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Criterion for vortex breakdown on shock wave and streamwise vortex interactions
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The interactions between supersonic streamwise vortices and oblique shock waves are theoretically and
numerically investigated by three-dimensional (3D) Navier-Stokes equations. Based on the two inequalities, a
criterion for shock-induced breakdown of the streamwise vortex is proposed. The simple breakdown condition
depends on the Mach number, the swirl number, the velocity deficit, and the shock angle. According to the
proposed criterion, the breakdown region expands as the Mach number increases. In numerical simulations,
vortex breakdown appeared under conditions of multiple pressure increases and the helicity disappeared behind
the oblique shock wave along the line of the vortex center. The numerical results are consistent with the predicted
breakdown condition at Mach numbers 2.0 and 3.0. This study also found that the axial velocity deficit is
important for classifying the breakdown configuration.
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I. INTRODUCTION

The vortex breakdown phenomenon in incompressible
flows has been widely investigated [1–3]. The physical effects
of vortex breakdown are sudden increase of vortex core
size, reversed flow and stagnation points, and highly unstable
structures. The onset of breakdown is governed by the swirl
strength, adverse pressure gradients, and the formation of a
stagnation point near the axis. The swirl number especially
affects the breakdown condition. At high Reynolds number,
the breakdown configuration is categorized into two types:
bubble type and spiral type.

Less is known about vortex breakdown at high speeds.
However, an oblique shock wave impinging on wakes or
streamwise vortices induces the breakdown beyond a critical
value of the pressure rise across the shock. Thus, supersonic
vortex breakdown occurs when the vortex interacts with shock
waves. This phenomenon was detailed in Delery [4] and
Kalkhoran and Smart [5]. The interaction between streamwise
vortices and shocks depends on the swirl intensity in the
vortex, the axial velocity deficit at the vortex center, and the
shock strength, quantified by the Mach number. An example
of where such interaction is problematic is the external flow of
a high speed vehicle, where the streamwise vortex generated
from the canard may cross the shock wave developing on
the main wing. If sufficiently severe, this interaction can
affect the aerodynamic performance of the vehicle. Another
example is internal flow. Zatoloka et al. [6] first investigated
the effect of such interactions on the inlet performance of a
supersonic vehicle. This study was motivated by concern that
shock wave and vortex interactions cause inlet unstart of the
engine. Besides being problematic, shock wave and vortex
interactions confer certain advantages, because streamwise
vortices encourage supersonic mixing. Thus, they can enhance
fuel-air mixing and flame holding in supersonic combustion
ramjet engines. For instance, by interacting an oblique shock
wave with a jet or streamwise vortices, Marble et al. [7] showed
that the resulting baroclinic torque generates a useful vorticity
field and a disrupted streamwise vortex.
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Shock wave and vortex interactions have been classified
into two categories: normal shock wave and vortex interaction
(NSVI) and oblique shock wave and vortex interaction
(OSVI). Figure 1 is a schematic of OSVI. Considering the
difference in pressure gradients, NSVI more readily induces
vortex breakdown than OSVI. Early experiments on vortex
breakdown by NSVI [4,8,9] revealed three types of interaction:
weak, moderate, and strong. In these investigations, the size
of the interaction region was compared with the size of the
diameter of the upstream vortex core. Kandil et al. [11],
Meadows et al. [12], Metwally et al. [8], and Erlebacher et al.
[13] conducted numerical studies of NSVI. Their numerical
visualizations revealed the flow field within the interaction
region, which is difficult to visualize experimentally. However,
in practical applications, OSVI is more important than NSVI.
In their investigations of OSVI experiments, Kalkhoran [5]
and Smart [10] showed that supersonic vortex distortion
in OSVI occurs at subsonic speeds, as shown in Fig. 2.
Klaas et al. [14] measured the axial and tangential Mach
number profiles in OSVI using laser Doppler velocimetry and
particle image velocimetry. OSVI has also been numerically
investigated by Corpening and Anderson [15], Rizzetta [16],
Nedungadi and Lewis [17], Thomer et al. [18], and
Zheltovodov et al. [19]. Several numerical works have shown
that characteristic vortical structures, such as helices, are
generated by the shock wave and vortex interaction. These
structures strongly indicate that the breakdown configuration
relies on upstream conditions (the freestream Mach number,
circulation, and axial velocity deficit). The axial velocity
deficit in the upstream vortex (depicted in Fig. 3) plays an
important causative role in vortex breakdown [16–18], and
is also held responsible for discrepancies between numerical
simulations and experiments. Despite these considerations,
the unstable properties of upstream streamwise vortices
have been treated as less important than the interaction
region.

Several researchers [20–22] have attempted to predict
shock-induced breakdown. In upstream vortex models with
no velocity deficit, the critical swirl number of NSVI break-
down was shown to decrease with increasing Mach number.
However, theoretical studies of OSVI have yet to be validated
by experiments and numerical simulations. As described later,
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FIG. 1. Schematic of an oblique shock wave interacting with a
vortex at shock angle β.

the velocity deficit of upstream vortices has been rarely
considered. Aimed at predicting supersonic vortex breakdown
as accurately as possible, this study proposes a mathematical
formulation of the onset of oblique shock-induced vortex
breakdown in streamwise vortices with an axial velocity
deficit.

This paper theoretically describes the interaction between
supersonic streamwise vortices and shock waves. Section II
defines the basic flow of the upstream vortices. A criterion
for shock-induced vortex breakdown is proposed in Sec. III.
Section IV derives a numerical formulation of the Navier-
Stokes equations. The proposed theory of supersonic vortex
breakdown is verified in Sec. V. This section demonstrates how
the breakdown is determined from the numerically evaluated
static pressure and helicity density. It also considers the
effects of the circulation and Mach number on breakdown.
Conclusions are presented in Sec. VI.

II. UPSTREAM STREAMWISE VORTICES

The upstream streamwise vortices are assumed to be
steady and axisymmetric. The three velocity components,
density, pressure, temperature, and entropy are expressed
in cylindrical polar coordinates (r,θ,x) as ur,uθ ,ux,ρ,p,T ,
and S, respectively. Supersonic velocities are known to be
well fitted by the velocity profiles of the Batchelor vortex

FIG. 2. Shadow graphs of the flow during the interaction of a
strong vortex with an oblique shock at M∞ = 2.49, by Smart et al.
[10], reproduced with permission. Copyright 1998 Springer.
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FIG. 3. (Color online) Conceptual diagram of an axial velocity
profile and the velocity deficit.

[4,5,8,9]. Thus, the axial vorticity ω∗
x and the axial velocity u∗

x

are represented by Eqs. (1) and (2), respectively. (Hereafter,
dimensional quantities are superscripted.)

ω∗
x(r∗) = ω∗

maxe
−Cr∗2

, (1)

u∗
x(r∗) = U ∗

∞ − �U ∗
x e−D r∗2

, (2)

where ω∗
max denotes the maximum axial vorticity, U ∗

∞ is the
freestream velocity, and �U ∗

x is the axial velocity deficit.
C and D are constant for the profiles. The vortex radius is
quantified by the swirl scale δ∗

s given by

δ∗
s =

√
�∗

π ω∗
max

= 1√
C

, (3)

where �∗ represents the total circulation of the whole dis-
tributed axial vorticity. Equation (2) gives rise to an azimuthal
vorticity field. The thickness of the azimuthal vorticity δ∗

ωθ
is

defined as

δ∗
ωθ

= u∗
x(∞) − u∗

x(0)
∂u∗

x

∂r

∣∣
max

=
√

e

2D
= 1.165 . . .√

D
. (4)

Since the azimuthal vorticity thickness and the swirl scale are
defined on similar scales, we assume that C = D.

The swirl parameter Sw, which characterizes the vortex
strength, is equivalent to nondimensional circulation of a
streamwise vortex:

Sw = �∗

U ∗∞ δ∗
s

� 1

Ro
, (5)

which is equivalent to the inverse of a Rossby number Ro. The
swirl ratio τ and the helix angle � are defined as

τ = u∗
θ,max

U ∗∞
, � = tan−1 τ. (6)

Here the freestream Mach number M∞ and Reynolds number
Re are given by

M∞ = U ∗
∞√

γ R∗ T ∗∞
, Re = ρ∗

∞ U ∗
∞ δ∗

s

η∗∞
, (7)

where T ∗
∞ is the freestream temperature, R∗ is the gas constant,

γ is the ratio of specific heats, and η∗
∞ is the viscosity.

The reference length of a streamwise vortex is de-
fined as δ∗

s . Using the freestream sonic velocity c∗
∞(=√

γ R∗ T ∗∞) and the density ρ∗
∞, the physical variables are
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normalized as

ρ = ρ∗

ρ∗∞
, ur = u∗

r

c∗∞
, uθ = u∗

θ

c∗∞
, ux = u∗

x

c∗∞
,

p = p∗

ρ∗∞c∗2∞
, T = T ∗

γ T ∗∞
, S = S∗

C∗
v

, (8)

r = r∗

δ∗
s

, x = x∗

δ∗
s

, t = c∗
∞
δ∗
s

t∗,

where C∗
v represents the specific heat at constant volume.

The Oseen-type azimuthal velocity uθ , obtained by inte-
grating the axial vorticity, and the axial velocity ux are derived
from Eqs. (1) and (2), respectively:

rθ (r) = �

2πr

(
1 − e−r2)

, � = 2πqM∞,

(9)
ux(r) = M∞

(
1 − μe−r2)

,

where

q = �∗

2π U ∗∞ δ∗
s

, μ = �U ∗
x

U ∗∞
, (10)

Here q and μ, respectively, denote the circulation and the
velocity deficit, two important parameters of the streamwise
vortices [23]. Since Sw = 2πq, this paper adopts q as the swirl
parameter. It should also be noted that the velocity profiles of
the upstream vortex play a role in vortex breakdown. Here
we assume Batchelor vortices Eq. (9), which are destabilized
by axial velocity deficits (such as wakes) to an extent that
depends on their circulation with monotonically increasing
[24]. By contrast, Erlebacher et al. [13] and Thomer et al. [18]
used a Taylor vortex Eq. (11) as the upstream vortex:

uθ (r) = �

2π
re

1
2 (1−r2). (11)

This profile becomes destabilized with no axial velocity
deficit, because its total circulation is zero. Since Eqs. (9)
and (11) differ in their centrifugal instability, the instability of
streamwise vortices should be considered in the analysis.

Breakdown onset does not appreciably depend on viscosity
at high Reynolds numbers, so the basic flow can reasonably
be regarded as an inviscid supersonic flow at Re > 104. For
inviscid steady flows, suppose ur = 0, the density ρ (r) and
pressure p (r) in the basic flow are determined from the
following equations, which depend only on r:

dp

dr
= ρ

u2
θ

r
,

(12)
dS

dr
= 1

p

dp

dr
− γ

1

ρ

dρ

dr

(
S = S∞ + log

p

ργ

)
.

Experiments have indicated that the total temperature is
approximately uniform [4,9], while theoretical studies of
compressible streamwise vortices have frequently assumed an
isentropic vortex. The present study assumes spatially uniform
entropies. This assumption is beneficial for investigating the
effect of baroclinic torques on the vorticity generation in the
interaction region.

III. CRITERIA OF SHOCK WAVE AND VORTEX
INTERACTIONS

In incompressible flows, the onset of vortex breakdown can
be theoretically determined in several ways [4]. Breakdown is
due to strong adverse pressure gradients, and depends on the
swirl parameter. As is well known, the critical swirl parameter
is around Sw,c � 1.4 (Roc � 0.707, τc � 1.2, and �c � 50◦).
On the other hand, theoretical studies of shock-induced
breakdown were conducted by Cattafesta [20], Mahesh [21],
and Smart et al. [22]. Cattafesta [20] indicated that breakdown
onset occurs at a swirl ratio of τ2/τ1 across the normal shock.
The predicted dependence of breakdown limit on M∞ has been
compared with experimental results. Mahesh [21] developed
a simple theory for determining the critical swirl ratios of
breakdown onset at M∞ = 1–5. This theory compares the
momentum flux on axis to the pressure behind the shock.
The assumed upstream vortex is the Rankine vortex. The
predictions of the theory are consistent with numerical results
[13] of NSVI when a constant axial velocity is assumed.
Smart and Kalkhoran [22] perceived analogies between NSVI
and boundary layer separation, and constructed a physical
model based on this analogy. However, with the exception
of Mahesh [21], previous theoretical analyses have assumed
uniform axial velocity profiles of upstream vortices on NSVI.
Also, Mahesh’s theory has not been verified with regard to
the axial velocity deficit yet [21]. The discrepancies between
experimental results and theoretical analyses are likely to be
caused by the axial velocity deficit [5,13,20]. In this respect,
the abovementioned theories are inadequate. It should be noted
that both the axial velocity deficit μ and the swirl parameter q

contribute to the vortex instability which affects the breakdown
pattern.

Here a new condition for shock-induced breakdown of
the streamwise vortex is proposed, based on the pressure
differences between the axis and infinite radius. A Rankine-
Hugoniot relationship is used across the shock. Figure 4 shows
how the upstream and downstream velocities of the shock
wave interact with those of the streamwise vortex. Suppose
that breakdown occurs if the net pressure difference exceeds
the kinetic energy downstream of the shock wave. The onset
condition of the vortex breakdown is demonstrated as follows:

�P > 1
2 ρ2,∞U 2

2,∞, (13)

FIG. 4. (Color online) An upstream streamwise vortex and the
velocity components during interaction with an oblique shock wave.
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FIG. 5. (Color online) Theoretical critical curves of the interaction between streamwise vortices and oblique shock waves for various shock
angles β; the interiors of curves (including the origin) indicate stable or no effect regions; exterior regions indicate unstable break regions: (a)
M∞ = 2.0, (b) M∞ = 3.0.

where

�P = �P2 − �P1,

�P2 = p2,∞ − p2,c, (14)

�P1 = p1,∞ − p1,c.

The static pressures behind the shock p2,∞ and p2,c are,
respectively, given by the Rankine-Hugoniot relation as

p2,∞
p1,∞

= 1 + 2γ

γ + 1

(
M2

1,∞ sin2 β − 1
)
, (15)

p2,c

p1,c

= 1 + 2γ

γ + 1

(
M2

1,c sin2 β − 1
)
. (16)

The pressure at the vortex center is derived from Eq. (12):
p1,c

p1,∞
= [1 − (γ − 1)Is(∞)]

γ

γ−1 ,

(17)

Is(r) =
∫ r

0

u2
θ

ζ

[
e−(S−S∞)

γ

] 1
γ

dζ,

where the subscripts 1, 2, c, and ∞ denote upstream of the
shock, downstream of the shock, vortex center, and radial point
at infinity, respectively.

The criterion (13) depends solely on the upstream vortex
conditions M1,∞, q, μ and the shock angle β(θ ) (where θ

is the turning angle). Figure 5 shows the critical breakdown
onset curves on a plot of swirl number q versus velocity
deficit μ at shock angles (β = 65◦, 70◦, 80◦, and 90◦) and
M∞ = 2.0 and 3.0. The present study is consistent with the
literature [13,21] for zero the velocity deficit μ. In the region
inside the curve, which contains the origin, the interactions
do not affect the streamwise vortices. In the region outside the
curve, the vortices interact with the shock and disintegrate. The
safe region (region of no breakdown) expands with reducing
shock angle β. For q = 0, i.e., in the presence of wake flows,
when the velocity deficit is high, a burst phenomenon occurs
on the shear layer. Moreover, the breakdown region expands
with increasing Mach number. This result has important
implications for supersonic mixing, which is constricted by
compressibility effects. Furthermore, shock wave and vortex
interactions do not induce streamwise vortex breakdown at

M∞ = 2–3 and β < 60◦, consistent with a large number of
supersonic experiments.

Figure 6 compares the proposed theory without the ve-
locity deficit with experimental data [20] included in the
Delery breakdown limit curve. The open and closed symbols
indicate the weak (no breakdown) and strong (breakdown)
measured interactions, respectively. The Cattafesta criterion
[20] is also plotted for comparison. The present theory
accurately predicts the experimental strong interaction, but
inadequately models the weak interaction. Note that the ve-
locity deficit of vortices has not been reported in experimental
studies.

IV. NUMERICAL FORMULATIONS

A. Governing equations

The governing equations are the three-dimensional, un-
steady, compressible Navier-Stokes equations in general coor-
dinates ξi (i = 1–3), given by

∂

∂t

(
Q
J

)
+ ∂ Fi

∂ξi

= ∂ Fv i

∂ξi

, (18)
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FIG. 6. (Color online) Comparison of theoretical critical curves
and experimental results [20] of vortex breakdown phenomena (swirl
ratio versus upstream Mach number) during vortex interaction with a
normal shock wave.
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Q =

⎡
⎢⎢⎢⎢⎣

ρ

ρu1

ρu2

ρu3

e

⎤
⎥⎥⎥⎥⎦ , Fi =

⎡
⎢⎢⎢⎢⎢⎣

ρ Ui

ρ u1 Ui + p (J−1∂ξi/∂x1)

ρ u2 Ui + p (J−1∂ξi/∂x2)

ρ u3 Ui + p (J−1∂ξi/∂x3)

(e + p) Ui

⎤
⎥⎥⎥⎥⎥⎦ ,

Fv i =

⎡
⎢⎢⎢⎢⎢⎣

0

τ1k (J−1∂ξi/∂xk)

τ2k (J−1∂ξi/∂xk)

τ3k (J−1∂ξi/∂xk)

βk (J−1∂ξi/∂xk)

⎤
⎥⎥⎥⎥⎥⎦ , Ui =

(
J−1 ∂ξi

∂xk

)
uk,

J−1 = ∂x1

∂ξ1

(
∂x2

∂ξ2

∂x3

∂ξ3
− ∂x2

∂ξ3

∂x3

∂ξ2

)

+ ∂x1

∂ξ2

(
∂x2

∂ξ3

∂x3

∂ξ1
− ∂x2

∂ξ1

∂x3

∂ξ3

)

+ ∂x1

∂ξ3

(
∂x2

∂ξ1

∂x3

∂ξ2
− ∂x2

∂ξ2

∂x3

∂ξ1

)
, (19)

where Q is a vector of conservative variables, and Fi and Fv i

contain the convective and viscous fluxes, respectively. ui are
the velocity components in Cartesian coordinates. e is the total
energy, and Ui denotes the velocity components on the cell
interface. The Jacobian J transforms the coordinate system
from physical space to computational space. J−1∂ξi/∂xk are
the derivatives of the coordinate conversion (i.e., the metrics):

p = ρ T , e = p

γ − 1
+ 1

2
ρ uk uk,

τij = η(T )

ReM

(
∂ui

∂xj

+ ∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)
, (20)

qi = − γ

(γ − 1)

η(T )

ReM Pr

∂T

∂xi

, βi = ui τij + qi,

where τij is the viscous stress tensor, and qi is the conductive
heat flux. The Reynolds number, which is based on the sonic
velocity, is defined as ReM = (ρ∗

∞ c∗
∞ δ∗

s )/η∗
∞ = 3.5 × 104,

and the Prandtl number Pr = 0.72. The viscosity η(T ) is
calculated from Sutherland’s law as follows:

η(T ) = T 3/2 1 + s ′

T + s ′ , (21)

where s ′ depends on the freestream Mach number; s ′ = 0.49
and 0.762 for M∞ = 2.0 and 3.0, respectively.

B. Numerical methods and computing conditions

The convective flux terms are discretized using the numeri-
cal flux Fi, m+ 1

2
and the primitive variables vector q as follows:

∂ Fi

∂ξi

≡
Fi, m+ 1

2
(q) − Fi, m− 1

2
(q)

�ξi

, q =

⎡
⎢⎢⎢⎣

ρ

u1

u2

u3

p

⎤
⎥⎥⎥⎦ . (22)

The numerical flux in Eq. (22) is evaluated by an AUSMDV
scheme [25]. This adapted AUSM approach is simpler and
yields more accurate results than the popular Roe scheme

TABLE I. Computational domain and grid points.

Style Domain size Grid points Vortex of axis
(shock) (LX, LY , LZ) (Nx × Ny × Nz) (LX, LY , LZ)

NSVI (80, 40, 40) 161 × 201 × 201 (0, 20, 20)
OSVI (80, 92, 40) 161 × 201 × 163 (0, 32, 20)

[26]. Since the vortex and shock wave must be simulated
with sufficient accuracy in the present study, high spatial
accuracy of the primitive variables q is maintained by weighted
interpolation at cell interfaces. This approach, developed
by Deng and Zhang [27] and based on adaptive stencil
interpolation, is combined with the AUSMDV scheme. The
interpolated values are fifth-order accurate in the smooth
regions and large gradients, such as occur in shock waves, and
do not affect the spatial precision. The nonoscillation scheme
operates satisfactorily without any parameter, whereas limiter
functions cannot distinguish between the discontinuity front
of a shock and the turning value in the azimuthal velocity
profile. Moreover, the viscous flux terms are calculated
by difference equations accurate to fourth order. Temporal
integration adopts a four-step, fourth-order accurate scheme
[28]. Direct numerical simulations are conducted for excluding
the effect of turbulence models from the static pressure of
the vortex center and the velocity deficit, which is deemed
important in this study.

The computational domain is a rectangular box with flows
in the x direction. The size, grid points, and position of
the inflow vortex center are presented in Table I. The grid
is clustered to resolve the interaction between a streamwise
vortex and a shock wave. The grid spacing is uniform inside the
inner three core diameters. (The maximum azimuthal velocity
occurs close to the vortex core radius.) Outside this region,
the grid splays out at irregular intervals. First, a vortexless
flow field is established for a given freestream Mach number
and shock angle. The normal shock wave is given by the
Rankine-Hugoniot relationship before and beyond Lx = 40.
The oblique shock wave (projected at shock angle β) is
subjected to the boundary conditions at the bottom of the
domain, LX = 30,LY = 0. Next the inflow is fixed with the
streamwise vortex described in Sec. II. The outflow condition
is extrapolated to zeroth order, since OSVI is supersonic at
the boundary. In contrast, a nonreflecting boundary condition
[29] is imposed for NSVI being subsonic behind the shock. A
symmetric boundary condition is applied to the other boundary
surface.

To verify the theoretical criteria proposed in Sec. III, the
streamwise vortices are numerically interacted with shock
waves at various swirl numbers q and axial velocity deficits
μ of the vortices. The freestream Mach numbers are set to
M∞ = 2.0 and 3.0, with shock angles β = 65◦ and 90◦.

V. RESULTS AND DISCUSSION

A. Normal shock wave and vortex interactions

First, the present theory is compared to the numerical
results and previously proposed theories of NSVI. Figure 7
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FIG. 7. (Color online) Comparison of theoretical critical curves
and numerical results of vortex breakdown phenomena. The nor-
mal shock wave intercepts at β = 90◦ at M∞ = 2.0: stable or
no effect (©); vortex breakage (×); Mahesh’s theory [21] (dot-
ted line); modified vortex model (dashed line); present theory
(solid line).

shows a critical map at breakdown. The predictions of
the proposed theory, Mahesh’s theory [21] assuming the
Rankine vortex, the modified vortex model, and the results
of numerical simulations at M∞ = 2.0 are plotted in this
figure. The modified vortex model applies Mahesh’s theory
to the Oseen vortex. The method that determines whether
the numerically simulated vortex remains stable or breaks
up will be described in Sec. V C. The upstream vortex
profile at the breakdown is influenced by the type of vortex
(Rankine or Oseen). The modified vortex model successfully
predicts breakdown onset at uniform axial velocity, but fails

in the case of axial velocity deficit. In contrast, the proposed
formulation (13) accurately predicts breakdown onset in this
scenario.

Figure 8 plots the helicity density contours and the cross-
sectional density contour lines (at Z = 20) in the wake of
various streamwise vortices at M∞ = 2.0. The helicity density
h is

h = u · ω = ui ωi, (23)

where u and ω denote the velocity and vorticity vectors,
respectively. Based on previous works [4], Figs. 8(a) and 8(c)
are typical of strong interactions while Fig. 8(b) exemplifies
a weak interaction. Figure 8(a) is a typical bubble-type
breakdown characterized by steady, symmetrically reversed
flow. Shock-induced breakdown occurs in the wake [30,31]
corresponding to circulation q = 0 on the strong adverse
pressure gradient. The shock front in the interaction zone is
cone shaped. Figure 8(c) displays a typical unsteady spiral-
type breakdown with an asymmetric vortical structure within
the entropy-shear layer [32]. The shock front structure differs
from that in Figs. 8(a) and 8(b). Therefore, the character of the
interaction appears to depend on whether q or μ dominates the
interaction. The breakdown of vortices with a large wake pro-
file and high circulation has previously not been distinguished
from the strong interaction. In fact, all vortices exceeding a
certain velocity deficit exhibit cone-bubble breakdown mode,
regardless of the circulation q. Thus, it is believed that a
conical symmetric bubble-type breakdown occurs if μ exerts
a strong effect. Conversely, the azimuthal effect induces an
asymmetric spiral-type unsteady breakdown if q is sufficiently
large. The flow field properties of NSVI are summarized in
Table II.

FIG. 8. (Color online) Contours of (top) helicity density, and (bottom) cross-sectional density contour lines at Z = 20. Vortices are
intercepted by a normal shock wave at β = 90◦, namely NSVI: (a) q = 0.0, μ = 0.2, (b) q = 0.4, μ = 0.0, (c) q = 0.6, μ = 0.05, at
M∞ = 2.0.
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TABLE II. Vortex breakdown formations.

Type Cone or Bubblea Bubble-Spiralb Spiral

Flow field Steady Unsteady Unsteady
Symmetry Asymmetry Asymmetry

aCone shape is strong and stable with bubble-type characteristics.
bCombined bubble and spiral flow structures.

B. Streamwise vortex breakdown induced
by oblique shock waves

Figure 9 shows the cross-sectional density contours in OSVI
at Z = 20, including the central vortex axis, at M∞ = 2.0
and 3.0. In Figs. 9(a), 9(d), and 9(e), the streamwise vortices
deflecting through the oblique shock retain their vortical
structures behind the shock. Contrastingly, in Figs. 9(b),
9(c), and 9(f), the shock front develops a convex structure;
specifically, a bowed or blunt-nosed conical shock is formed by
interactions between the vortices and the shock. The structures
are clearly different, because the breakdown size grows fairly
rapidly as the interaction region increases. Notably, the shock
front weakens with increasing circulation and small-scale
structures establish within the region. The shock position

deviates in the z direction, confirming that the plane of the
shock wave is slightly distorted by the swirling effect of
the streamwise vortex. This effect is particularly obvious at
q > 0.4, where it appears in the y-z plane normal to the vortex
axis.

Visualization measurements [14] to date have not revealed
the complete three-dimensional structure of supersonic vortex
breakdown. To visualize the vortical structure of OSVI, the
isosurface of the second invariant of the velocity gradient
tensor [33] Q is plotted from a lateral viewpoint in Fig. 10.
The parameters are q = 0.2 and 0.6, μ = 0.2, and M∞ = 2.0:

Q = 1

2
(−SijSij + RijRij + C 2),

Sij = 1

2

(
∂uj

∂xi

+ ∂ui

∂xj

)
, Rij = 1

2

(
∂uj

∂xi

− ∂ui

∂xj

)
, (24)

C = ∂uk

∂xk

,

where Sij and Rij are the strain-rate and vorticity tensors,
respectively, comprising the symmetric and asymmetric com-
ponents of the velocity gradient tensor ∂ui/∂xj , and C is the
divergence of the velocity vectors. The left and right panels of

(d) q = 0.3, µ = 0.0 (e) q = 0.2, µ = 0.2 (f ) q = 0.4, µ = 0.2

(a) q = 0.2, µ = 0.2 (b) q = 0.4, µ = 0.4 (c) q = 0.6, µ = 0.2

FIG. 9. (Color online) Cross-sectional density contour lines at Z = 20; (top) M∞ = 2.0, (bottom) M∞ = 3.0.
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(a) (b)

Oblique shock wave

Streamwise vortex

Oblique shock wave

Streamwise vortex

FIG. 10. (Color online) Isosurface of the second invariant of the velocity gradient tensor. Side view of the interaction between a streamwise
vortex and an oblique shock wave intercepting at shock angle β = 65◦, at M∞ = 2.0; (a) q = 0.2, μ = 0.2, (b) q = 0.6, μ = 0.2.

Fig. 10 display a stable vortex and vortex breakdown, respec-
tively, formed during the interaction. Indicated are the turning
flows depending on the oblique shock, the effect on forward
flow ahead of the shock, and the small structures formed by the
vortex collapse. The vortical structures generated by the inter-
action deserve special mention. Thomer et al. [18] similarly
reported that spiral vortex structures develop after the shock-
induced breakdown. They investigated streamwise vortices
(11) with relatively high growth rate based on linear stability
at M∞ = 1.6 and 2.0; μ = 0 in NSVI, and μ = 0.1, 0.22 in
OSVI. However, the influences of large μ and small q on break-
down configurations have not been examined. Zheltovodov
et al. [19] intended to stimulate breakdown and provided a
pulsed periodic energy source at a point on the vortex axis. The
results showed that spiral structures appear in the vicinity of
the interference region at a small shock angle. A possible inter-
pretation is that instability is enhanced by energy transferred to
the vortex core. These results suggest that the basic instability
properties of upstream vortices contribute to vortical structure
formation and that streamwise vortices favor breakdown into
small-scale structures. Thus, the production of spiral structures
might reasonably depend on the instability characteristics.

In Fig. 10(a) the streamwise vortex is stable and robust
to the shock, while breakdown occurs in Fig. 10(b). We now
focus on the interference region in the breakdown scenario.

Figure 11 shows the cross-sectional velocity vectors at Z = 20
for two swirl numbers and axial velocity deficits at M∞ =
2.0. In Fig. 11(a) the region is stable in the convex shock
front and its structure resembles the conical structure in NSVI.
In Fig. 11(b) the region is unsteady with a spiral mode and
develops a multiple-bubble structure [11]. Interestingly, the
interaction regions in OSVI and NSVI are identical. Thus, the
breakdown mode appears to be solely influenced by differences
in the upstream vortices.

It is known from the Crocco equation that curved shock
waves promote vorticity formation. Vortices generated in this
way exert marked effects on breakdown. For sufficiently large
Reynolds number (there is little effect of the viscosity), the
inviscid vorticity equation is given by

Dω

Dt
= (ω · ∇)u − ω(∇ · u) + ∇T × ∇S. (25)

The first, second, and third terms on the right-hand side of
this equation specify the stretching, dilatation, and baroclinic
torque, respectively. Figure 12 shows the cross-sectional
contours of the magnitude of each contributing term in Eq. (25)
at Z = 20. The parameters are q = 0.6, μ = 0.2, M∞ = 2.0.
During the interaction, the vorticity production rate is chiefly
governed by the stretching term. The shock wave causes a large
entropy change, as shown in Fig. 12(c). Moreover, as is well

(a) (b)

FIG. 11. (Color online) Velocity vectors on the cross section at Z = 20, M∞ = 2.0: (a) q = 0.4, μ = 0.4, and (b) q = 0.6, μ = 0.2.
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(a) (b) (c)

Tp

FIG. 12. (Color online) Cross-sectional contours of the absolute values of each term of the vorticity equation at Z = 20: (a) stretching
term, (b) dilatation term, and (c) baroclinic torque term. Parameters: q = 0.6, μ = 0.2, M∞ = 2.0.

established, the experimentally observed entropy-shear layer
[32] specifically separates the supersonic and subsonic regions
within the interaction region. Furthermore, the unsteady par-
ticular vorticity is generated at the upper tag end of the entropy-
shear layer within the convex shock front (point TP in Fig. 12).
The vorticity is concerned in the oscillating subsonic region.

Kalkhoran and Smart [5] experimentally demonstrated that
a subsonic region is required for supersonic vortex breakdown.
Although NSVI is always subsonic behind the shock, that
is not necessarily so for OSVI. Therefore, in OSVI, it is
important to establish the presence or absence of subsonic
regions. Subsonic regions in OSVI are generated by the
breakdown process. Figures 13 and 14 plot the temporal
evolution of the Mach number contours for q = 0.4, μ = 0.4
and q = 0.6, μ = 0.2, respectively, at M∞ = 2.0. Both sets
of parameters yield breakdown. In these figures, the subsonic
regions are marked in black color. The flow fields of q = 0.6,
μ = 0.2, being larger than those of q = 0.4, μ = 0.4, project
the interference forward. Small vortices develop behind the

shock as well as inside the convex shock front. The small
vortical structures grow within the interference region and
are convected downstream. Although the interaction region
is known to become subsonic, the profiles associated with
disturbances in this region have been scarcely investigated. The
local profiles in the subsonic region are plotted in Figs. 15 and
16. The axial vorticity ωx profiles are normalized by the inflow,
while those of the axial velocity ux (the axial Mach number
profiles) are normalized by the local sonic speed. Note that in
the absence of breakdown, the vortex center line intersects
the shock wave at X = 45, and the upstream vortices are
certainly stable. However, the local vorticity profiles develop
a striking hollowness and exhibit a strong wake with reversed
axial velocity flow at X = 39 and X = 34 in Figs. 15 and 16,
respectively. Thus, the altered flow fields are characterized by
multiple extremal values in their vorticity profiles. Since these
profiles are extremely unstable [34], small coherent structures
should readily develop around the interference region between
the streamwise vortex and the shock.

(e) time = 60 (f) time = 70 (g) time = 80 (h) time = 90

(a) time = 20 (b) time = 30 (c) time = 40 (d) time = 50

FIG. 13. (Color online) Temporal evolution of Mach number contours for q = 0.4, μ = 0.4 at M∞ = 2.0 (black areas show subsonic
regions).
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(e) time = 60 (f) time = 70 (g) time = 80 (h) time = 90

(a) time = 20 (b) time = 30 (c) time = 40 (d) time = 50

FIG. 14. (Color online) Temporal evolution of Mach number contours for q = 0.6, μ = 0.2 at M∞ = 2.0 (black areas show subsonic
regions).

C. Breakdown evaluation from the static pressure
and helicity density

The extent of breakdown on the streamwise vortex is
most appropriately evaluated by the helicity density, for the
following reason. If the axis of a streamwise vortex is aligned
with the velocity vector of the main stream, the helicity is large,
but if the velocity deficit is large or reversed flow is present, the
helicity reduces or reverses its sign. Therefore, the helicity can
elucidate whether streamwise vortices are collapsed by shock
waves under certain conditions.

The temporal evolutions of the helicity density contours
are plotted in Figs. 17 and 18, for q = 0.2 and 0.6, μ = 0.2,

respectively, at M∞ = 2.0. At low circulation (q = 0.2), the
streamwise vortex is stable and almost steady following
interaction with the oblique shock. However, when the circu-
lation increases to q = 0.6, the streamwise vortex breaks into
small-scale structures. In contrast to q = 0.2, the interaction
induces a dimple in the vortex for q = 0.6, which appears at an
early stage. Unsteady vortical structures, such as sphere wakes,
are released from the interference region to downstream.
This result suggests that the phenomenon manifests from the
absolute instability.

Second, the static pressures and the helicities (normalized
by inflow conditions on the vortex center) are plotted in Fig. 19.
The bottom panels of this figure are viewed from the axis of

FIG. 15. (Color online) (Top) normalized axial vorticity profiles and (bottom) axial velocity profiles (normalized by local sonic speed), in
the vicinity of an interaction between a streamwise vortex q = 0.4, μ = 0.4 and an oblique shock wave intercepting at β = 65◦, M∞ = 2.0.
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FIG. 16. (Color online) (Top) normalized axial vorticity profiles and (bottom) axial velocity profiles (normalized by the local sonic speed),
in the vicinity of an interaction between a streamwise vortex q = 0.6, μ = 0.2 and an oblique shock wave intercepting at β = 65◦, M∞ = 2.0.

the vortex center along the turning angle behind the shock, for
various upstream vortices at M∞ = 2.0 (each distribution is
time averaged). In all of the static pressure distributions, the
pressure rises in one or two steps and recovers downstream.
The numerical results indicate that if the flow field cannot
be adapted to the shock by a one-step pressure rise, the field
advances a weakened convex shock front and creates a hill in
the pressure distribution. As a result, although the flow can get
over the large pressure gradient from the hill, the streamwise
vortex breakdown occurs. The results of Fig. 19 can be
summarized as follows: if no breakdown occurs, (I) a single
pressure rise is induced by the oblique shock; (II) provided
that the shock front is not convex, the helicity is maintained
from upstream to where the shock wave intercepts the vortex;

(III) the helicity is positive, i.e., a large-scale vortex structure
persists behind the interference. In the case of breakdowns,
(IV) multiple pressure rises occur; (V) the helicity disappears
behind the shock; (VI) the position of the shock wave and
vortex interaction is shifted forward. On the basis of these
rules, numerical results are plotted in Fig. 20. Unfortunately,
in contrast to the previous analysis of NSVI, breakdown occurs
inside the critical curve derived from Eq. (13). The next
subsection discusses ways of correcting this discrepancy.

D. The effects of circulation and Mach number on breakdown

As mentioned above, vortex breakdown occurs within the
critical curve of onset in Fig. 5. However, the relationship

(e) time = 60 (f) time = 70 (g) time = 80 (h) time = 90

(a) time = 20 (b) time = 30 (c) time = 40 (d) time = 50

FIG. 17. Temporal evolution of the helicity density contours. Parameters: q = 0.2, μ = 0.2, M∞ = 2.0.
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(e) time = 60 (f) time = 70 (g) time = 80 (h) time = 90

(a) time = 20 (b) time = 30 (c) time = 40 (d) time = 50

FIG. 18. Temporal evolution of the helicity density contours. Parameters: q = 0.6, μ = 0.2, M∞ = 2.0.

between the circulation and Mach number reveals an additional
breakdown condition, which is not required in NSVI at M∞ =
2.0. The interactions are always accompanied by perturbations.
Under supersonic conditions, large perturbations give birth to
shocklets. When a relative velocity component to perturbation
locally exceeds the sonic speed, shocklets occur [35] and prob-
ably contribute to breakdown. According to this analysis, the

shock wave and vortex interaction should induce breakdown if
the azimuthal Mach number exceeds unity (Mθ � qM∞ > 1).
Physically this implies the burst of a supersonic swirl in the
azimuthal direction. The inequality condition is given as

q >
1

M∞
. (26)

(d) µ = 0.0 (e) µ = 0.2 (f) µ = 0.4
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FIG. 19. (Color online) (Top) static pressures and (bottom) normalized helicity densities of streamwise variations along the lines of changing
vortex center. Shock angle β = 65◦ at M∞ = 2.0. The yellow dotted lines indicate where the vortex center crosses with the shock wave.
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FIG. 20. (Color online) Comparison of theoretical critical curves and numerical results of vortex breakdown phenomena. Vortices are
intercepted by a shock wave at β = 65◦: (a) M∞ = 2.0 and (b) M∞ = 3.0. Stable or no effect (©); vortex breakage (×); present theory (solid
line).

Equation (26) implies that streamwise vortex structures are
affected by shock waves in the stable region defined by
Eq. (13). The onset of breakdown predicted from Eq. (13) and
supplemented by Eq. (26) is mapped in Fig. 20. This prediction
of the combined criteria now closely match the numerical
results under various conditions of upstream vortices. Criterion
(26) also explains why streamwise vortex breakdown occurs
in OSVI at a small turning angle at M∞ = 5.0, as reported
in the literature [17,19]. Breakdown arises from the high
Mach number. Thus, it is noteworthy that the shock-induced
breakdown conditions for streamwise vortices are derived
from simple equalities. In addition, the interaction field is
probably suitable for generating the small-scale structures
essential to mixing. Even if a streamwise vortex has recovered
its velocity deficit and stabilized without a low-speed region
in the freestream, vortices with large circulation or high Mach
number can be disrupted by interacting with shock waves.
This special property derives from the shock wave and vortex
interaction.

Considering the similarities between shock-induced and
subsonic vortex breakdown, much research to date has focused
on the formation of stagnation points and reversed flows
in shock-induced vortex breakdown. However, to properly
understand supersonic vortex breakdown, we must specify
the fundamental conditions for the onset. In applications,
categorizing the collapse configurations of streamwise vortices
is more important.

VI. CONCLUSIONS

This study has proposed a theoretically derived criterion for
predicting the onset of supersonic vortex breakdown during
interaction between an oblique shock wave and a streamwise
vortex. The criterion involves two inequalities: One derived
from the net pressure difference across the shock and the
kinetic energy following the shock, and the other specifying
that the product of the circulation and the freestream Mach
number (i.e., the azimuthal Mach number) be greater than
unity. The theory was tested in numerical formulations of
the three-dimensional Navier-Stokes equations, conducted at
M∞ = 2.0 and 3.0. The vortex breakdowns of numerical

simulations were reasonably determined by the time-average
fields, provided that multiple pressure increases occurred, and
the helicity disappeared behind the oblique shock wave, along
the line of the vortex center. Moreover, it was confirmed that
the Mach number distributions in a convex OSVI interaction
region become subsonic, consistent with experiments [10].
Meanwhile, the axial vorticity profiles in the interaction region
were highly unstable, and established a hollow distribution
[34]. Since a number of spiral vortical structures are readily
formed from such a vorticity profile, breakdown formation
may be related to the changing local profiles. In any case, the
local mean profiles are closely associated with the instability
property. It is also necessary to consider kinds of breakdown
in terms of this property.

The author has investigated mixing enhancement by sub-
jecting isolated supersonic streamwise vortices to small distur-
bances, and noting their vortex instability [23]. Without shock
wave and vortex interactions, streamwise vortices become ro-
tationally stable with increasing circulation q. Instability also
decreased with increasing freestream Mach number M∞, due
to compressibility effects. In contrast, the results of the present
study are intriguing because breakdown onset was enhanced
at higher circulation, and vortices could be disrupted by the
interaction even at small oblique shock angles and high Mach
number. Furthermore, a temperature rise behind the shock
would confer major advantage to supersonic combustion. From
the proposed theory, we can identify favorable mixing and
combustion conditions over a wide range of Mach number,
using vortex breakdown induced by shock wave and vortex
interactions.
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