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Mean force on a finite-sized spherical particle due to an acoustic field
in a viscous compressible medium
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An analytical expression to evaluate the second-order mean force (acoustic radiation force) on a finite-sized,
rigid, spherical particle due to an acoustic wave is presented. The medium in which the particle is situated is taken
to be both viscous and compressible. A far-field derivation approach has been used in determining the force,
which is a function of the particle size, acoustic wavelength, and viscous boundary-layer thickness. It is assumed
that the viscous length scale is negligibly small compared to the acoustic wavelength. The force expression
presented here (i) reduces to the correct inviscid behavior (for both small- and finite-sized particles) and (ii) is
identical to recent viscous results [M. Settnes and H. Bruus, Phys. Rev. E 85, 016327 (2012)] for small-sized
particles. Further, the computed force qualitatively matches the computational fluid dynamics (finite-element)
results [D. Foresti, M. Nabavi, and D. Poulikakos, J. Fluid Mech. 709, 581 (2012)] for finite-sized particles.
Additionally, the mean force is interpreted in terms of a multipole expansion. Subsequently, considering the fact
that the force expansion is an infinite series, the number of terms that are required or adequate to capture the
force to a specified accuracy is also provided as a function of the particle size to acoustic wavelength ratio. The
dependence of the force on particle density, kinematic viscosity, and bulk viscosity of the fluid is also investigated.
Here, both traveling and standing waves are considered.
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I. INTRODUCTION

Particles, when subjected to an acoustic field, experience a
net force. While in the linear approximation the time-average
force is identically zero, the second-order terms on time
averaging survive and impart a mean force on the particle.
Although orders of magnitude smaller than the first-order
quasisteady drag, the second-order force is used in a wide
variety of applications including microfluidics, pharmaceutical
industries, biomedicine, and microgravity, to name a few.

The study of this mean force (widely referred to as acoustic
radiation force in the literature) involves three relevant length
scales: R, the radius of the particle; λ, the wavelength of
the acoustic field; and δ, the viscous (Stokes) length scale
of the diffused momentum. The past work can be presented
in terms of the above length scales. King [1] derived an
expression for the radiation force experienced by a rigid sphere
suspended in an inviscid medium where δ → 0. He simplified
this expression to account for particle sizes much smaller than
the wavelength and calculated the mean second-order force
on a sphere subjected to plane traveling and standing waves.
A complete solution for the force due to plane stationary
and quasistationary waves for a finite-sized particle (ratio of
particle radius to acoustic wavelength not negligible) goes
back to Hasegawa [2], who used the near-field approach. This
result was rederived with a far-field approach and elegantly
expressed more recently by Mitri and Fellah [3].

The effect of viscosity on the mean force was considered
by Westervelt [4]. However, his results were limited to R � λ

and R � δ, in addition to the fact that the particle was fixed.
Much later Doinikov [5] rigorously solved the first-order and
second-order equations and came up with a mathematically
involved equation for the force on a rigid spherical particle
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with no restrictions on the three length scales. He also extended
this work to allow for compressible particles [6]. Moreover,
Doinikov, in a series of papers [7–9], provided a general
formula for the radiation force on particles in a viscous and heat
conducting fluid. As pointed out by Settnes and Bruus [10],
however, explicit analytical expressions were obtained only
in the limits δ � R � λ and R � δ � λ. Using the far-
field approach, Settnes and Bruus [10] presented a general
solution applicable for the limit R,δ � λ, with no restriction
on the relative thickness of the viscous layer compared
to the particle size. Since their [10] work was primarily
related to acoustophoreseis, considering R/λ � 1 proved to
be sufficient. Further, they presented their arguments based
on the scattering theory (time-retarded multipole expansion),
where they expressed the scattered potential as a combination
of monopole and dipole components. The viscous effects were
built into the coefficients multiplying the dipole component.

In many situations of interest, δ � λ, indicating that the
viscous effect (decay) is generally small over a wavelength
of the acoustic wave. Thus, even as the particle size increases
and becomes comparable to the wavelength, the viscous effect
on the incident wave itself is in general small and can be
neglected. Only in special situations (for combinations of large
fluid viscosity and very high frequency) all three length scales
will be of comparable magnitude and both the finite-sized and
viscous effects will be of importance. Therefore, in this work
we assume that δ � λ.

It is important to note that a portion of the incoming mean
momentum flux is spent in generating acoustic streaming in
the near field, while some part is scattered by the particle. As
shown by Danilov and Mironov [11], integrating the stress
tensor in the far field, one obtains the net second-order force
acting on the particle. We will follow the far-field derivation
approach in this work, therefore accounting for both the
near-field streaming and the momentum flux carried by the
sound waves, and thereby evaluate the net force on the particle.
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The far-field approach has been used by Mitri [12] and Mitri
and Fellah [3] to compute the radiation force on cylinders
(plane traveling waves) and spheres (plane standing and qua-
sistationary waves), respectively. The same authors in several
papers (see [13,14]) have computed the radiation force using
the near-field approach for spheres and cylinders and validated
the same with those obtained using the far-field derivation.

The far-field approach naturally leads to an expansion,
whose leading-order terms can be interpreted as contributions
from interaction of monopole, dipole, and higher-order sources
with the incident acoustic field and as contributions from
mutual interactions between the monopole, dipole, and higher-
order sources. Typical expressions of the mean force obtained
in terms of such time-retarded multipole expansions have been
limited to the dominant monopole and dipole contributions.
The speed of convergence of the expansion or, more precisely,
the adequacy of calculating the mean force based on only the
monopole and dipole contributions can be expected to depend
on the size of the particle relative to the wavelength of the
acoustic field. Settnes and Bruus [10] alluded to this question of
convergence and demonstrated the adequacy of their theoreti-
cal prediction based on monopole and dipole sources provided
small particles were considered. Further, Bruus and co-workers
studied the problem of acoustophoresis analytically [15]
and verified their theory by conducting experiments [16,17].
Moreover, they used this theory in their numerical study
of acoustopheric motion of microparticles [18,19]. Here, by
obtaining a complete theoretical expansion for the mean force,
we will examine the rate of convergence of the multipole
expansion for both small- and finite-sized particles.

The purpose of the current work is as follows. We want
to present a general solution that places limited restriction
on the relative magnitude of the different length scales. The
expression for the second-order time-averaged force obtained
in the present study can be considered as an extension of
the works by Hasegawa [2] and Mitri and Fellah [3] to a
viscous compressible flow. Additionally, the force obtained
can be interpreted in terms of a multipole expansion, similar
to that of Settnes and Bruus [10], however to the case of a
finite-sized particle, whose radius is not negligible compared
to the wavelength.

In particular, we will show that monopole and dipole source
terms are adequate to capture the mean force even in the
case of finite-sized particles, provided R/λ � 0.05. However,
in addition to the quadratic interaction of monopole and
dipole sources with the incident sound field, we must also
account for the quadratic interaction between the monopole
and dipole sources. The higher-order terms (quadrupole,
dipole-quadrupole cross terms, etc.) are shown to be important
for particles sizes greater than 0.05λ. This idea of expressing
the force in terms of monopole and dipole strengths has been
eloquently presented in the works of Gor’kov [20] and Danilov
and Mironov [11]. It may be noted that monopole-dipole cross
terms was not included in [10], as the authors considered cases
only where R � λ.

Finally, we recognize that the particle may be subjected
to additional forces arising from external acoustic streaming.
This streaming flow is due to the viscous effect associated
with the emitter and reflector arrangement (external boundary
conditions). Such forces are outside the scope of the present

investigation since they depend on the specifics of the
experimental setup.

II. PROBLEM FORMULATION

Here we consider a sphere in a viscous compressible but an
otherwise stationary medium. In the presence of incident sound
wave, the fluid is disturbed, whose motion will be described
by the compressible Navier-Stokes equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u +
(
μb + 1

3
μ

)
∇(∇ · u).

(2)

The flow is assumed to be adiabatic and hence the pressure
depends only on density as

p = p(ρ). (3)

In the above equations, ρ is the fluid density, p is the pressure,
u represents velocity, μ and μb denote the dynamic and bulk
viscosities of the medium, respectively, and t represents time.

Before the acoustic wave is introduced into the medium, the
fluid is assumed to be stationary and to possess constant prop-
erties. Once disturbed, the fluid properties can be expressed
using perturbation theory as

ρ = ρ0 + ρ1 + ρ2 + · · · ,

p = p0 + p1 + p2 + · · · ,

u = u1 + u2 + · · · ,

(4)

where the subscripts 0, 1, and 2 represent the base quantity
and first-order and second-order perturbation quantities, re-
spectively. The base quantities represent the undisturbed flow.
The incoming sound wave creates the first-order disturbance.
The reflected sound wave (due to the presence of the particle)
is also first order in nature. However, the interaction between
the incoming and scattered waves generates the second-order
quantities, which are primarily responsible for the mean force
under discussion. Quantitatively we define the perturbation
quantities as

|ρi |
ρ0

∝ εi, i = 0,1,2, . . . for ε � 1,

|pi |
p0

∝ εi, i = 0,1,2, . . . for ε � 1,

|ui |
c0

∝ εi, i = 1,2, . . . for ε � 1,

where c0 denotes the undisturbed ambient speed of sound and
ε can be taken to be the ratio of the incoming sound wave
velocity to the ambient speed of sound.

As defined before, we are interested in the time-averaged
force. The incident sound wave is a first-order quantity that is
harmonic in time. Consequently, averaging any time-harmonic
quantity over one period would yield identically zero net force.
However, second-order terms yield both second-harmonic and
base-state modification; the latter will not vanish on time
averaging and in fact contribute to the mean force. Therefore,
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the pursuit is to solve for the time-averaged second-order
terms. It can be shown, however, that the mean second-order
equations can be written solely in terms of the first-order
quantities under certain limiting conditions, which will be
discussed further. Towards this goal, we obtain the linearized
Navier-Stokes equations.

Substituting Eq. (4) into Eqs. (1) and (2) yields

∂ρ1

∂t
+ ρ0∇ · (u1) = 0 (5)

and

ρ0
∂u1

∂t
= −∇p1 + μ∇2u1 +

(
μb + 1

3
μ

)
∇(∇ · u1). (6)

Finally, the first-order pressure and density are related by the
speed of sound c0,

p1 = c2
0ρ1. (7)

Now, since we are dealing with a viscous fluid, based on
Helmholtz decomposition theorem, the first-order flow field
can be written as a summation of an irrotational component
and a rotational component

〈w1〉 = 〈w1A〉 + 〈w1V 〉, (8)

where w1 represents any first-order flow variable, the subscript
A represents the irrotational (acoustic) part, and the subscript
V stands for the rotational (vortical) part. By this definition,
we have ∇ × u1A = 0 and ∇ · u1V = 0.

In a similar fashion, we now proceed to derive the second-
order time-averaged equations. Again, substituting Eq. (4)
in Eqs. (1) and (2) and collecting the second-order terms,
followed by time averaging, gives

ρ0∇ · 〈u2〉 + ∇ · 〈ρ1u1〉 = 0, (9)〈
ρ1

∂u1

∂t

〉
+ ρ0〈u1 · ∇u1〉 = −∇〈p2〉 + μ∇2〈u2〉

+
(

μb + 1

3
μ

)
∇(∇ · 〈u2〉), (10)

where the angular brackets represent the quantity averaged
over one time cycle, defined as

〈g〉 = 1

T

∫ T

0
g(t)dt. (11)

The second-order flow field can also be separated into acoustic
and vortical components. However, making use of the linearity
of the above equations, we write u2 = u2a + u2v and p2 =
p2a + p2v . Using these definitions, in addition to Eq. (8) in
Eqs. (9) and (10), and collecting terms involving the indices
1A and 2a we obtain

ρ0∇ · 〈u2a〉 + ∇ · 〈ρ1Au1A〉 = 0 (12)

and〈
ρ1A

∂u1A

∂t

〉
+ ρ0〈u1A · ∇u1A〉 = −∇〈p2a〉 + μ∇2〈u2a〉

+
(
μb + 1

3
μ

)
∇(∇ · 〈u2a〉).

(13)

By subtracting Eqs. (12) and (13) from Eqs. (9) and (10), re-
spectively, we obtain the corresponding equations for 〈u2v〉 and
〈p2v〉. However, it must be noted that 〈u2a〉 and 〈p2a〉 are not
uniformly irrotational components of the second-order flow
everywhere, meaning that ∇ × u2a will not be identically zero
everywhere in the flow. As shall be described later, the mean
force can be computed by integrating the momentum equation
over a surface located in the inviscid bulk, provided it encloses
the particle. Since, in the inviscid far field, the flow is a potential
flow, we set μ = 0 and μb = 0 in Eq. (13). This leads to〈

ρ1A

∂u1A

∂t

〉
+ ρ0〈u1A · ∇u1A〉 = −∇〈p2A〉. (14)

It is clear from Eqs. (12) and (14) that the mean second-order
terms can be expressed purely in terms of the first-order
quantities. Therefore, the next step is to solve for the first-order
perturbations, which will be discussed in the forthcoming
section. The set of equations for 〈u2v〉 involves the vortical
terms and will account for acoustic streaming, which will not
be explicitly dealt with in this work.

III. FIRST-ORDER EQUATIONS

Here we consider a plane sound wave propagating along
the axial z direction with an angular frequency of ω in
a viscous compressible medium incident on a finite-sized
spherical particle. The velocity field thus generated can be
written up to first order as

u1 = ∇φ + ∇ × 	, (15)

where φ represents the scalar velocity potential and 	 is the
vector velocity potential. Further, the scalar potential can be
written as the sum of an incident potential φi and a scattered
potential φsc. The plane incoming wave can be written in
spherical coordinates as [21]

φi =
∞∑

n=0

Cn(2n + 1)injn(kr)Pn(cos θ )e−iωt , (16)

where jn represents spherical Bessel function of the first kind
with order n, Pn denotes Legendre polynomials of the first kind
with degree n, and Cn represents the complex amplitude of the
wave and depends on the type of wave (traveling or standing).
Here r and θ represent the radial and circumferential direc-
tions, respectively, with origin located at the particle center of
mass, and the incoming wave has a wave number k given by

k = ω

c0

[
1 − iω

ρ0c
2
0

(
μb + 4

3
μ

)]−1/2

. (17)

Similarly, the scattered wave potential can be described as

φsc =
∞∑

n=0

Cn(2n + 1)inSnhn(kr)Pn(cos θ )e−iωt , (18)

where hn is the spherical Hankel function of the first kind
with order n. Considering the fact that we are dealing with an
axisymmetric problem, the vector potential 	 can be reduced
to a scalar potential ψ that satisfies

∇2ψ + k2
νψ = 0, (19)

where kν = (1 + i)/δ = √
iω/ν, with ν and δ denoting

the kinematic viscosity of the medium and the momentum
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boundary layer thickness, respectively. The solution of
Eq. (19) yields

ψ =
∞∑

n=0

Cn(2n + 1)inSνnhn(kνr)Pn(cos θ )e−iωt . (20)

In Eqs. (18) and (20), Sn and Sνn are known as the scattering
coefficients, which are to be evaluated based on the boundary
conditions at the particle surface.

IV. EVALUATING THE PARTICLE VELOCITY
IN TERMS OF SCATTERING COEFFICIENTS

To evaluate the first-order particle velocity, we begin with
the expression of force. Since the flow is considered to be
axisymmetric and the sphere is assumed to translate along the
z axis, the hydrodynamic force acting on the particle (along
the z direction) is given by

F1 = 2πR2
∫ π

0
(σrr cos θ − σrθ sin θ )|r=R sin θ dθ, (21)

where the expressions for the stress tensor in terms of φ and
ψ are given by [22]

σrr = 2μ

[(
1

2ν

∂

∂t
− ∇2 + ∂2

∂r2

)
φ

+
(

r
∂3

∂r3
+ 3

∂2

∂r2
− r

∂

∂r
∇2 − ∇2

)
ψ

]
,

(22)

σrθ = 2μ

[(
∂2

∂r∂θ

1

r

)
φ

+
{

∂

∂θ

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2
− 1

2
∇2

)}
ψ

]
.

The required spatial derivatives in Eq. (22) have been evaluated
in Appendix A. Substituting Eqs. (A3)–(A10) and (19) in
Eq. (21) gives

F1 = −4πμi(kνR)2C1[j1(kR) + S1h1(kR)

+ 2Sν1h1(kνR)]e−iωt . (23)

It may be noted here that only the n = 1 term of φ and ψ

survives the integration in Eq. (21). Now, representing the
first-order particle velocity along the axial direction by up, the
particle equation of motion is

F1 = ρpVp

dup

dt
, (24)

where ρp and Vp denote the particle density and volume,
respectively. Equating Eqs. (23) and (24), and defining
ρ ′ = ρp/ρ0 one obtains an expression for particle velocity
given by

up = 3i

ρ ′R
C1[j1(kR) + S1h1(kR) + 2Sν1h1(kνR)]e−iωt .

(25)

V. EVALUATING SCATTERING COEFFICIENTS

In this section, the scattering coefficients are obtained by
equating the fluid velocity components at the particle surface

to the particle velocity. The radial and circumferential velocity
components of the ambient fluid in terms of the potentials
are computed in Appendix A. Therefore, from Eqs. (A12)
and (A13), the velocity components at r = R are given by

ur |r=R = 1

R

∞∑
n=0

Cn(2n + 1)in{[njn(kR) − kRjn+1(kR)]

+ Sn[nhn(kR) − kRhn+1(kR)]

+ Sνn[n(n + 1)hn(kνR)]}Pn(cos θ )e−iωt ,

uθ |r=R = 1

R

∞∑
n=0

Cn(2n + 1)in{[jn(kR)] + Sn[hn(kR)]

+ Sνn[(n + 1)hn(kνR) − (kνR)hn+1(kνR)]}
× ∂

∂θ
[Pn(cos θ )]e−iωt . (26)

Also, the fluid velocity at the surface of the particle in terms
of up is given by

ur |r=R = up cos θ = upP1(cos θ ),

uθ |r=R = −up sin θ = up

∂

∂θ
[P1(cos θ )],

(27)

where the expression of up is as given in Eq. (25). For
simplification purposes, we define the following:

njn(kR) − kRjn+1(kR) = f1n, jn(kR) = g1n,

nhn(kR) − kRhn+1(kR) = f2n, hn(kR) = g2n,

n(n + 1)hn(kνR) = f3n,

(n + 1)hn(kνR) − (kνR)hn+1(kνR) = g3n.

Similar expressions have also been reported in the recent work
by Guz [22]. However, it must be noted that the particle
velocity expression (and, as a consequence, the first-order
force formulation) provided in [22] has minor errors. With
the above definitions, for n �= 1, Eq. (26) when equated to
Eq. (27) reduces to

f1n + Snf2n + Sνnf3n = 0,

g1n + Sng2n + Sνng3n = 0.
(28)

One can solve for the scattering coefficients (for n �= 1) using
Cramer’s rule as

Sn =

∣∣∣∣−f1n f3n

−g1n g3n

∣∣∣∣∣∣∣∣f2n f3n

g2n g3n

∣∣∣∣
, Sνn =

∣∣∣∣f2n −f1n

g2n −g1n

∣∣∣∣∣∣∣∣f2n f3n

g2n g3n

∣∣∣∣
. (29)

A similar procedure for n = 1 gives

S1 =

∣∣∣∣ g11 − ρ ′f11 ρ ′f31 − 2h1(kνR)
−(ρ ′ − 1)g11 ρ ′g31 − 2h1(kνR)

∣∣∣∣∣∣∣∣ρ ′f21 − g21 ρ ′f31 − 2h1(kνR)
(ρ ′ − 1)g21 ρ ′g31 − 2h1(kνR)

∣∣∣∣
,

(30)

Sν1 =

∣∣∣∣ρ ′f21 − g21 g11 − ρ ′f11

(ρ ′ − 1)g21 −(ρ ′ − 1)g11

∣∣∣∣∣∣∣∣ρ ′f21 − g21 ρ ′f31 − 2h1(kνR)
(ρ ′ − 1)g21 ρ ′g31 − 2h1(kνR)

∣∣∣∣
.
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Now that the scattering coefficients (Sn, Sνn) have been com-
puted, any first-order quantity can be completely described.

VI. SECOND-ORDER MEAN FORCE

The mean second-order force acting on a particle is given
by

〈F〉 =
〈 ∫

S0

σ · n dS

〉
, (31)

where σ = −p I + τ , with I and τ representing the unit tensor
and shear stress, respectively. Here n denotes the unit normal
vector pointing away from the surface of the sphere S0, which
in itself varies periodically in time owing to particle oscillation
about the mean position. It can be proven that

〈F〉 =
〈 ∫

S0

σ · n dS

〉
=

〈 ∫
Sff

(σ − ρ0u ⊗ u) · n dS

〉
, (32)

where Sff is any surface enclosing the particle
(see [11,23,24]).

In ideal fluids, the mean force given by Eq. (32) is the same
as the radiation force. However, in the case of viscous fluids,
some mean momentum goes into generating a streaming flow
near the particle surface. The reader is encouraged to refer
to [11] for a detailed discussion on this subject. Therefore, in
this work, using the far-field derivation approach, we compute
the net force acting on the particle.

The advantages of this far-field-derivation approach include
the following. First, the Hankel functions appearing in the
velocity potentials reduce to exponentials as r → ∞, thereby
making the integrals easier to evaluate. Second, in the bulk,
where viscous forces are negligible, the mean second-order
terms can be expressed purely in terms of first-order quantities
[see Eq. (14)]. Following [11], it can be shown that

〈F2〉 =
∫

Sff

[
1

2

〈
u1

2
A

〉 − 1

2ρ0c
2
0

〈
p1

2
A

〉 − ρ0〈u1A · u1A〉
]
dSff .

(33)

Therefore, Eq. (33) expresses the mean force only in terms of
first-order quantities. Since we are integrating in the far field,
only the acoustic part of flow properties survives, i.e., u1 = u1A

and p1 = p1A. Consequently, in the inviscid bulk, u1 = ∇φ

and p1 = −ρ0
∂φ

∂t
. As stated before, since we have already

evaluated the scattering coefficients, the first-order pressure
and velocity can now be computed. Consequently, the mean
force can be expressed in terms of the scattering coefficients.
It is important to note that, though we are integrating in the far
field, the effects of viscosity are built into Sn and Sνn.

In most practical applications, the imaginary or decaying
part of the wave number k [Eq. (17)] can be assumed to
be negligible (i.e., ων/c2

0 � 1). For example, in the field
of acoustophoresis, where one deals with the passage of
ultrasound waves (ω ∼ 2π × 1.5 MHz), say, in human blood
(ρ0 ∼ 1050 kg m−3, ν ∼ 10−6 m2 s−1), the imaginary part of
the wave number k will be of the order of 10−6. Similarly,
in pharmaceutical applications where levitation of particles
in air is important, the frequencies used are in the range of
20–22 kHz, which also leads to negligible values of ων/c2

0.
Therefore, we may assume that k → k0, where k0 represents

the real part of the wave number k. Following along the lines of
Mitri and Fellah [3], we make the following arguments. In the
far field, as k0r → ∞, the spherical Hankel function reduces
to the exponential function

inhn(k0r) → eik0r

ik0r
. (34)

Therefore, based on the above simplification, the scattered
velocity potential can be written as

φsc = f (θ )eik0r

r
e−iωt , (35)

where

f (θ ) = 1

ik0

∞∑
n=0

Cn(2n + 1)SnPn(cos θ ). (36)

This new definition of the scattered potential in combination
with the incident wave potential is substituted into Eq. (33)
to obtain the time-averaged second-order force acting on a
particle in the direction of the propagation of the wave. It is
given by

〈F2〉 = −πρ0k
2
0

∫ π

0
f (θ )f ∗(θ ) sin θ cos θ dθ

−πρ0r
2k2

0

∫ π

0
Re

(
φ̃∗

i

f (θ )eik0r

r

)
sin θ cos θ dθ

+πρ0r
2k2

0

∫ π

0
Im

(
∂φ̃∗

i

∂z

f (θ )eik0r

r

)
sin θ cos θ dθ,

(37)

where φ̃i = φie
iωt , the asterisk represents the complex con-

jugate, and Re and Im denote the real and imaginary parts,
respectively.

A. Standing wave

In this section, we compute the force on a particle in the
presence of a standing wave. For the case of a standing wave,
Cn = φ0[eik0h + (−1)ne−ik0h], where φ0 is the amplitude of
the incoming wave and h is the distance between the particle
center of mass and the nearest pressure antinode. Hasegawa
and Yosioka in a series of papers [2,25–27] expressed this
force as a nondimensional quantity, the so-called radiation
force function, given by

Y
ff
st = 〈F2〉st

sin(2k0h)〈E〉A, (38)

where 〈E〉 = 1
2ρ0φ

2
0k

2
0 is the time-averaged incident energy

density and A = πR2 is the cross-sectional area of the sphere.
The indices st and ff denote that this force has been
obtained for a standing wave and using the far-field approach,
respectively. Now substituting Eqs. (16) and (36) in Eq. (37)
and defining Sn = αn + iβn we obtain

Y
ff
st =

∞∑
n=0

8

(k0R)2
(−1)n+1[(2n + 1)βn

− 2n(αnβn−1 − αn−1βn)]. (39)

053008-5



ANNAMALAI, BALACHANDAR, AND PARMAR PHYSICAL REVIEW E 89, 053008 (2014)

In the inviscid limit, Mitri and Fellah [3] obtained an
expression for the radiation force function given by

(
Y

ff
st

)
MF

=
∞∑

n=0

8

(k0R)2
(−1)n+1[βn + 2(n + 1)

× (αn+1βn − (1 + αn)βn+1)], (40)

where the subscript MF denotes that this expression [Eq. (40)]
was obtained by Mitri and Fellah [3]. It may be observed that
on expanding the series both Eqs. (39) and (40) lead to the same
expression. However, it must be noted that the expression in
Eq. (39) has been derived for a viscous problem and as a result
the α and β incorporate the viscous effects in them. The terms
in our expression for the force given by Eq. (39) have been
arranged to better correspond to a multipole expansion, similar
to that given by Settnes and Bruus [10].

For example, in Eq. (39), n = 0 corresponds to the
monopole term, n = 1 corresponds to dipole and monopole-
dipole quadratic terms, and so on. In the case of a standing
wave, the n = 0 term of Eq. (39) yields

(
Y

ff
st

)
1 = (

Y
ff
st

)
M

= − 8β0

(k0R)2
, (41)

where the index 1 denotes that this term arises from the first
term of Eq. (39) and the subscript M denotes the monopole. In
the above expression, β0 is defined as the monopole strength.
Qualitatively, this is equivalent to the ejection of mass from
the source (sphere) due to scattering of the incident sound
wave by the particle. Ideally, in the absence of a particle, there
would be no scattering of the incoming wave. However, in
the presence of a particle, the incoming wave is scattered and
can be thought of as the ejection of the incoming mass of
fluid. Quantitatively, the leading-order scattered potential in
Eq. (18) becomes independent of the polar coordinate θ [since
P0(cos θ ) = 1] and depends only on the radial coordinate r .
Further, the functional dependence of the radial coordinate is a
zeroth order spherical Hankel function of the first kind, which
is reminiscent of an outgoing spherical wave.

While the monopole can be considered to be a mass source,
the dipole is a momentum source. There is no net mass outflow,
but only momentum exchange, which will lead to a net force in
the direction of particle oscillation. The n = 1 term in Eq. (39)
yields(

Y
ff
st

)
2 = (

Y
ff
st

)
D

+ (
Y

ff
st

)
MD

= 8

(k0R)2
[3β1] + 8

(k0R)2
[2(α0β1 − α1β0)], (42)

where (Y ff
st )D is the contribution only due to the dipole

and (Y ff
st )MD is the monopole-dipole contribution. Similarly,

higher-order terms can be given a physical interpretation. As
can be seen from the expression of (Y ff

st )D , only the imaginary
part of S1, i.e., β1, contributes. As mentioned earlier, since the
dipole is related to the first-order force, it is worthwhile to
refer to Eq. (23). This first-order force expression involves
three terms. While the first term j1(kR) arises due to the
incoming wave, the second term S1h1(kR) is due to the
scattered potential and contributes to the dipole strength β1.
The third term Sν1h1(kνR) does not enter the dipole expression

as we are integrating in the far field and consequently this
term decays as r → ∞. Finally, it must be noted that while
the monopole and dipole strengths involve only the imaginary
part of the scattering coefficients, the monopole-dipole cross
term (Y ff

st )MD , which is the quadratic interaction between the
monopole and dipole, involves the cross talk between the real
part of the monopole with the imaginary part of the dipole
and vice versa. Before assessing the effect of the various
terms on the mean force, we make the following observation.
Settnes and Bruus [10] also expressed the radiation force (in
a viscous compressible medium) in terms of monopole and
dipole strengths, in the small-particle-size (relative to acoustic
wavelength) limit. They observed that in the case of a standing
wave, only the real parts of the monopole and dipole sources
contributed to the mean force and their expressions for these
contributions can be expressed as

(
Y

ff
st

)
M,SB

= 8

3
(k0R)Re

(
1 − 1

ρ ′
c2

0

c2
p

)
,

(
Y

ff
st

)
D,SB

= 4(k0R)Re

[
2(ρ ′ − 1)

{
1 + 3

2
δ
R

(
1 + i + i δ

R

)}
2ρ ′ + 1 + 9

2
δ
R

(
1 + i + i δ

R

)
]

,

(43)

where the subscript SB represents the expressions provided by
Settnes and Bruus [10] and cp is the speed of sound inside the
particle. In the limit of R � λ, the generic expressions for the
monopole (Y ff

st )M and dipole (Y ff
st )D reduce to Eq. (43). This

can be seen in Fig. 1, where we compare the generic expression
for the dipole (Y ff

st )D with the limiting case (Y ff
st )D,SB . Clearly,

the results are identical for R � λ and the deviation can
be observed as R/λ increases, where the exact value of

R / 

(Y
stff

) D
,S

B
  ,

  (
Y

stff
) D

0 0.05 0.1
0

1

2

3

4

5 (Yst
ff)D, /R = 0.1

(Yst
ff)D,SB, /R = 0.1

(Yst
ff)D, /R = 0.3

(Yst
ff)D,SB, /R = 0.3

(Yst
ff)D, /R = 0.8

(Yst
ff)D,SB, /R = 0.8

FIG. 1. (Color online) Dipole contribution from the current work
(Y ff

st )D compared against that for the limiting case of R � λ given
by (Y ff

st )D,SB for a standing wave with varying δ/R. The results
plotted with a solid line with circles, squares, and triangles, respective,
are taken from Ref. [10] [see Eq. (43)]. The results are shown for
ρ ′ = 1000 and μb/μ = 0.
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R /  
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stff
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0
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4
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Monopole (n=0)
Monopole + Dipole 
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n=2
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n=39

FIG. 2. (Color online) Effect of including progressively-higher-
order terms (rate of convergence) on the radiation force function for a
standing wave. The results are shown for ρ ′ = 1000, μb/μ = 0, and
δ/R = 0.1.

this deviation depends on δ/R. As far as the monopole is
concerned, it can be analytically shown (see Appendix B) that
(Y ff

st )M reduces to (Y ff
st )M,SB in the small-particle-size limit.

Therefore, for particles of size comparable to the acoustic
wavelength, the general expressions provide a more accurate
estimation of the monopole and dipole contributions.

Figure 2 shows the effect of including progressively-higher-
order terms in computing the acoustic radiation force function.
In this particular case, we compute the mean force on a nearly
fixed rigid particle (achieved by letting the density ratio ρ ′
be 1000) in a medium whose bulk viscosity is zero. Further,
the effect of kinematic viscosity has been incorporated by
setting the momentum diffusion thickness δ to be 10% of
the particle radius (δ/R = 0.1). The range of R/λ has been
chosen such that the imposed limitation δ � λ holds true. This
analysis will shed light on the rate of convergence (number of
terms required to accurately compute the mean force) that was
mentioned in Sec. I. Clearly, Fig. 2 suggests that the monopole
is insufficient to capture the force even for small values of R/λ.
The hypothesis by Settnes and Bruus [10], that the force be
represented in terms of monopole and dipole source strengths
for small values of R/λ, is tested by just choosing (Y ff

st )M
arising due to n = 0 and the (Y ff

st )D contribution arising from
n = 1 in Eq. (39). As can be observed from the figure, for
particles much smaller than the wavelength (for R/λ � 0.05),
the monopole and dipole terms prove sufficient to capture the
mean force. It must be noted here that, though we have included
only the monopole and dipole strengths, the definitions given
in Eqs. (41) and (42) include the effect of particle size. That is
the reason we observe the radiation force function to decay
after reaching a maximum at R/λ ∼ 0.15. Instead, if the
expressions provided in Eq. (43) are used [10], one would
observe a continuous increase in the second-order mean force

R / 

Y
stff

0 0.1 0.2
0

3

6

9

12
Current work (n=39)

Ref. [10]

FIG. 3. (Color online) Radiation force function for finite-sized
particles in a standing acoustic wave using the current formulation
(solid line) [Eq. (39)], with n = 39, in comparison with the work
of [10] (dashed line) (applicable for low R/λ). The results are shown
for ρ ′ = 1000, μb/μ = 0, and δ/R = 0.1.

with increasing particle size. This behavior is shown in Fig. 3,
which compares the current work with that of [10]. Here,
in Fig. 3, it is clear that even for a particle of radius 5%
(or more) of the acoustic wavelength, one needs to use the
present finite-particle-size formulation. Moreover, the current
formulation captures the maximum force that can be exerted
on a particle in a plane standing wave and predicts that the
mean force on a particle cannot monotonically increase with
particle radius. Now, in reference to Fig. 2, the addition of the
monopole-dipole cross term (Y ff

st )MD arising from n = 1 in
Eq. (39) does contribute in better predicting the mean force
for relatively larger particles. This monopole-dipole cross term
does aid in reducing the maximum force as well as the value of
R/λ at which the maximum force can be realized. Proceeding
similarly, by including higher-order terms, we have observed
that four terms (n = 3) are sufficient to accurately compute
the mean force on the particle. This can also be seen in Fig. 2,
where the difference in radiation force function between the
n = 3 and 39 curves is negligible for R/λ � 0.25. For even
larger particles, the first four terms (n = 3) of the multipole
expansion will not be sufficient and the error will increase
with increasing R/λ. In general, truncation at any finite value
of n will be adequate only for a range of R/λ below a
critical value. Henceforth, all results presented involving the
current formulation will include the first 40 terms (n = 39)
for R/λ � 0.25. In summary, for an extremely-small-sized
particle one could use just the monopole and dipole strengths
to evaluate the mean force, whereas, for finite-sized particles,
one needs to use the current formulation [Eq. (39)] by including
higher-order terms. Table I represents the value of R/λ up to
which a given number of terms [in Eq. (39)] is sufficient to
capture the mean force within 1% error. For this purpose, we
have assumed that the solution (mean force) obtained using
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TABLE I. Value of R/λ up to which the mean force on a particle
in a standing wave can be accurately computed (within 1% error)
with a given number of terms [in Eq. (39)]. The error is calculated
based on the mean force computed using the first 40 terms.

Number of terms n R/λ

monopole (M) only (1) 0 0.0
M + dipole (D) 0.0235
Ref. [10] 0.0485
M + D + MD cross terms (2) 1 0.0498
3 2 0.1662
4 3 0.2462
5 4 0.2963

the first 40 terms (n = 39) accurately represents the force,
meaning that the series in Eq. (39) has converged. Again, the
numbers in the table have been obtained for a particle to fluid
density ratio of 1000, δ/R = 0.1, and zero bulk viscosity.

1. Comparison with numerical (computational
fluid dynamics) results

In the inviscid limit, as described before, there exists
extensive theoretical work in the literature [2,3,12–14,26,27]
to calculate the mean force (acoustic radiation force) on finite-
sized particles. In this work we have provided a closed-form
analytical expression for the mean force in situations where
both viscosity is important and the finite particle size cannot be
ignored in comparison to the acoustic wavelength. Relative to
the inviscid regime, the amount of experimental or numerical
work in the viscous finite-particle-size regime is limited. A
finite-element analysis (FEA) approach to evaluate the mean
force in the regime of present interest was recently reported by
Foresti et al. [28]. In order to validate our results, we compared
our current theoretical formulation with the computational
fluid dynamics (CFD) studies of [28]. The authors studied
the stability of the spherical particles in the standing acoustic
wave field in addition to the mean force on those particles. For
this purpose, they used an axisymmetric levitator (see [28]
and references therein), with the height fixed between the
emitter and reflector. Figure 4 presents a comparison of the
force computed in their FEA approach with the analytical
prediction of Eq. (39) using n = 39 for varying R/λ. It can
be observed from Fig. 4 that the second-order mean force
increases (for both inviscid and viscous cases) up to a given
value of R/λ and then decreases. However, the peak force
achieved using the FEA analysis is off by about 12% (for
the inviscid case) that achieved using the current theoretical
formulation. Further, the value of R/λ at which this peak force
is realized is offset by about 17.5%. In the inviscid limit, their
numerical (FEA) results deviated from the theoretical results of
Hasegawa et al. [29] for finite-size particles. They attributed
this deviation to the dependence of the mean force on the
three dimensionality of the actual emitter-reflector dimensions.
Our expression [Eq. (39)] reduces to the correct inviscid
behavior given by Mitri and Fellah [3] and Hasegawa [2].
Therefore, we believe that, in the inviscid limit, the difference
between our work and that of the FEA [28] can be attributed
to the source and/or reflector details chosen by Foresti

R / 

F
2

st
10

4

0.1 0.2
0

1

2

Inviscid  (Ref. [28])
Air  (Ref. [28])
Air100  (Ref. [28])
Inviscid
Air
Air100
Air1000

FIG. 4. (Color online) Comparison of the dimensional second-
order mean force on a spherical particle in a standing wave [Eq. (39)
using n = 39], represented by lines with the finite-element results of
Foresti et al. [28], represented by symbols. The results are shown for
ρ ′ = 1000 and μb/μ = 0 for three cases as discussed in [28]: inviscid
(μ/ρ0 = 0, circles and solid line), viscosity of air (μ/ρ0 = 1.55 ×
10−5 m2 s−1, triangles and dashed line), and 100 times the viscosity
of air (μ/ρ0 = 1.55 × 10−3 m2 s−1, squares and dash–double-dotted
line). Also shown is the mean force computed for 1000 times the
viscosity of air (μ/ρ0 = 1.55 × 10−2 m2 s−1, dash-dotted line) using
the present formulation.

et al. [28] and departure from the perfectly planar incident
wave configuration. Given the margin of error discussed above,
we observe that the comparison between the CFD results and
our formulation are reasonable. In the viscous computations,
for a standing wave, they computed the mean force for
two different fluid viscosities: (i) viscosity of air (μ/ρ0 =
1.55 × 10−5 m2 s−1) and (ii) 100 times the viscosity of air
(μ/ρ0 = 1.55 × 10−3 m2 s−1). Again, similar to that in the
inviscid limit, the comparison is qualitatively very reasonable
even in the viscous regime. The choice of viscosities made
in [28] does not show substantial deviation from the inviscid
case. Consequently, we considered a higher viscosity (1000
times the viscosity of air) and computed the mean force using
the present formulation [Eq. (39)]. The results are shown in
Fig. 4, where we clearly observe a significant decrease (8%)
in the mean force compared to the inviscid case.

2. Effect of kinematic viscosity on the mean force

The effect of kinematic viscosity on the mean force on a
particle located in the midst of a standing wave is shown in
Fig. 5. All results presented are for a density ratio of 1000
and μb/μ = 0. For extremely small particles R/λ � 1, the
increase in viscosity only marginally increases the radiation
force function. Settnes and Bruus [10] also observed a minor
increase in the radiation force on a particle in a standing wave
with increasing viscosity. Here the increase in mean force on
the particle can be as large as 16% (for the case of δ/R = 0.2
compared to the inviscid case). However, the difference in
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FIG. 5. (Color online) Effect of viscosity on the radiation force
function [Eq. (39) with the first 40 terms] for a particle located
in a standing-wave field. The results are shown for ρ ′ = 1000 and
μb/μ = 0.

magnitude between the viscous and inviscid cases gradually
rises, reaching a maximum at R/λ of approximately 0.125.
Any further increase in R/λ leads to a decrease in the mean
force with increasing viscosity. This reverse trend is consistent
with the recent observations made in [28].

3. Effect of particle to fluid density ratio and bulk viscosity

Here we present the results due to a varying particle to
fluid density ratio in addition to the effect of bulk viscosity
on the mean force. As can be seen from Fig. 6, increasing

R / 

Y
stff
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0
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4 ’ = 2
’ = 10
’ = 100
’ = 1000

FIG. 6. (Color online) Effect of the density ratio (ρ ′ = ρp/ρ0) on
the radiation force function [Eq. (39) with the first 40 terms] for a
particle located in a standing-wave field. The results are shown for
δ/R = 0.1 and μb/μ = 0.
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FIG. 7. (Color online) Effect of the bulk viscosity on the radia-
tion force function [Eq. (39) with the first 40 terms] for a particle
located in a standing-wave field. The results are shown for ρ ′ = 1000
and δ/R = 0.1. Here μ′ = μb/μ.

the density ratio does increase the radiation force function.
On reaching a density ratio of 100, the mean force tends to
saturate, representing the behavior of a fixed rigid particle.
Finally, we observe from Fig. 7 that the bulk viscosity has no
effect on the force function.

B. Traveling wave

Following an approach similar to that in Sec. VI A but with
Cn = φ0 in Eq. (16), we can represent a traveling wave from
which we obtain the mean force due to a traveling wave. This
force is expressed in nondimensional form as

Y
ff
tr = 〈F2〉tr

〈E〉A , (44)

where the subscript tr denotes traveling wave. The radiation
force function thus obtained is given by

Y
ff
tr =

∞∑
n=0

− 4

(k0R)2
[(2n + 1)αn + 2n(αnαn−1 + βnβn−1)].

(45)

Again, the viscous effects are built into the real and imagi-
nary parts of the scattering coefficients (α and β). Further, this
expression reduces to that provided by Hasegawa [27] in the
inviscid limit.

Similar to the analysis performed in the previous section
(on a standing wave), we study the rate of convergence
in computing the mean force for finite-sized particles in a
traveling wave. Figure 8 shows the effect of the number of
terms [Eq. (45)] required to compute the mean force due
to a traveling wave. As before, ρ ′ = 1000, μb/μ = 0, and
δ/R = 0.1. With these parameters, we present in Table II
the value of R/λ up to which a given number of terms is
sufficient to capture the mean force (on a particle situated in
a traveling-wave field) within 1% error (assuming solution
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FIG. 8. (Color online) Effect of including progressively-higher-
order terms (rate of convergence) on the radiation force function for a
traveling wave. The results are shown for ρ ′ = 1000, μb/μ = 0, and
δ/R = 0.1.

converges with 40 terms). Here again we observe that a
minimum of four terms is required to accurately evaluate the
force for R/λ � 0.25. For even larger particles, additional
terms in Eq. (45) will be required for accurate evaluation of the
mean force. The interesting point is that, unlike the standing
wave where the addition of the monopole-dipole quadratic
term did not significantly modify the solution estimate, the
cross term substantially improves the mean force computation.
The effect of viscosity can be seen in Fig. 9, where the
radiation force function is plotted as a function of R/λ. Here
we observe that the effect of viscosity is significant. Danilov
and Mironov [11] and Settnes and Bruus [10] also reported
an increase in the mean force with viscosity for small-sized
particles. Settnes and Bruus [10] reported an increase in the
radiation force by a factor of (2πR/λ)−3. This behavior was
attributed to the interference between the incident and scattered
waves that survives in the presence of viscosity (absent in the
inviscid case) [10,11]. Here we observe that the viscous effects

TABLE II. Value of R/λ up to which the mean force on a particle
in a traveling wave can be accurately computed (within 1% error)
with a given number of terms [in Eq. (45)]. The error is calculated
based on the mean force computed using the first 40 terms.

Number of terms n R/λ

monopole (M) only (1) 0 0.0
M + dipole (D) 0.0185
Ref. [10] 0.0235
M + D + MD cross terms (2) 1 0.0323
3 2 0.1824
4 3 0.3065
5 4 0.4389
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FIG. 9. (Color online) Effect of viscosity on the radiation force
function [Eq. (45) with the first 40 terms] for a particle located in
a traveling-wave field. The results are shown for ρ ′ = 1000 and
μb/μ = 0.

are dominant even for finite particle sizes. As can be seen from
Fig. 9, the mean force increases by factors of 1.7 and 2.5 for
δ/R = 0.1 and 0.2 (at R/λ = 0.25), respectively, compared to
the inviscid theory. In fact, in terms of an increase in the value
of Y

ff
tr , the viscous effects can be seen to increase with R/λ.

Finally, the mean force increases with increasing particle to
fluid density ratio and remains unaffected by changes in bulk
viscosity (figures not shown). This behavior is identical to that
observed for a standing wave (Sec. VI A).

VII. CONCLUSION

The mean force on a finite-sized particle in a viscous com-
pressible medium was considered and an analytical expression
to compute the same was provided. Three length scales were
involved in our analysis: the wavelength λ of the sound wave,
the particle radius R, and the momentum-diffusion thickness
δ. While δ/R and R/λ were arbitrary, the boundary-layer
thickness was assumed to be much smaller compared to the
wavelength. A far-field derivation approach was incorporated
in determining the force due to plane standing and traveling
waves. The flow properties were expanded up to second-order
terms using perturbation theory and the force was expressed
as a sum of infinite series. Based on the scattering theory, this
infinite series could be physically interpreted as a multipole
expansion, where the n = 0 term represented the monopole,
n = 1 yielded the dipole and monopole-dipole quadratic term,
and so on. Further, it was observed that the radiation force
could be reasonably approximated using just the monopole,
dipole, and their cross terms for R/λ � 0.05 for standing
waves, while in the case of traveling waves, the limit was
R/λ � 0.03. The analytical result for the mean force obtained
in the present work is valid for finite-sized particles of
arbitrary radius compared to the acoustic wavelength (the
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only limitation is that the viscous length is smaller than
the wavelength). However, in plotting the results we have
limited our attention to R/λ � 0.25. Thus we can consider
large values of δ/R and not violate the requirement δ/λ � 1.
We observe that for R/λ � 0.25, even four terms (n = 3)
are sufficient to provide a very accurate estimation of the
mean force.

Both the standing- and traveling-wave solutions correctly
reduced to their corresponding inviscid limits provided by
Mitri and Fellah [3] and Hasegawa [2,27]. Further, for
extremely small particle sizes, in the viscous regime, we
found our results to be identical to that provided by Settnes
and Bruus [10]. Moreover, we expressed our monopole and
dipole strengths in terms of the monopole and dipole strengths
of [10]. We noted that experimental and numerical data for
finite-sized particles in the viscous limit are extremely limited.
Consequently, in our regime of interest (0 � R/λ � 0.25), we
compared our results (standing wave) with the recent FEA
results of Foresti et al. [28]. The comparison was found to be
reasonable. We argued that any differences between the CFD
studies and our current formulation could be related to the
emitter and/or reflector dimensions used in [28]. The kinematic
viscosity substantially increased the mean force in the case
of a traveling wave while having a relatively minimal effect
on particles situated in a standing-wave field. We observed
that for both traveling and standing waves, increasing the
density ratio led to an increase in the mean force while
remaining unchanged to variations in bulk viscosity. Addi-
tionally, the results presented for the viscous case assumed
that ων/c2

0 � 1. Finally, it must be noted that the current
work neglects any effects due to the so-called external acoustic
streaming.
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APPENDIX A: RECURRENCE RELATIONS AND SPATIAL
DERIVATIVES OF VELOCITY POTENTIALS

To compute the stresses and velocities, we need to evaluate
the time and space derivatives of φ = φi + φsc and ψ . Thus,
as a first step we derive these expressions in this section.
To achieve this we will require the so-called recurrence
relations. These relations express the spherical Bessel and
Hankel derivatives in terms of their corresponding function
values.

In the following equations (A1) and (A2), z is a complex
number, fn could represent either jn or hn, and the prime
denotes differentiation with respect to z:

f ′
n(z) = fn−1(z) − n + 1

z
fn(z), n = 1,2, . . . , (A1)

f ′
n(z) = −fn+1(z) + n

z
fn(z), n = 0,1,2, . . . . (A2)

Before proceeding with computing the spatial derivatives,
it is important to note that the scalar potential satisfies the
Helmholtz equation

∇2φ + k2φ = 0. (A3)

From the definition of φi and using Eq. (A2),

∂φi

∂r
=

∞∑
n=0

Cn(2n + 1)in
{

− kjn+1(kr) + n

r
jn(kr)

}
Pn(cos θ )e−iωt

= 1

r

∞∑
n=0

Cn(2n + 1)in{njn(kr) − (kr)jn+1(kr)}Pn(cos θ )e−iωt . (A4)

Differentiating Eq. (A4) and using Eq. (A1),

∂2φi

∂r2
=

∞∑
n=0

Cn(2n + 1)in
[
−k

{
kjn(kr) − n + 2

r
jn+1(kr)

}
− n

r2
jn(kr)

+ n

r

{
−kjn+1(kr) + n

r
jn(kr)

}]
Pn(cos θ )e−iωt

= 1

r2

∞∑
n=0

Cn(2n + 1)in[(n2 − n)jn(kr) − r2k2jn(kr) + 2(kr)jn+1(kr)]Pn(cos θ )e−iωt . (A5)

Similarly,

∂φsc

∂r
= 1

r

∞∑
n=0

Cn(2n + 1)inSn{nhn(kr) − (kr)hn+1(kr)}Pn(cos θ )e−iωt , (A6)

∂2φsc

∂r2
= 1

r2

∞∑
n=0

Cn(2n + 1)inSn[(n2 − n)hn(kr) − r2k2hn(kr) + 2(kr)hn+1(kr)]Pn(cos θ )e−iωt , (A7)

∂ψ

∂r
= 1

r

∞∑
n=0

Cn(2n + 1)inSνn{nhn(kνr) − (kνr)hn+1(kνr)}Pn(cos θ )e−iωt , (A8)
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∂2ψ

∂r2
= 1

r2

∞∑
n=0

Cn(2n + 1)inSνn

[
(n2 − n)hn(kνr) − r2k2

νhn(kνr) + 2(kνr)hn+1(kνr)
]
Pn(cos θ )e−iωt . (A9)

Finally, differentiating Eq. (A9) with respect to r and using Eqs. (A1) and (A2),

∂3ψ

∂r3
= 1

r2

∞∑
n=0

Cn(2n + 1)inSνn

[
(n2 − n)

{
− kνhn+1(kνr) + n

r
hn(kνr)

}

− r2k2
ν

{
− kνhn+1(kνr) + n

r
hn(kνr)

}
− 2rk2

νhn(kνr)

+ 2(kνr)

{
kνhn(kνr) − n + 2

r
hn+1(kνr)

}
+ 2kνhn+1(kνr)

− 2

r

{
(n2 − n)hn(kνr) − r2k2

νhn(kνr) + 2(kνr)hn+1(kνr)
}]

Pn(cos θ )e−iωt

= 1

r3

∞∑
n=0

Cn(2n + 1)inSνn[{−n(n2 − n − (kνr)2)}hn(kνr)

+{(kνr)3 − (n2 + n + 6)(kνr)}hn+1(kνr)]Pn(cos θ )e−iωt . (A10)

By definition,

ur = ∂φ

∂r
−

[
r∇2 − 1

r

∂

∂r
r2 ∂

∂r

]
ψ.

Now, substituting Eq. (A8) in ur above, the second term on the right-hand side becomes[
−r∇2 + 1

r

∂

∂r
r2 ∂

∂r

]
ψ = −r∇2ψ + 1

r

∞∑
n=0

Cn(2n + 1)inSνn[n(n + 1)hn(kνr)]Pn(cos θ )e−iωt − rk2
νψ. (A11)

The first and third terms on right-hand side in Eq. (A11) combine to yield zero (Helmholtz equation). Therefore, from
Eqs. (A4), (A6), and (A11),

ur = 1

r

[ ∞∑
n=0

Cn(2n + 1)in[{njn(kr) − (kr)jn+1(kr)} + Sn{nhn(kr) − (kr)hn+1(kr)} + Sνn{n(n + 1)hn(kνr)}]
]

Pn(cos θ )e−iωt .

(A12)

Also,

uθ = 1

r

[ ∞∑
n=0

Cn(2n + 1)in[jn(kr) + Snhn(kr) + Sνn{(n + 1)hn(kνr) − (kνr)hn+1(kνr)}]
]

∂

∂θ
[Pn(cos θ )]e−iωt . (A13)

APPENDIX B: REDUCTION OF THE MONOPOLE
RADIATION FORCE FUNCTION TERM IN THE LIMIT

OF PARTICLE SIZE MUCH SMALLER THAN
THE ACOUSTIC WAVELENGTH

To compute β0 = Im(S0), we start from Eq. (29) with n = 0
to obtain

S0 =

∣∣∣∣−f10 f30

−g10 g30

∣∣∣∣∣∣∣∣f20 f30

g20 g30

∣∣∣∣
. (B1)

Using the definitions of f1n through g1n with n = 0 and letting
k → k0,

β0 = Im(S0) = −j1(k0R)y1(k0R)

[j1(k0R)]2 + [y1(k0R)]2
. (B2)

From [30] we know that

j1(k0R) = sin(k0R)

(k0R)2
− cos(k0R)

k0R
,

y1(k0R) = −cos(k0R)

(k0R)2
− sin(k0R)

k0R
, (B3)

[j1(k0R)]2 + [y1(k0R)]2 = (k0R)−2 + (k0R)−4.

Also,

sin(k0R) = k0R − (k0R)3

3!
+ · · · ,

(B4)

cos(k0R) = 1 − (k0R)2

2!
+ · · · .
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Substituting Eqs. (B3) and (B4) in Eq. (B2) and neglecting
higher-order terms in k0R,

β0 = − (k0R)3

3
. (B5)

Now substituting Eq. (B5) in Eq. (41), we get(
Y

ff
st

)
M

= 8
3k0R. (B6)

This is identical to (Y ff
st )M,SB in Eq. (43), if we let cp → ∞,

since we are dealing with rigid particles.
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