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Treelike networks accelerating capillary flow
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Transport in treelike networks has received wide attention in natural systems, oil recovery, microelectronic
cooling systems, and textiles. Existing studies are focused on transport behaviors under a constant potential
difference (including pressure, temperature, and voltage) in a steady state [B. Yu and B. Li, Phys. Rev. E 73,
066302 (2006); J. Chen, B. Yu, P. Xu, and Y. Li, ibid. 75, 056301 (2007)]. However, dynamic (time-dependent)
transport in such systems has rarely been concerned. In this work, we theoretically investigate the dynamics of
capillary flow in treelike networks and design the distribution of radius and length of local branches for the fastest
capillary flow. It is demonstrated that capillary flow in the optimized tree networks is faster than in traditional
parallel tube nets under fixed constraints. As well, the flow time of the liquid is found to increase approximately
linearly with penetration distance, which differs from Washburn’s classic description that flow time increases as
the square of penetration distance in a uniform tube.
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I. INTRODUCTION

Treelike networks can be widely found in nature, including
branches [1], vasculatures [2], and rivers [3], and have received
increasing attention in industrial applications such as oil
recovery [4], microelectronic cooling systems [5], desalination
[6], and textiles [7]. The investigation of treelike networks can
be dated back to 1926, when Murray [2] found the optimal
radius ratio between parent and daughter branches in the
cardiovascular system under the least expenditure of energy.
It has also been shown that branch radii of tree networks are
optimized for driving water in plants with the minimum flow
resistance [8]. As well, the treelike geometry of mammalian
airways indicates that the ratios for radius and length of
bronchi lead to a minimization of the airflow power loss
[9,10]. Following the study on the regular branching system,
branching irregularities have been explored by functional
modeling of the mammalian respiratory system [11,12]. When
the branching is asymmetric rather than symmetric, the
network appears optimal to supply fresh air at limited delivery
time. Recently, it was found that the energetic efficiency,
the geometric efficiency and the transit time efficiency are
simultaneously optimized in the bronchial tree [13]. It was
noted that asymmetric flow occurs in symmetric treelike
structures at a high Reynolds number when inertial effects
are considered [14–16]. The flow asymmetry depends on the
Reynolds number and is critical to the morphogenesis and
functions of the bronchial tree [14–16]. As well, the seepage
for non-Newtonian fluids in treelike networks, such as blood in
the vascular system, is of considerable current interest [17], and
nonlinear flow for power-law fluids was found in disordered
porous media [18] and was properly quantified by a modified
permeabilitylike index and Reynolds number [19].
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To explain the transport mechanisms of these natural
transports, Bejan and Lorente [20] developed a constructal
theory that optimized the flow distribution between one point
and many points on an equidistant line or circle for the
minimum overall resistance. The optimal design of the flow
path leading to a treelike network was found [20]. The
constructal theory was also extended to designate the natural
tendency of flow systems (e.g., rivers, lungs, and tectonic
plates) to morph in an evolutionary process towards greater
flow access over time based on optimization at every scale and
level [21]. Inspired by the branching vessel tree of arteries or
veins, Cheng and Chen [22] designed a rectangular tree-shaped
fractal network for the cooling of a microelectronic chip. They
showed that the network increases the convective heat transfer
rate but reduces the pressure drop in comparison to parallel
tube nets [22]. Later, Yu and Li [23] found that the thermal
conductivity of fractal-like tree networks can be much smaller
than that of an equivalent single cylinder. In 2007, Chen
et al. [24] derived the permeability model of porous constructs
embedded with fractal-like tree networks and observed that the
composite structures were much more permeable than parallel
channel nets under a fixed constraint. Treelike networks or
Bethe lattices were also used to describe power-law fluids in
porous media [25]. Although the idealized treelike networks
lack reconnections as in the real porous media, they are able
to derive closed-form expressions [25]. Recently, imitation
of the branching structure in textile fabric demonstrated a
positive impact on the sweat absorption property of the
fabric [7]. In addition, the multilayer treelike fabrics had
two to three times the evaporation rate from the free water
surface [7].

Transport behaviors in treelike networks under a constant
potential difference (including pressure, temperature, and
voltage) have been explored extensively in numerical studies
[23,24]. To our best of knowledge, however, there is little
research work on the dynamics of capillary flow in treelike
networks. In such structures, the only driving force for the
self-motion of liquid is capillary pressure, which is dependent
on the microstructure of the local branch where the fluid front
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or meniscus arrives. As such, the capillary pressure varies in
different levels of branches and so does the flow behavior.

Washburn’s equation has been the basis for describing
the time-dependent capillary phenomena since a century ago
[26]. Washburn [26] modeled the dynamics of capillary flow
in a straight tube driven by the negative capillary pressure
and suggested a correlation between the distance of liquid
movement z and the time t ,

z =
(

γ r cos θ

2η
t

)0.5

, (1)

where γ and η stand for the (liquid-vapor) surface tension and
the viscosity of the liquid, respectively, r is the tube radius, and
θ is the contact angle between the liquid meniscus and the wall
of the tube. This law holds in the limit z � ze [27] or when the
tube is placed horizontally, where ze is the final height of the
liquid rise with the capillary force simultaneously being equal
to the gravity of the liquid column. Washburn’s equation was
also found valid down to nanoscale pore sizes based on the
molecular dynamics simulation [28]. Numerical simulations
showed that the liquid meniscus suffered complex deformation
during moving through tubes with variations in radii [29,30].
In particular, the liquid passing through a sudden expansion
was pinned when the actual contact angle exceeded 90° [30].
To avoid the effect of liquid meniscus on the capillary flow, it
is commonly assumed that the tubes are long with extremely
mild contractions and expansions [31].

Capillary flow in tubes is solely driven by capillary pressure
and there is no fixed overall pressure difference across the
system. The displacing phase is a wetting viscous liquid
and the displaced phase is a nonviscous phase (such as air).
Here, the capillary flow is accelerated by the increase in the
capillary pressure, which is proportional to the tube radius
[32]. Conversely, the capillary flow slows down due to the
decreased permeability of the tube, which scales with the
square of the radius [33]. As a whole, the time of a liquid
required to move for a constant distance is monotonously
dependent on the pore radius in a uniform tube as presented
in Eq. (1), based on the balance of the two mechanisms.
The branching tubes in treelike networks have different radii
and lengths, and the capillary flow has different sensitivity to
microstructures of local branches at different levels. Thus, the
fastest capillary flow may be found in the treelike networks
on the basis of the dynamic competition between the above
two mechanisms superimposed, in comparison to parallel
uniform tubes under fixed constraints. In this article, we aim to
theoretically describe the dynamics of capillary flow in treelike
networks and expect to find a general criterion for the design
of network structures for the fastest capillary flow.

II. THEORETICAL MODEL

Figure 1 shows a V-shaped treelike network and a parallel
tube net. V-shaped treelike networks are widely found as
arteries or veins in human beings and animals. For instance,
the human arterial vessels contain around 30 branches from
the aorta to the arterioles [22]. It is visible that the higher levels
of branches have similar structures to those at the lower levels.
Every vessel in the network system is divided into m branches
at the next level with branching angle φ, as seen in Fig. 1. Thus,

FIG. 1. A V-shaped treelike network (left) and a parallel tube net
(right).

this network can be generated by repeating this algorithm from
the first-level (single-tube) branch to the nth-level branches,
where n is the total number of branching levels. The branches
are composed of straight hollow tubes. We define the ratio of
radius between the tubes at the (j + 1) th branching level and
that at the j th branching level, viz.,

α = rj+1/rj , (2)

and therefore, it is easy to obtain

rj = αj−1r1, (3)

where rj and r1 are the radii of the tubes at the j th and first
branching levels, respectively. α is generally assumed to be
smaller than 1 as in natural network systems. Similarly, the
ratio of length of the tubes at the (j + 1) th branching level to
that at the j th branching level is defined as

β = lj+1/lj , (4)

and thus,

lj = βj−1l1, (5)

where lj and l1 are the lengths of the tubes at the j th and first
branching levels, respectively.

In order to investigate the unique dynamics of capillary
flow in treelike networks, we compare our model with the
traditional parallel tube nets under the same cross area of
the system, total length and total void volume (Fig. 1). To
this end, we assume the number of parallel tubes is equal to
the number of outlet tubes (at the nth level) of the treelike
network. As well, the interdistance of the outlet tubes of the
treelike network is identical to that of the parallel tubes. Thus,
the parallel nets are defined similarly as those in Ref. [24].
In this work, we focus on investigating capillary flow in
treelike networks whose tube radius is much smaller than
the length. These networks have great applications such as
plant-structured fabrics. In the networks, the effect of the
junction between different branching levels on the flow is
assumed negligible (see Supplemental Material [34]). As well,
the effect of the branching angle is eliminated, since all tubes
have the same branching angle in both parallel tube nets and
treelike networks (Fig. 1).

Based on Fig. 1 and Eq. (5), the total length of the treelike
network is given by

Ln =
n∑

j=1

lj = 1 − βn

1 − β
l1. (6)
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The total volume of the treelike network is calculated as

Vn =
n∑

j=1

πkj r
2
j lj = πr2

1 l1
1 − (mα2β)n

1 − mα2β
, (7)

where kj is the number of tubes at the j th level, which is
expressed as kj = mj−1.

The parallel tube net has the same length and volume as the
treelike network. The volume of the net composed of kn tubes
is given by

Vn = πknR
2
nLn, (8)

where Rn is the tube radius of the net. Rn is calculated on the
basis of Eqs. (7) and (8):

Rn =
(∑n

j=1 kj r
2
j lj

Lnkn

)0.5

= r1

[
m1−n 1 − (mα2β)n

1 − mα2β

1 − β

1 − βn

]0.5

.

(9)

The capillary flow in all tubes of the treelike network is
driven by capillary pressure. When the meniscus is in the
kth-level tube, the capillary pressure is given by

	pc,k = −2γ cos θ

rk

. (10)

The flow rate Qk is obtained based on the Hagen-Poiseuille
equation, viz.,

Qk = πr2
k uk = −πr4

k

8η

∂p

∂x
, with uk = ∂z

∂t
, (11)

where uk is the spontaneous velocity of the liquid at the kth
level. Note we have kkQk = Q1 based on conservation of
mass.

In the first level of the treelike network, the time of capillary
flow is obtained in terms of the liquid penetration distance l

based on Eq. (1), viz.,

tl,1 = C

2

l2

r1
, (12)

where C is a constant defined as 4η

γ cos θ
.

It is easy to obtain the time T1 required for the liquid to fill
the tube of the first level with the length l1:

T1 = C

2

l2
1

r1
. (13)

In the second level of the treelike network, the flow rate in
a tube is given by

Q2 = πr2
2 u2 = −πr4

2

8η

∂p

∂x
, with u2 = ∂z

∂t
, (14)

and the total hydrostatic pressure drop of the first and the
second levels of the treelike network is obtained as follows:

	p = −8ηQ1

∫ h1

0

dx

πr4
1

− 8ηQ2

∫ z

h1

dx

πr4
2

with

k2Q2 = Q1 and k2 = m, (15)

which is equal to the capillary pressure 	pc,2 at the second
level on the basis of Eq. (10):

	pc,2 = −2γ cos θ

r2
. (16)

Thus, we have

γ cos θ

r2
= 4mηQ2

∫ l1

0

dx

πr4
1

+ 4ηQ2

∫ z

l1

dx

πr4
2

. (17)

Integrating Eq. (17) we have the time of capillary flow in
the second level of the treelike network:

t = C

∫ l

l1

(
m

r3
2 l1

r4
1

+ z − l1

r2

)
dz. (18)

The time corresponding to the liquid at the second level of
the treelike network tl,1 is obtained in terms of distance of the
liquid movement l based on Eqs. (13) and (18), viz.,

tl,2 = C

[
m

r3
2 l1 (l − l1)

r4
1

+ 1

2

(l − l1)2

r2

]
+ T1. (19)

The time t2 required for the liquid to fill the tubes of the
second level with the length l2 is obtained by Eq. (18), viz.,

t2 = C

[
m

r3
2 l1l2

r4
1

+ 1

2

l2
2

r2

]
. (20)

Therefore, the total time T2 for the liquid moving for the
distance (l1 + l2) is the sum of t1 and t2, viz.,

T2 = t1 + t2 = C

2

l2
1

r1
+ C

[
m

r3
2 l1l2

r4
1

+ 1

2

l2
2

r2

]
. (21)

In analogy, we can obtain the time tj required for the liquid
to fill the tubes of the j th level with the length lj :

tj = C

2

l2
j

rj

+ C

j∑
k=2

(
mj+1−k

r3
j lk−1lj

r4
k−1

)
. (22)

The total time Tn for the liquid to move for the distance Ln

is obtained as the sum of tj , viz.,

Tn =
n∑

j=1

tj = C

2

n∑
j=1

l2
j

rj

+ C

n∑
j=2

j∑
k=2

(
mj+1−k

r3
j lk−1lj

r4
k−1

)
.

(23)
The flow time corresponding to the liquid movement at the

j th level of the treelike network tl,j is obtained in terms of the
distance of the liquid movement l:

tl,j = C

2

(l − Lj−1)2

rj

+C

j∑
k=2

[
mj+1−k

r3
j lk−1(l − Lj−1)

r4
k−1

]
+ Tj−1. (24)
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FIG. 2. (Color online) Dimensionless time of capillary flow in treelike networks versus (a) width radius α at different length ratios β, and
(b) length ratio β at different radius ratios α when the level number n = 2.

Substituting Eqs. (4) and (5) into Eq. (23) results in Tn in terms of α and β:

Tn = C

2

l2
1

r1

1 − (α−1β2)n

1 − α−1β2
+ C

1

1 − α−4m−1β

[
α3mβ − (α3mβ)n

1 − α3mβ
− α−1β2 − (α−1β2)n

1 − α−1β2

]
. (25)

The total time for the liquid to fill the net of parallel tubes is obtained with the help of Eq. (13) for the single tube, viz.,

T0 = C

2

L2
n

Rn

= C

2

l2
1

r1

(
1−βn

1−β

)1.5

[
m1−n 1−(mα2β)n

1−mα2β

]0.5
. (26)

Thus, the dimensionless time of capillary flow in the treelike network is expressed as the ratio of Eqs. (25) to (26), viz.,

Td = Tn

T0
=

(
m1−n 1−(mα2β)n

1−mα2β

)0.5 {
1−(α−1β2)n

1−α−1β2 + 2
1−α−4m−1β

[
α3mβ−(α3mβ)n

1−α3mβ
− α−1β2−(α−1β2)n

1−α−1β2

]}
(

1−βn

1−β

)1.5
. (27)

III. RESULTS AND DISCUSSION

In this section, we investigate the V-shaped network with
m = 2, a possible smallest dichotomous structure, to represent
our work. With Eq. (27), it is easy to plot the dimensionless
time of capillary flow in treelike networks in terms of the radius
ratio α and the length ratio β in Fig. 2 (n = 2), Fig. 3 (n = 3),
and Fig. 4 (n = 4).

The result is that Td in Fig. 2(a) first decreases and then
increases dramatically with the increase in α at four different
values of β (i.e., β = 0.4,0.8,1.2,1.6). The concave curves
in Fig. 2(a) indicate the optimal α close to 0.5 that results
in the minimum time required for the liquid arriving at the
end of the network system or the tubes at the second level.
It is expected that the first-level tube with larger radius has
greater permeability and requires less time (i.e., T1) for liquid
penetration, whereas the two tubes at the second level with
smaller radius create higher capillary forces to drive the
liquid to move on. When α reaches the higher limit (α � 1),
the tube radius is extremely small in the first level and the

flow resistance rises markedly, significantly slowing down the
process of liquid movement. On the other hand, when α is
close to 0, the permeability of the two tubes at the second level,
proportional to the square of the tube radius, is significantly
reduced, and the extremely low permeability suppresses the
effect of the high capillary pressure. Therefore, the minimum
flow time versus α exists because of the two mechanisms
superimposed: capillary pressure and permeability. Figure 2(a)
also shows that the corresponding optimal values of α vary
slightly with the variation in β.

Figure 2(b) presents the dimensionless time Td versus β

at different values of α (α = 0.2,0.4,0.6,0.8) in the two-level
network. When α = 0.2,0.4,0.6,0.8 and β approaches 0, the
length of the two tubes at the second level is close to 0,
and the network becomes a single uniform tube. Thus, Td

converge to the same value for the four structures. When
β increases higher than 1, however, different values of Td

respond to the varied α due to the competition between
permeability and capillary pressure in the two-level network.
The minimum Td is found when α = 0.2,0.4,0.6 by adjusting
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FIG. 3. (Color online) Dimensionless time of capillary flow in treelike networks versus (a) width radius α at different length ratios β, and
(b) length ratio β at different radius ratios α when the level number n = 3.

the contribution of capillary flows in the two levels of local
tubes, based on the phenomenon that the wider tube of the
first level promotes higher permeability and simultaneously
the two narrower tubes of the second level cause higher
driving drags for the liquid. It is interesting to observe that
Td increases with the increase in β when α = 0.8, because the
radii of tubes in the second level are too large to generate
an adequate capillary force for accelerating the capillary
flow.

It is expected that the minimum Td in terms of α and
β can be simultaneously found by analyzing Fig. 2. With
the help of MATLAB, the minimum Td is derived, viz.,
0.4841, with α = 0.3940 and β = 0.4672, respectively. This
result indicates it is possible to accelerate the speed of
capillary flow for a two-level treelike network by around

52% at fixed total length and volume based on the structural
optimization.

Analogous to the treelike network with n = 2, the minimum
Td ’s for n = 3 versus the radius ratio α and the length ratio β

are illustrated in Figs. 3(a) and 3(b), respectively. The three-
level network has the same trend of capillary flow against α and
β, though the optimal values of α and β accounting for the min-
imum Td are different from those in the two-level case. As well,
the minimum Td in terms of α and β is found simultaneously
for the optimal structure of the treelike network, viz., 0.2973,
with α = 0.4306 and β = 0.4799, respectively. This result
indicates that Td can be decreased by 70% in comparison to
the parallel tube nets at fixed length and volume. For n = 4, the
minimum Td ’s versus α and ratio β are illustrated in Figs. 4(a)
and 4(b), respectively. The minimum Td is also derived, viz.,

FIG. 4. (Color online) Dimensionless time of capillary flow in treelike networks versus (a) width radius α at different length ratios β, and
(b) length ratio β at different radius ratios α when the level number n = 4.
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FIG. 5. (Color online) Comparison of dimensionless time of
capillary flow versus dimensionless penetration distance between
optimized treelike networks and parallel nets for (a) n = 2,
(b) n = 3, and (c) n = 4, where the solid (upper) blue line is the
Washburn’s equation and the solid (lower) black line is the present
model of the first level.

0.1973, with α = 0.4540 and β = 0.4888, respectively. The
decreased magnitude of Td in comparison to the control sample
of parallel tube nets is around 80%. It can be expected that
more levels of branches lead to a greater decrease in value
of Td .

Based on Eq. (27), flow time against penetration distance in
the optimized treelike networks with the fastest flow is shown
for n = 2, n = 3, and n = 4, in Figs. 5(a)–5(c), separately. The
parallel, traditional tube nets are also added for comparison.
It is evident that time is diffusive to the distance of the liquid
movement in the parallel tube nets and the flow behavior obeys
Washburn’s equation [Eq. (1)]. Furthermore, the results shown
in Fig. 5 indicate that flow time in the optimized networks is
much less than in the parallel tube nets at the given penetration
distance, and the flow time increases approximately linearly as
the distance. As such, the capillary flow in treelike networks
differs from Washburn’s classic description that the flow time
increases as the square of penetration distance in a single
uniform tube.

IV. CONCLUSION

A closed-form model has been developed to describe the
dynamics of capillary flow in treelike networks. A treelike
arrangement can accelerate the capillary flow comparing
with the traditional parallel tube nets under a given total
length and total volume. Moreover the design of different
levels in the treelike network leads to the minimum time
for the liquid to fill the whole network system, based on
the optimized radius ratio and length ratio between different
levels. After optimization of the network structure, the flow
behaviors are found to differ from Washburn’s equation, and
the time of capillary flow is approximately proportional to
the distance of liquid movement. In particular the time of
the capillary flow of four-level, treelike networks can be
reduced by around 80% in comparison to parallel tube nets,
and more levels of branches lead to greater acceleration of
capillary flow.

This study provides an initial theoretical exploration of the
fastest capillary flow in treelike structures, but the proposed
robust framework can be extended to more complex systems
under different constraints. The present analysis can encourage
us to design unique plant-structured fabrics with excellent
liquid management properties, considering treelike networks
as equivalent structures of these fabrics. As well, this work
may help to explain some of the underlying mechanisms
behind the natural phenomena, such as the effect of radius and
length variations in different branching hierarchies of trees on
efficient water absorption.
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