff

2
(
D0 + 1

κ1
− 1

)2 ∇2
‖H1 + 1

3Ca1
∇4

‖H1 = 0, (17)

with the effective Marangoni number

Maeff =
(

ε1Ma1

2
− Bo1

3Ca1

) ⎡⎣ 1
κ1

D0

2
[
D0 + (

1
κ1

− 1
)]2

⎤⎦−1

. (18)
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Equation (17) has the form of a linearized evolution
equation of a system with only one liquid layer in the absence
of gravity, where Maeff serves as the Marangoni number.
Thus, it is an equivalent of Eq. (10) and the results already
available for this type of instability [11] are directly applicable.
In particular, the system will always be linearly unstable if
Maeff > 0, which is equivalent to ε1Ma1/2 − Bo1/(3Ca1) > 0.
In the limit of χ = 0 this criterion is identical to the results
obtained by VanHook et al. [12]. The same train of thought can
be applied to a system where the lower layer is rigid. In this case
the upper one is unstable if −φ2Ma2/2 + χ2Bo2/(3 Ca2) > 0.

In general, for both layers being mobile, Eq. (16) can
be solved using the Fourier transforms of the deformation
variables:


Hn(τ,X,Y ) = 1

2π

∫ ∞

−∞

̃Hn(τ,qx,qy)ei(qxX+qyY )dqxdqy,

(19)

where n ∈ [1; 2] indicates the two liquid layers. The
dimensionless wave numbers (scaled by a/h0) in the x and
y direction are denoted by qx and qy . The back substitution
to the linearized evolution equations gives an equation for
every Fourier component. As Eq. (16) is linear, the different
Fourier modes will be independent of each other. Introducing
q = (q2

x + q2
y )1/2, the transformed equations read

∂

∂τ

(

̃H 1


̃H 2

)
= M

(

̃H 1


̃H 2

)
,

M1,1 =
(

ε1Ma1

2
− Bo1

3Ca1

)
q2 − 1

3Ca1
q4,

M1,2 = ε2Ma1

2
q2, M2,1 = −φ1χMa2

2
q2,

M2,2 =
(

−φ2χMa2

2
+ χ3Bo2

3Ca2

)
q2 − χ3

3Ca2
q4. (20)

The general solution of this system of linear differential
equations is(


̃H 1(τ,qx,qy)


̃H 2(τ,qx,qy)

)
=

(

̃H 1+(q)


̃H 2+(q)

)
eω+τ +

(

̃H 1−(q)


̃H 2−(q)

)
eω−τ .

(21)

In Eq. (21), ω+(q) and ω−(q) are the eigenvalues of
the matrix M in Eq. (20), while (
̃H 1+(q),
̃H 2+(q))T and
(
̃H 1−(q),
̃H 2−(q))T are the respective eigenvectors.

A. Linearized equations for identical layers

The exact formulas for the eigenvectors and eigenvalues are
involved and are functions of many independent parameters.
One arrives at considerably simpler formulas if the layers are
identical (ε1 = φ2, ε2 = φ1, Ca1 = Ca2 ≡ Ca, Ma1 = Ma2 ≡
Ma, Bo1 = Bo2 ≡ Bo, and χ = 1). For simplification, the
dimensionless time is rescaled according to τ̂ = τ/(3Ca). The
resulting eigenvalues are

ω± = −q4 ± q2(3Ca)

√(
ε1Ma

2
− Bo

3Ca

)2

−
(

ε2Ma

2

)2

.

(22)
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FIG. 3. The growth rate function of the linear stability analysis
as a function of the dimensionless wave number.

For this type of system the real part of the second eigenvalue
Re(ω−) is always negative. Therefore the corresponding modes
are damped and will not have any effect on the long-term
evolution of the system. To analyze the other eigenvalue from
Eq. (22) we define

s = (
3
2ε1Ca × Ma − Bo

)2 − (
3
2ε2Ca × Ma

)2
. (23)

Further examination of Eq. (22) indicates that for s > 0 the
system is unstable to small perturbations, as there exists a range
of wave numbers [qmin,qmax] where Re(ω+) � 0. Moreover,
the deformations of the film are not oscillatory since ω+ is
a real number in this region. By setting the left-hand side
of Eq. (22) to zero one obtains the marginally stable wave
numbers, qmax = 4

√
s and qmin = 0. The marginal stability of

the q = 0 mode can also be understood intuitively: a growth
rate different from zero would imply a uniform thickening
or thinning of the film, changing the volume of the layer,
which violates mass conservation [2]. In Fig. 3 the growth rate
Re(ω+(s)) as a function of the wave number is shown. The
aforementioned properties of the pattern formation identify it
as a type-II-s instability [2].

In the framework of the linear analysis, the characteristic
wave number of the emerging pattern is predicted by finding
the quantity qchar that maximizes the real part of the growth
rate. For the identical-layer setup, one finds that, similarly as
for the double-layer configuration, qchar = qmax/

√
2. For an

uncoupled system, the second term on the right hand side
of Eq. (23) is absent, i.e., scoupled < suncoupled. This implies
that the coupled system has a larger characteristic wavelength
than the uncoupled one. The corresponding growth rate is
ωchar = s/4.

For validation of the results, a series of direct numerical
simulations of Eqs. (12) and (13) were performed and were
compared with the findings of the linear analysis. Different
values of s were examined. For the liquid films the properties
of a 10cSt silicone oil were used, separated by a layer of
air. The material properties are summarized in Table I. The
thermal conductivity and thermal diffusivity of the air layer
at 50 ◦C and at atmospheric pressure were approximated by
kg = 27.88 × 10−3 W m−1 K−1 and αg = 2.57 × 10−5 m2/s
[25]. For this analysis the thicknesses of both the air and the
liquid layers were set to h0,1 = 100 μm. Systems with slightly
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TABLE I. Material properties of the considered silicone oil at
50 ◦C [12].

Parameter Notation Value

Density ρ 940 kg m−3

Surface tension σ 19 × 10−3 N m−1

Surface tension coefficient σT 6.9 × 10−5 N m−1 K−1

Kinematic viscosity ν 1.02 × 10−5 m2 s−1

Thermal conductivity k 13.3 × 10−2 W m−1 K−1

Thermal diffusivity α 10−7 m2 s−1

different film heights were also analyzed in a second series
of simulations. This will be addressed later. The value of s

was controlled by the temperature difference between the two
substrates. By varying the latter between 7.5 and 20.5 K, s

varies between 0.1 and 3.5. Within this region, the theoretical
expectations of the characteristic wavelengths are in the range
[64h0,1,158h0,1]. It follows that a2 � 1. Furthermore, in the
third column of Table II, the typical values of the dimensionless
groups characterizing the liquid layers are summarized. In
order to predict their values, qchar was calculated based on
the linear stability analysis and was transformed back to its
dimensional form according to the lateral scaling length used
in the simulations. The calculation of Re, Ma, Ca, and Pe
requires the characteristic velocity vc. Thus they could be only
computed in the unstable (s > 0 ) region. The characteristic
velocity was approximated with the results of the linear
analysis, and the method used to estimate it is discussed in
the appendix. As apparent from the table, the assumptions
underlying the lubrication approximation are valid for the
simulated systems. Furthermore, the conventional Marangoni
number describing the onset of the short-wavelength Bénard–

Marangoni is below the critical value of 80 [26]. Hence, this
instability is not present in our system and all unstable modes
have a long-wave character.

For the numerical simulations the finite-element method
was applied with quadratic Lagrangian shape functions. They
were conducted with COMSOL 4.3 [27] using the MATLAB

Livelink environment. The lateral scaling length was set to
10h0,1. As the physical behavior of the system is independent
of the scaling parameters this does not have any effect on
the evolution of the system. The simulated domain was a
square with side lengths of 15(2π )/qchar. As qchar is dependent
on s, the simulation area was not the same for the different
temperatures. Each square was divided into 120 × 120 cells.
Hence, according to the Nyquist sampling theorem, the
maximal numerically resolvable wave number is 4qchar if
the domain was discretized with a finite-difference scheme.
Finite-element discretization with high-order interpolation
functions exceed this resolution. In any case, this resolution is
more than sufficient because, according to the linear analysis,
the largest unstable wave number is expected to be qmax =√

2qchar and higher wave numbers will probably be damped.
Nevertheless, qmax is only an approximation, and the fine
meshing should allow for possible deviations to appear in
the simulations. Periodic boundary conditions were applied at
the edges of the simulation domain so that, as a consequence
of the finite size of the rectangle, the numerically available
wave numbers in the x and y direction are multiples of
qchar/15. All simulations started from a near-equilibrium state
with H1 = 1 + ξ1(x,y) and H2 = 1 + ξ2(x,y), where ξ1, ξ2

are white noise perturbations with amplitudes of 5 × 10−2.
The simulations covered a time span of 
τ̂ = 2.5/ωchar. The
maximal time step was set to 0.005/ωchar. At the final time step
the relative deformation of the layers was found to be between
15% and 30%.

TABLE II. The dimensionless groups characterizing the governing equations and their values for the two series of numerical simulations.
In the first series a parametric sweep in s was performed, while in the second one the parametric sweep was conducted for r .

Formula First series Second series

Reynolds
ρh0vc

μ
6.21 × 10−4–5.33 × 10−3 1.53 × 10−4–5.17 × 10−3

Marangoni
aσT (T2 − T1)

μvc

4.17–5.45 4.45–10.1

Ma∗ σT 
T ∗h0,1

μα
19.2–52.0 9.9–59.6

Capillary
μvc

σa3
75.2–126.0 36.4–110.8

Galileo
ρgh3

0,1

μα
9.62 16.62

Bond
gρλ2

char

σ
20.49–121.2 36.3–303.4

Prandtl
μ

ρα
102 102

Péclet (oil)
h0vc

α
6.33 × 10−2–5.43 × 10−1 1.56 × 10−2–5.27 × 10−1

Péclet (air)
h0vc

αg

2.47 × 10−4–2.12 × 10−3 6.08 × 10−5–2.05 × 10−3
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FIG. 4. The theoretical neutral stability curve and the correspond-
ing numerical results at τ̂ = 0.5/ωchar and τ̂ = 2.5/ωchar.

All calculations were performed on a Dell Precision T7500
workstation running Cent OS 5.8. Grid independency studies
were conducted by varying the mesh size between 30 × 30 and
180 × 180. It was found that, beyond a grid resolution of 105 ×
105, the numerical results became practically indistinguishable
from each other.

A comparison between the theoretical predictions and the
numerical results for the neutral stability curve qmax(s) is
given in Fig. 4. The numerical curves were calculated at
τ̂1 = 0.5/ωchar and τ̂2 = 2.5/ωchar. The data were obtained by
analyzing the time evolution of the two-dimensional Fourier
transform of the film thickness. A Fourier component was
considered to be unstable if its amplitude increased for ten suc-
cessive time steps. The marginally stable wave number was ap-
proximated by calculating the mean value of two averages. The
first one is the directional average of the smallest wave numbers
for which the Fourier component is stable, whereas the second
one is the directional average of the largest wave numbers for
which the Fourier component is unstable. At τ̂1 = 0.5/ωchar

the theoretical expectations and numerical results agree well.
The linear method predicts slightly smaller wave numbers than
the numerical results, the largest relative difference between
the two is 3.5%. By contrast, at τ̂2 = 2.5/ωchar, the difference
between the two solution approaches becomes significant.
According to the numerical results qmax increases significantly
with increasing time. This tendency is present in the whole
[0.5/ωchar,2.5/ωchar] time interval. This is not expected to
be a consequence of numerical inaccuracy, as the spatial
resolution is considerably higher than the increased values
of qmax. This behavior suggests that the system becomes more
unstable during its time evolution. Further simulations (not
shown for brevity) indicate that the monotonic expansion of the
unstable wave-number region is also present in double-layer
configurations and is thus not a consequence of the coupling.
The work of Boos and Thess [28] supports this argument, as
their numerical analysis of drained regions in a double-layer
configuration indicated the destabilization of higher wave
numbers.

At τ̂ = 2.5/ωchar the Fourier transforms of H1(X,Y )
and H2(X,Y ) were also used to estimate the characteristic
wave number of the pattern. This can be approximated by
the wave number corresponding to the Fourier component
with the largest amplitude, which is the one with the largest
growth rate within the time range considered. This value was
calculated for the patterns of the lower and upper liquid film.

The results of the two layers coincided for every simulation
except at s = 0.8, where there was a 1% relative difference
between them. As shown in Fig. 5, the numerical results fit the
theoretical expectations well.

From Eqs. (14) and (15) one can deduce that for identical
layers ε1 > ε2. However, the presence of gravity (Bo > 0)
allows the parameter s to assume negative values. In this
case the system is stable, as Re(ω+) = Re(ω−) = −q4 < 0
for every wave number. In the stable regime it is assumed
that momentarily appearing film deformations are long-waved
in character so that the evolution equations presented before
remain valid. For these deformations, Im(ω±) = ±q2

√−s

will give rise to waves appearing on the surface with a
dimensionless phase velocity of Vp = q

√−s and a group
velocity of Vg = 2q

√−s.
These waves only appear because of the coupling of the

two layers. From Eq. (20) one can deduce that if the coupling
between the layers is set to zero (ε2 = φ1 = 0 ), then M(1,2) =
M(2,1) = 0. In consequence, the eigenvalues of M are real
numbers in the whole parameter range, making it impossible
for oscillations to occur in a single liquid film.

For identical layers, the eigenvectors of the linearized
system described by Eq. (20) are(


̃H 1±(q)


̃H 2±(q)

)
=

⎛⎜⎜⎜⎜⎜⎜⎝
−

(
ε1Ma

2
− Bo

3Ca

)
±

√(
ε1Ma

2
− Bo

3Ca

)2

−
(

ε2Ma

2

)2

ε2Ma

2

1

⎞⎟⎟⎟⎟⎟⎟⎠,

(24)

that is, they are in fact independent of q. As mentioned
earlier, ω− < 0 for s > 0. Thus, the effect of the corresponding
eigenvector will disappear after a sufficiently long time.
Furthermore, since the eigenvectors are the same for every
wave number, after a sufficiently long time, the ratio of the
deformation of the two layers should be 
̃H 1+/
̃H 2+. In
other words, the two layers will have exactly the same pattern,
with only the magnitude of the deformation differing by
a scaling factor. Nevertheless, for the case of s > 0, there
are two qualitatively different configurations: if ε1Ma/2 −

0.2

0.4

0.6

0.8

1

0 1 2 3 4

q c
h
a
r

s

numerical
theoretical

FIG. 5. The theoretical and numerical results (τ̂ = 2.5/ωchar ) for
the characteristic wave number of the film deformations.
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FIG. 6. (Color online) The triple-layer configurations with (a) a
weak effect of gravity (antiphase deformation) and (b) a strong gravity
effect (in-phase deformation).

Bo/(3Ca) > 0, then 
̃H 1+/
̃H 2+ < 0, i.e., the deformations
will be in antiphase. By contrast if ε1Ma/2 − Bo/(3Ca) < 0,
then 
̃H 1+/
̃H 2+ > 0; hence the deformations of the two
layers are in phase. This is schematically shown in Fig. 6.

An intuitive explanation of this behavior can be attained by
identifying the effects driving the film evolution. As mentioned
earlier, if the upper layer is rigid, then the lower one is unstable
if ε1Ma/2 − Bo/(3Ca) > 0. Similarly, if instead of the lower
layer the upper layer is the only deformable layer, then it will be
unstable if ε1Ma/2 − Bo/(3Ca) < 0. These are two mutually
exclusive conditions. Returning to the coupled system, this
suggests that, if the former condition is fulfilled, the evolution
of the system should be mainly driven by the lower layer. On
top of the regions where the lower layer thickens, the surface of
the upper layer will heat up. Subsequently the Marangoni flow
arising in the upper layer will point away from this location,
leading to a locally decreasing thickness of the upper film.
This behavior leads to the antiphase configuration depicted at
the left-hand side of Fig. 6. Based on similar arguments, the
in-phase evolution can be explained by considering that, in this
case, the instability will be mainly driven by the upper layer,
i.e., by gravity.

For s < 0 according to Eq. (24), the magnitudes of the
deformations are equal, but with a phase shift � between
the two layers. Formally 
̃H 1+/
̃H 2+ ≡ ei�, where � is
independent of the wave number.

The phase shift behavior and amplitude ratios can be
described in terms of the parameter

r ≡ −
ε1Ma

2 − Bo
3Ca

ε2Ma
2

. (25)

For r < 0 the lower layer is the initially unstable one, while
for r > 0 it is the upper layer that triggers the evolution of
both films. If |r| > 1 the system is unstable and � is either
0 (in phase) or π (antiphase). If r ∈ [−1,1], the system is
stable and the phase between the two layers is given by � =
arctan(−√

1 − r2/r), where the inverse tangent function gives
a value within [−π,0]. These results are summarized in Fig. 7.
The characterization of the triple-layer system requires both r

and s, as the ω± eigenvalues are solely functions of s whereas
the eigenvectors can be expressed only in terms of r .

To support the findings from Eq. (24), a second series of
numerical simulations was conducted. The value of r was
varied between [−2,2]. Once again, silicone oil as the liquid
medium (Table I) and air as the gaseous medium were used.
The thicknesses of the air and liquid layers were 120 μm. The
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FIG. 7. The ratio of the amplitudes of the two liquid films (left
side, solid line) and the phase shift between the patterns (right side,
dotted line).

variation of r was achieved by varying the temperature differ-
ence between 3.25 and 19.60 K. The fourth column of Table II
summarizes the dimensionless groups of this simulation.

For |r| > 1 the numerical parameters of the simulations and
the corresponding system behavior were similar to the previous
simulations. On the other hand, for |r| < 1 no patterns emerge.
Consequently, it is not possible to calculate a characteristic
wave number qchar in order to scale the simulated region.
However, the long-wavelength approximation remains valid,
and the actual values of the scaling parameters do not have
any qualitative effect on the system behavior, as they do not
change the essential physics. Therefore, lacking natural scaling
quantities, for the purpose of numerical simulation, a scaling
length and velocity can be chosen arbitrarily. To this end,
L = 10h0,1 was used again as the lateral scaling length and
vc = 10−5 m/s as the scaling velocity. In this case a square
with a side length of 150 was used as the simulation domain,
while the number of cells remained at 120 × 120. Instead of
2.5/ωchar, the simulated time period was −250/s (s < 0 ),
since ωchar is also not defined here. As before, the initial layer
thicknesses were modulated by a white-noise perturbation with
an amplitude of 5 × 10−2.

The evolution of the system was calculated with two
independent methods, starting from the same initial con-
ditions. In the full numerical approach, Eqs. (12) and
(13) were directly solved. For comparison, in the semi-
analytical method the Fourier transforms of the initial liquid
patterns were computed and all Fourier components were
evolved independently from each other by using Eq. (21).
In this case, the growth or decay of modes is governed
by Eq. (22). To this end, (
̃H 1+(kx,ky),
̃H 2+(kx,ky)) and
(
̃H 1−(kx,ky),
̃H 2−(kx,ky)) at τ̂ = 0 were obtained through
the white-noise initial condition. Subsequently, the position
space representation of the patterns was calculated with the
inverse Fourier formula of Eq. (19) for every time step. The
relative difference between the numerical (
H1

n,
H2
n ) and

semi-analytical (
H1
a,
H2

a ) results is defined by

D(τ ) = 1

2

(∫ [

H1

n(τ,x,y) − 
H1
a(τ,x,y)

]2
dxdy∫ [


H1
n(τ,x,y)

]2
dxdy

+
∫ [


H2
n(τ,x,y) − 
H2

a(τ,x,y)
]2

dxdy∫ [

H2

n(τ,x,y)
]2

dxdy

)
. (26)
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Table III summarizes the maximal values of D(τ ) over the
whole simulated time interval. The full nonlinear numerical
solution agrees well with the semi-analytical result obtained
from linear theory. This table serves also as a verification that
the integration time steps chosen in the numerical simulation
are sufficiently small.

Three further series of numerical simulations were con-
ducted. In the first one, the initial liquid layer thickness
was h0,1 = 60 μm, while the temperature difference was
varied between [0.81 K,4.90 K]. In the second and third
set of simulations the temperature difference between the
substrates was fixed, and the liquid layer thicknesses were
varied. These parameters were either T1 − T2 = 3 K while
h0,1 ∈ [47 μm,115 μm], or T1 − T2 = 5 K while h0,1 ∈
[60 μm,149 μm]. In all three cases the parameters were chosen
in such a fashion that r took the same values as listed in
Table III. In every simulation the maximal value of the relative
difference from the semi-analytical predictions was smaller
than 10−3. This parametric study indicates that the results
detailed in this paper are not specific to the particular choice
of the initial film heights, but are in fact generic as long as the
long-wavelength approximation holds.

B. Nonidentical layers

From an experimental viewpoint, exactly identical layers
are impossible to achieve. To obtain a more general solution of
practical relevance, in the following it is assumed that the initial
thicknesses of both layers differ slightly, i.e., χ �= 1. As before,
liquids with the same material properties (and hence, within
the present formulation, with equal dimensionless groups) are
considered. In this case,

φ1 = ε2,

φ2 = ε1 + δ
κD0

[κ(D0 − 2 − δ) + 2 + δ]2

= ε1 + δ(ε1 + ε2), (27)

where δ = χ − 1 = (h0,2 − h0,1)/h0,1 is the difference be-
tween the initial liquid layer thicknesses. Reevaluation of the
matrix M of the linearized equations indicates the presence
of additional terms of different orders of δ, which make
the analysis considerably more complicated as if the film
thicknesses were identical. Thus, as a simplification it is
assumed that δ2 � 1 so that the governing equations can be

TABLE III. Maximal relative difference between numerical and
semi-analytical results.

r s max(D)

−2.000 2.315 1.841 × 10−3

−1.500 3.637 × 10−1 1.077 × 10−3

−0.900 −2.582 × 10−2 2.538 × 10−5

−0.400 −7.149 × 10−2 1.359 × 10−7

0.000 −6.249 × 10−2 1.007 × 10−5

0.400 −4.018 × 10−2 4.419 × 10−7

0.900 −6.794 × 10−3 1.552 × 10−5

1.500 3.309 × 10−2 2.608 × 10−4

2.000 6.371 × 10−2 5.274 × 10−4

linearized in δ. However, the linearization of ε1 and ε2 in
terms of δ is unfavorable, as this would render the formulas
less compact. Furthermore, leaving ε1 and ε2 in their original
forms is not expected to significantly lower the accuracy.
Therefore, to simplify the algebraic structure, linearization
of these terms was not performed. The dimensionless time
variable was again τ̂ = τ/(3Ca). Apart from a linear correction
in δ, the eigenvectors of this system remain the same as in
Eq. (24). This correction does not result in any significant
change in the system behavior. The eigenvalues are obtained
as

ω+/− = −q4

[
1 + 3

2
δ

(
1 ± r√

r2 − 1

)]
+ q2

{
±√

s − δ

2

[
c

(
1 ± r√

r2 − 1

)
±

√
s

r2 − 1

]}
,

(28)

where for easier notation

c = 3
2 Ca × Ma (−3ε2r + ε2 − ε1) (29)

was introduced. Analyzing Eq. (28) one finds that, at s > 0
and sufficiently small wave numbers, the growth rate Re(ω+)
is still positive and the patterns remain locked in with
respect to the horizontal coordinates since Im(ω±) = 0. In
this regime the additional terms introduced by δ �= 0 only
shift the characteristic wave number to different values. The
oscillations, for which Im(ω±) �= 0, occur in the same region
as for identical layers, i.e., for s < 0, or equivalently, if |r| < 1.
In this regime the real part of ω± reads

Re(ω±) = −q4

(
1 + 3

2
δ

)
− q2 cδ

2
. (30)

The difference with the case of two identical layers is
the following: if cδ < 0, then for sufficiently small wave
numbers the oscillatory deformation has a positive growth rate
and instability occurs. Given the definition of c, the cδ < 0
condition can be reformulated to

r ≷ r0 if δ ≷ 0, (31)

where r0 = (ε2 − ε1)/(3ε2). Considering Eq. (14) with κ1 = κ2

(same liquid medium) and the relation d0 > h0,1 + h0,2 one
can show that at H1 = H2 = 1 and for δ2 � 1 in fact ε2 −
ε1 < 0, thus r0 < 0. The stability behavior of the triple-layer
configuration is summarized in Table IV. On the one hand, the
sign of r determines which liquid layer dominates the overall
system dynamics. On the other hand, the value of r relative to
r0 defines the stability of the oscillatory regime.

The characteristic wave number of the oscillatory in-
stability is qchar = √−cδ/(4 + 6δ). Since qchar → 0 with
r → r0, this is a type-II-o instability [2]. Inserting qchar

into Eq. (30), one finds the corresponding growth rate to
be Re(ωchar) = (cδ)2/(16 + 24δ). The angular velocity is
Im(ωchar) = cδ/(4 + 6δ)

√−s + O(δ2). The neutrally stable
wave numbers are qmin = 0 and qmax = √

2qchar, respectively.
For illustrative purposes the typical behavior of the oscil-

latory instability is shown in Fig. 8. A 4λchar × 4λchar sized
rectangular cutout from the 15λchar × 15λchar computational
domain as obtained from numerical simulation is displayed. In
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MIKLÓS VÉCSEI, MATHIAS DIETZEL, AND STEFFEN HARDT PHYSICAL REVIEW E 89, 053018 (2014)

FIG. 8. The surface patterns H1 and H2 of 4λchar × 4λchar sized
regions extracted from the numerical simulations at (a) τ̂ = 0.998 ×
2.5/ωchar and (b) τ̂ = 2.5/ωchar. The parameters are s = −0.056,
r = 0.152, and c = −0.532. The grayscale extends from 0.993 to
1.007.

this simulation the phase shift between the different layers was
� ≈ −1. In the first row of Fig. 8, the film height distributions
of film 1 (left) and 2 (right) is shown at τ = 0.998 × 2.5/ωchar.
In the second row, the corresponding film height distributions
at τ = 2.5/ωchar are displayed. From the latter it is apparent
that, in contrast to the spatially fixed patterns particularly
observed in two-layer systems, the locations of the elevations
change during the evolution of the oscillatory instability.
Furthermore, Fig. 8 also illustrates that, contrary to the
stationary instabilities, the phase shift between the two layers
causes the patterns to differ from each other.

For verification, the semi-analytical results were compared
in detail with numerical simulations. As before, silicone oil
was considered as the liquid medium, and the thickness of the
air layer was equal to the thickness of the lower liquid layer.
This value was fixed at h0,1 = 120 μm. For the first series
of simulations, the initial thickness of the upper layer was
set to h0,2 = h0,1 × 1.01 (δ = 0.01 ). For the second series it
was h0,2 = h0,1 × 0.99 (δ = −0.01 ). The c, r , and s values
were varied by changing the temperature difference between
the substrates from 4.2 to 8.4 K. For both configurations,
the simulations were conducted in the range of r where the
oscillatory instability occurs. The computational domains in
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FIG. 9. The characteristic wave number of the oscillatory pattern
emerging for (a) δ = −0.01 and for (b) δ = 0.01.

space and time were defined in the same way as in the
previous simulations, i.e., by using qchar and Re(ωchar). For
both values of δ and near the r → r0 limit, the oscillation
frequency becomes very high compared to the growth rate,
i.e., Im(ωchar) � Re(ωchar). Thus the computational costs
to sufficiently resolve the emerging patterns in time also
increases considerably. As a consequence, for δ = −0.01
it was not possible to examine the whole range of r ∈
[−1,r0] = [−1, − 0.61]. Instead, the simulations were limited
to [−0.95, − 0.72]. In the simulated regime, c ∈ [0.12,0.38]
and s ∈ [−5.3 × 10−2, − 1.3 × 10−2]. Similarly, for the nu-
merical simulations employing δ = 0.01, r was varied between
[−0.36,0.9] instead of the full interval [−0.59,1] and c ∈
[−0.85, − 0.18] while s ∈ [−7.9 × 10−2, − 6.9 × 10−3]. The
results for the characteristic wavelengths of the patterns
are depicted in Fig. 9. For δ = −0.01 the maximal relative
difference between the linear theory and the full numerical
simulation was 2.6%, while for δ = 0.01 it was 12.9%. The
latter is a significant deviation, which appeared at r = −0.36.
This is the point closest to r0. However, at other points the
numerical and theoretical results agree reasonably well.

TABLE IV. Stability regions of the system with two liquid layers. In stationary states the deformations are locked in with respect to the
horizontal coordinates, whereas in oscillatory states they are mobile and move in plane.

r ∈ [−∞,−1] [−1,r0] [r0,1] [1,∞]

δ < 0 stationary, unstable oscillatory, unstable oscillatory, stable stationary, unstable
δ = 0 stationary, unstable oscillatory, stable oscillatory, stable stationary, unstable
δ > 0 stationary, unstable oscillatory, stable oscillatory, unstable stationary, unstable
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IV. CONCLUSION

This article focuses on the effects of thermal coupling on the
pattern evolution of two liquid layers placed opposite to each
other and separated by a thin air layer. Specifically, the scenario
was studied where the lower layer undergoes a gravity-
stabilized long-wavelength Bénard–Marangoni (BM) instabil-
ity, while the upper one evolves under a thermocapillarity-
stabilized long-wavelength Rayleigh–Taylor (RT) instability.
For simplicity, the films are assumed to have similar initial
thicknesses and the same material properties. The system was
analyzed using linear stability theory as well as numerical
solutions of the full nonlinear set of equations. A good overall
agreement between the analytical and the numerical results
was found. It was shown that the coupling can result in a
qualitative difference in the evolution of the system compared
to the conventional case where both instabilities evolve
independently. Not only does the characteristic wavelength
of the patterns increase, but the two layers may stabilize or
destabilize each other. While without the coupling one of the
layers would always be unstable while the other is stable, it
was found that in the coupled system the stability behavior
of the layers is synchronized. Moreover, for certain parameter
ranges oscillatory instabilities were observed, which do not
appear in the double-layer configuration. This is similar to the
behavior found in coupled Turing pattern formations. It can
be concluded that the coupling of two self-organizing systems
can result in new modes of pattern formation not present in the
individual systems.
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APPENDIX: APPROXIMATION OF CHARACTERISTIC
VELOCITY

The characteristic velocity vc is needed for the evaluation
of Re, Ca, Ma, and Pe. To confirm that the approximations

aRe � 1 and aPe � 1 are valid during the whole process,
an upper estimate of vc was used for the calculation of the
dimensionless numbers.

The x component of the dimensional in-plane velocity of the
lower layer can be calculated from the momentum equations.
At the interface, where the lateral velocities are the largest, the
expression reads

vx =
(

σ

μ

∂3h1

∂x3
− gρ

μ

∂h1

∂x

) (
h1h1,0 − h2

1,0

2

)

+ σT (T2 − T1)

μh1,0
h1,0

(
ε1

∂h1

∂x
+ ε2

∂h2

∂x

)
. (A1)

The characteristic velocity was assumed to be the maximal
value of this function. The calculation of vx requires expres-
sions for the liquid thicknesses h1 and h2. In the present
approximation, the surface deformation of the layers was
assumed to be sinusoidal with a wave number of qchar. In the
simulations the maximal relative deformations of the layers
never exceeded 30% of the initial film height. Thus, the
amplitude of the sinusoid for the more unstable layer was
set to 30%, whereas for the more stable one it was calculated
with Eq. (24). In summary, the assumed thickness functions
were

h1 = h1,0

[
1 + Asin

(
2π

ax

h1,0

)]
,

(A2)

h2 = h2,0

[
1 + A


̃H2


̃H1
sin

(
2π

ax

h1,0

)]
,

where A is chosen in such a fashion that
max(A,A
̃H2/
̃H1) = 0.3 and a is obtained from the linear
analysis. The scaling velocities for the first set of simulations
of Table II were vc ∈ [6.33 × 10−5 m/s, 5.44 × 10−4 m/s].
For the second series they were approximated by
vc ∈ [1.30 × 10−5 m/s, 4.40 × 10−4 m/s]. As a consequence
of the continuity of the velocities at the material interfaces
[14], these results can be also used to approximate the
characteristic lateral velocity of the air layer.
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Berechnungsblätter für den Wärmeübergang, 9th ed. (Deutscher
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