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For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant
deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger
than the channel dimensions. If one of the surfaces is suitably structured, this nonequilibrium distribution can be
exploited for momentum transfer in a tangential direction between the two surfaces. This opens up the possibility
to extract work from the system which operates as a heat engine. Since both surfaces are held at constant
temperatures, the mode of momentum transfer is different from the thermal creep flow that has gained more
attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured
surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted,
and configurations with maximum thermodynamic efficiency are identified. Overall, it is shown that significant
efficiencies can be obtained by tangential momentum transfer between structured surfaces.
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I. INTRODUCTION

As the length scales of many technological devices have
shrunk to the order of the mean free path of gas molecules
at standard conditions, transport phenomena occurring in the
transition flow or free-molecular flow regime have gained
increased interest, particularly within the research community
concerned with microsystems and nanosystems. For such sys-
tems it is no longer possible to describe transport phenomena
by the usual continuum models such as the Navier-Stokes
equations, but the Boltzmann equation has to be employed
to capture the physics [1]. Along with such a scenario come a
number of effects that are absent in gases within the continuum
regime. As an example, flows that are induced by a temperature
gradient appear. Such thermally induced gas flows have been
exploited already a long time ago, for example, in the Crookes
radiometer [2] or in Knudsen pumps [3]. In these setups, the
Knudsen number was increased by rarefaction occurring at
reduced pressures. At the time these studies were conducted
the molecular picture of matter was still debated. Nevertheless,
the basic theoretical framework for rarefied gas dynamics had
already been put forward [4,5], and corresponding experiments
triggered the further development of models connecting
continuum mechanics with gas kinetics [6].

Variants of these classical configurations remain active
topics of research today [7–12]. Depending on the exact
form of the thermal and geometric boundary conditions, such
thermally induced flows are termed, for example, thermal
creep, thermal stress slip, or thermal edge flows [1]. In
such situations, when a net flow is induced within the gas,
momentum conservation dictates that a net force is exerted
onto the solid forming a boundary to the flow, as evidenced by
the rotation of the Crookes radiometer.1 That way it is possible
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1Note, however, that in the limit of infinite Kn net mass and net

momentum flux is not necessarily coupled [1,8].

to convert thermal into mechanical energy, i.e., to build a heat
engine based on this principle.

A Knudsen pump is based on a thermal gradient along a
narrow channel or slit, for example, connected cavities within a
porous material or a capillary. Here a gas flow, termed thermal
transpiration, is induced in the direction of the temperature
gradient. An alternative configuration was considered in [8],
where a two-dimensional (2D) channel with structured walls
and different temperatures on the two opposing boundaries was
studied, cf. Fig. 1. In contrast to conventional Knudsen pumps,
such a configuration allows pumping gases in a direction
normal to the main direction of the thermal gradient. Moreover,
it can be regarded as a heat engine, enabling conversion of
thermal into mechanical energy.

This last aspect is in the focus of the present article,
in which we study the thermodynamic efficiency of energy
conversion between appropriately structured walls and identify
configurations with maximized efficiencies. Finding efficient
materials or devices for waste energy recovery is a very
active discipline. One of the main research threads in that
context aims at improving the performance of thermoelectric
materials [13–18], which still suffer from low efficiencies.
The alternative conversion principle studied in the present
article could open a new direction in the field of waste energy
recovery. It differs fundamentally from conventional Knudsen
pumps in another important aspect: In the limit of infinite
Knudsen number no flow occurs, but a momentum transfer
does [8], which is the cornerstone of energy conversion. In
other words, thermal energy can be converted into mechanical
energy without any net motion of the gas.

At this point we refer to the monograph by Sone [1],
Sec. 2.5, for a comprehensive summary of the exact results
obtained for free molecular flow with Maxwell-type boundary
conditions. It is worth noting that with boundary conditions
of the Cercignani-Lampis type, a net flow is predicted even in
the limit of free molecular flow [19], contrary to the situation
with Maxwell-type boundaries.

For energy conversion we assume that in the system
sketched in Fig. 1 the upper wall, labeled 1, is allowed to
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FIG. 1. (Color online) One segment of the considered periodic
domain. Walls 1 and 2 are diffusely reflecting, being held at
temperatures T1 and T2, respectively. Wall 3 is a specularly reflecting
surface. P , P ′ are the periodic boundaries. For the extraction of
mechanical energy we will assume wall 1 to be able to move in a
tangential direction.

slide in a tangential direction with respect to the structured
surface below under the influence of forces exerted by the
molecular exchange between them. A realization of such a
periodic geometry could be an inner unstructured cylinder
rotating within a structured one or an unstructured disk rotating
above a structured one, where in both cases we assume the radii
of the cylinders or discs to be much larger than the length of a
unit cell L.

II. MOMENTUM AND ENERGY TRANSFER

In what follows, we will assume the Knudsen number to
be large enough that the phase-space distribution f (r,c) over
position r and velocity c is governed by the collisionless Boltz-
mann equation [1], c∇rf (r,c) = 0. If we restrict the analysis to
ideally diffuse and specular walls, f (r,c) can thus be found by
tracing backwards along −c till a diffuse boundary is encoun-
tered, where the phase-space distribution function is known.

We follow the notation found in [8]. In particular, the phase-
space distribution function for molecules reflected diffusely
from a wall at position r is

fr (r,c) = ν(r)F2D(r,c), (1)

F2D(r,c) = 2√
π

β3/2e−β(c−ur)2
, β = m

2Tr
, (2)

where ν(r) is the particle flux density, i.e., the number of
molecules colliding with the wall per unit length and time, m

the molecular mass, Tr the wall temperature (in energy units),
and ur the velocity of the wall. In this and the following, the
term “molecule” is used for the constituents of the gas, even
if it may be composed of atoms. The subscript r indicates
that temperature and velocity are different for different wall
segments. The normalization is such that, due to particle num-
ber conservation, ν(r) = ∫

c·n>0(c · n)fr (r,c)d2c, where n is the
inward unit normal vector at the wall. Conversely, the incoming
molecular flux is ν(r) = − ∫

c·n<0(c · n)fi(r,c)d2c, where the
inward phase-space density fi(r,c) = fr (r′,c′) is obtained by
tracing backwards along the particle path towards the diffusely
reflecting wall at position r′, taking into account each velocity

FIG. 2. (Color online) The reduced geometry is parametrized by
the two angles α and γ obeying the constraint π/2 > α > 0 and
α > γ > α − π/2, such that the geometry bounded by two walls
and their mirror images (with respect to wall 3) constitutes a convex
domain. We denote the mirror images of walls 1 and 2 as 1̄, 2̄.

reflection, c→c′ = c − 2cn′, at specularly reflecting walls
encountered on the way. The total phase-space distribution at a
wall is a combination of the inward and reflected distributions,
f (r,c) = {fi(r,c) for c · n < 0; fr (r,c) for c · n > 0}.

In the limiting case of a vanishing gap between the upper
and lower surfaces, H/L = 0, the complexity of the problem
is significantly reduced. Since wall 3 is ideally specularly
reflective, the backward-tracing procedure can be simplified
by considering the original geometry together with its mirror
image, as shown in Fig. 2, where 1̄ and 2̄ denote the
mirror images of walls 1 and 2, respectively. Each wall i is
characterized through its tangent and normal vector, ni and ti ,
its length l(i) and its origin r(i)

0 and can be parametrized by
r(i)
s = r(i)

0 + s l(i) ti , 0 � s � 1. In the following we describe
the positions along the walls by the parameters s and s ′. The
vector joining two positions (from s ′ to s) is rss ′ = rs ′ − rs ,
having length rss ′ and normal nss ′ = rss ′/rss ′ . Restricting
ourselves to a convex domain bounded by walls 1,2,2̄,1̄,
the inward particle, momentum, and energy fluxes can be
expressed as integrals over all other wall segments.

A. Inward particle, momentum, and energy flux

The inward fluxes at position rs on the wall read

⎧⎨
⎩

ν(rs)

Fi(rs)
εi(rs)

⎫⎬
⎭ = −

∫
c·n<0

(c · n)fi(rs ,c)

⎧⎨
⎩

1
(mc)(
1
2mc2

)
⎫⎬
⎭d2c (3)

=
∫

cos ϑ cos ϑ ′

rss ′
ν(rs ′ )

⎧⎨
⎩

G2(rs ′ ,ϑ ′)
mnss ′G3(rs ′ ,ϑ ′)

1
2mG4(rs ′ ,ϑ ′).

⎫⎬
⎭dls ′ ,

(4)

where the integration measure dls ′ of the line integral is a
shorthand for |∂s ′rs ′ |ds ′ with the integration running along
all points rs ′ on the boundary. Further, cos ϑ = nsns ′s and
cos ϑ ′ = ns ′nss ′ are the cosines of the angles between the
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connection and the wall normals, and

Gn(rs ′ ,ϑ ′) =
∫ ∞

0
cn F2D(rs ′ ,c nss ′ )dc (5)

specifies the moments of velocity for molecules emanating
from the wall at position rs ′ under the angle ϑ ′ with respect to
the wall normal. This function can be evaluated analytically
and is given in Appendix A. Note that it depends implicitly
on the wall velocity u(rs ′ ) = u(rs ′ )ts ′ at position rs ′ , which we
assume to be along the wall tangent ts ′ such that the geometry
does not change. The angle ϑ ′ is specified by sin ϑ ′ = ts ′nss ′

since by construction cos ϑ ′ � 0 due to the convexity of
the domain. We stress that a genuine 2D situation with
phase-space distribution (2) is considered; compared to a
quasi-2D situation, where the third velocity component has
been integrated out, this has no impact on the particle flux
density or momentum transfer, while the energy transfer
is reduced. Note, however, that all our conclusions are
transferable to a quasi-2D situation with slightly reduced
thermodynamic efficiencies due to the added energy transfer.

B. Outward momentum and energy flux

On all of the walls shown in Fig. 2 the molecules are
reflected diffusely. Correspondingly, we have

{
Fr (rs)

εr (rs)

}
=

∫
c·n>0

(c · n)fr (rs ,c)

{
(mc)(
1
2mc2

)}d2c (6)

=
{

mν(rs)
[√

π

2 c̄(rs) n + u(rs) t
]

1
2mν(rs)

[
3
2 c̄2(rs) + u2(rs)

]
.

(7)

Here we have introduced the notation c̄ = 1/
√

β = √
2T/m

as a measure for the molecular velocity, corresponding to
the most probable velocity of a molecule in the (three
dimensional) Maxwell-Boltzmann distribution at temperature
T (not to be confused with the average or root-mean-square
velocities).

Since on any specific wall segment the temperature and
tangential velocity are constant, we use the notation c̄i

and ui for the molecular and wall velocities on segment
i. Further we set Ûi = ui/c̄i , i.e., we measure the wall
tangential velocity in terms of the thermal velocity at
the wall.

The first line of Eq. (4) constitutes a Fredholm integral
equation of the first kind for the particle flux density ν(rs)
at all surfaces. Once the particle fluxes are known, heat and
momentum fluxes on the wall can be calculated directly from
Eqs. (4) and (7).

In this paper we solve the collisionless Boltzmann equation
both by a discretization of the Fredholm integral equation
as well as with a Monte Carlo method, as described in the
following two sections.

III. FREDHOLM INTEGRAL APPROACH

We split each wall into N equally large segments,
where segment n is 
(i)

n = {r(i)
s |(n − 1)/N � s � n/N}. The

integrals appearing in the first line of Eq. (4) are approximated
by 2

I (ji) =
∫


(i)

cos ϑ cos ϑ ′

rss ′
ν(rs ′ )G2(rs ′ ,ϑ ′)dls ′ (8)

≈
N∑

n=1

ν(i)
n

∫



(i)
n

cos ϑ cos ϑ ′

rss ′
G2(rs ′ ,ϑ ′)dls ′ , (9)

where ν(i)
n is a representative value for the particle flux

emerging from segment 
(i)
n of line i. Due to the reflec-

tion symmetry of the problem, we have within our choice
of parametrization ν(1̄)

n = ν(1)
n and ν(2̄)

n = ν
(2)
N−n+1. In matrix

notation, the Fredholm integral equation for the particle flux
can be approximated as(

ν(1)

ν(2)

)
=

(
K(11̄) K(12) + K(12̄)T

K(21) + K(21̄) K(22̄)T

)(
ν(1)

ν(2)

)
, (10)

where Tnm = δn,N−m+1 and K(ij ) is the appropriate transfer
matrix from wall j to wall i given in Eq. (9). The Fredholm
equation for the particle flux density is thus discretized to give
ν = λKν with eigenvalue λ = 1. Due to the approximation (9)
the spectrum of the matrix K will not exactly include the
eigenvalue λ = 1. However, it will contain a value very close
to 1, clearly separated from the other eigenvalues with |λ| < 1.
The corresponding eigenvector ν is the discretized particle flux
density, from which momentum and energy transfer can be
calculated.

IV. TEST PARTICLE MONTE CARLO METHOD

In the collisionless regime the particle flux density at the
boundary ν, and hence the full characterization of the system,
can also be obtained by what is usually referred to as the
test particle Monte Carlo (TPMC) method [20–22]. Here a
single particle’s path is traced within the geometry, obeying
the appropriate conditions at the boundaries, i.e., the specular
and diffuse reflection as well as periodic conditions. In the
ergodic case (for example, when sufficiently many diffuse
walls are present [23,24]), the distribution of the reflection
positions of the test particle gives the particle flux density
ν in the limit of N→∞ reflections. Contrary to the direct
Simulation Monte Carlo method (DSMC, [21]) the velocity
magnitude along each trajectory is unimportant for obtaining
ν. Moreover, considering the test particle as an ensemble
of molecules encompassing the entire velocity spectrum, the
same particle trajectory can be used to calculate momentum
and energy transfer by weighing each collision with the
appropriate moments of the velocity spectrum. Compared to
DSMC, this results in faster convergence for momentum and
energy transfer (although not for the particle flux density
as mentioned above). Compared to the Fredholm integral
method, needing convex domains with diffuse walls within

2Due to the integral kernel of the form ∼1/r , a direct approximation
by a Riemann sum leads to increasing errors at corners. Since the
particle flux ν itself is expected to remain finite and sufficiently
smooth at these positions, we instead use the approximation detailed
here.
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our approach, this method is more versatile and very simple
to implement since any shadowing by walls is automatically
taken care of by the routine identifying wall collisions. On the
downside, the computational effort is much higher compared to
the Fredholm integral approach. Details on the implementation
of the TPMC can be found in Appendix B.

V. WALLS AT REST

Before turning to the numerical evaluation, we would
like to review and expand on some of the results obtained
when assuming none of the walls are moving [8]. In this
case, the particle flux density ν(r) is constant [1,25] (see
Sec. 2.5 of [1] for an elegant proof of this statement) and
the integrals in Eqs. (4) and (7) can be evaluated analytically.
Note, in particular, that they do not depend on the angle
γ . For the flat wall 1 this is readily seen by noting that
the angles ϑ under which walls at temperature T1 or T2 are
seen (wall 1̄ and walls 2, 2̄, respectively) are independent
of γ , as long as α > γ > α − π/2.3 Due to momentum and
energy conservation, this must also hold for the structured wall
consisting of segments 2 and 3. By directly evaluating Eq. (3)
we obtain for the tangential and normal forces on the flat wall
1 [8],

F
(1)
t (u1 = 0) = Lmν√

π
(c̄2 − c̄1)

(
π

2
− α

)
sin(2α)

2
, (11)

F (1)
n (u1 = 0) = −

√
πLmν

2
(c̄2 + c̄1) + F

(1)
t (u1 = 0)

tan α
, (12)

and the transferred energy is

ε12(u1 = 0) = 3
4Lmν

(
c̄2

2 − c̄2
1

)
sin α. (13)

Note that as in [8] these equations remain valid when the flat
wall (1) does not directly rest on the structured one (2, 3)
since for the calculation only the momentum and energy flux
trough any parallel surface lying somewhere between the two is
relevant. It is also easy to see that no tangential force is exerted
on the top wall when wall 3, instead of being specular, is
diffuse and has the same temperature as wall 2. This is a simple
consequence of the fact that particles arriving from direction
ϑ at wall 1 have the same properties as particles seen under an
angle −ϑ , except that their tangential momentum is reversed
since fi is the same in both cases, cf. Eq. (3). Moreover, we
can generalize to a situation where wall 3 is partially diffuse
(with probability α̃) and partially specular (with probability
(1 − α̃), where α̃ is the accommodation coefficient), in which
case the full solution is obtained by simple superposition.

For a diffusely reflecting wall at rest the tangential force
is solely due to the impinging molecules since the outgoing
molecules are reflected symmetrically. On a moving wall
the reflected particles will contribute with −mνLu1 to the
tangential force. For an order of magnitude assessment of the
expected efficiency of our proposed device, let us assume that

3This even remains true when we replace wall 2 with an arbitrarily
outward curved diffuse wall at constant temperature, i.e., a curve that
has the same endpoints as the original one, but never crosses the
straight link between them into the domain.

this is the only relevant effect due to the moving unstructured
wall 1, i.e., we assume that the particle distribution ν along
the walls is not strongly affected and neglect the additional
momentum flux from the backscattering of particles from
the specularly reflecting wall. The harvested power P =
(F (1)

t (u1 = 0) − Lmνu1)u1 thus becomes maximal for umax
1 =

F
(1)
t (u1 = 0)/(2Lmν) and is Pmax = F

(1)
t (u1 = 0)2/(4Lmν).

Using the same line of reasoning we approximate the trans-
ferred energy by Eq. (13), and obtain as an estimate for the
maximum efficiency η = P/ε, as a function of the geometry
parameters and wall temperatures

ηmax = (π − 2α)2 cos2(α) sin α

12π

|(1 − c̄1/c̄2)|
(1 + c̄1/c̄2)

. (14)

Note that this expression is symmetric under the exchange
c̄1 � c̄2. Also note that for c̄2/c̄1 > 1 the tangential force
F

(1)
t > 0, and correspondingly the wall moves in direction

t1 for the extraction of mechanical energy, while for c̄2/c̄1 < 1
it has to move in the direction of −t1. In this expression
the thermal-velocity-independent prefactor has a maximum
at α ≈ 22◦ with a value of 4.8%.

For the above estimate we assume that, in total, the particles
leaving the unstructured wall 1 carry away a tangential
momentum of Lmνu1. However, as noted above, in particular
for small angles α, much of this momentum is reflected back
to wall 1, with hardly any change in its tangential component.
In fact, the particle flux from wall 2 to wall 1 (and vice versa)
is just νL sin α, as is readily seen when observing that for
γ = α all particles leaving wall 2 eventually arrive at wall 1
[note that the expression for the transferred energy, Eq. (13),
takes this correctly into account]. An alternative estimate for
the contribution of the reflected particles to the tangential
force on wall 1 is therefore −mν(L sin α)u1. Retracing the
steps leading to the efficiency estimate above and using the
alternative expression for the force leads to η̃max = ηmax/ sin α,
which has its maximum at α → 0, where the thermal-velocity-
independent prefactor becomes π/12 ≈ 26%.

We cannot stress enough that these simple estimates heavily
rely on the assumption of constant particle flux density
at the wall and only approximately take into account the
backscattering from the specular wall 2. As it will turn out,
some aspects of both estimates are recovered in different
regimes. However, generally both overpredict the obtainable
efficiency.

VI. NUMERICAL RESULTS

We now turn to the numerical results obtained in the case
of a moving wall. We will present the results normalized such
that they are independent of the geometric length scale L

and the average particle flux density at the walls, as well
as only implicitly dependent on the molecular mass m. The
relevant parameters are the two geometric angles α and
γ , the ratio of wall temperatures and the tangential velocity of
the unstructured wall 1. As before, the latter two will be given
in terms of the ratios involving the velocity scale c̄i of a particle
reflected diffusely from a wall at temperature Ti . Additionally,
the gap size H/L is relevant for results obtained within the
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FIG. 3. (Color online) Particle flux density at wall 1 (upper curve,
blue circles) and 2 (lower curve, red squares) for Û1 = u1/c̄1 = 0.1,
α = 25◦, γ = 0◦, and H/L = 0. Filled symbols were obtained using
the Fredholm integral approach with N = 30 grid points on each
wall. Open symbols were obtained with the TPMC method, using
N = 107 wall collisions and evaluated using 50 bins along each wall.
The inset shows the same situation with H/L = 0.1 calculated with
the TPMC method.

TPMC method, while it vanishes in our implementation of the
Fredholm integral method.

Unless explicitly stated otherwise, the results were obtained
with N = 30 grid points on each wall in the case of the Fred-
holm integral approach, and with N = 107 boundary collisions
in the case of the TPMC method. Under these conditions
the computation times are roughly 20 times shorter with the
Fredholm integral approach compared to the TPMC method.
Unless error bars are explicitly displayed, discretization errors
and data scatter are estimated to be of the order of or smaller
than the size of the data symbols used.

Figure 3 shows the particle flux density ν along the diffuse
boundaries, walls 1 and 2, with the unstructured wall 1 moving
in the direction of the tangent vector t1 shown in Fig. 2. The
flux density is normalized such that the integral of ν along
the diffuse walls is unity. As mentioned before, its magnitude,
ν̄ = ∫

ν(rs) dls , drops out when considering force and energy
ratios. In the case of a wall at rest, the flux distribution is
uniform, as dictated by the analytical result (not shown). As
soon as the wall starts to move, particles become concentrated
in the wedge region between wall 1 and the specular wall 3, as
one would expect, and diluted at the opposite end. At the same
time the flux density at the “leeward” wall 2 is decreased but
remains relatively homogeneous. Note that the particle flux
density is not continuous at the edge s1 = s2 = 0. For a wall
moving in the opposite direction the distribution on wall 1
is essentially reversed, while the “windward” wall 2 sees an
increased particle flux. Note also that the integration kernel
G2(r′,ϑ ′) is independent of the ratio of thermal velocities
c̄2/c̄1, which therefore is also true for the particle flux densities.

Our Fredholm integral approach forces us to consider the
idealized situation of a vanishing gap between the structured
surface and the moving wall, i.e., H/L = 0 in Fig. 1. This
requirement can easily be relaxed within the TPMC method
at the cost of a larger computational effort. The inset of Fig. 3
shows the particle flux density for H/L = 0.1. As one would
expect, the distribution on the unstructured wall 1 remains

H L
0
0.01
0.1

0.02 0.04 0.06 0.08 0.10 0.12 U1

0.02

0.04

0.06

0.08

0.10

Ft Fn

FIG. 4. (Color online) Ratio between tangential and normal force
on wall 1 as a function of wall velocity. c̄2/c̄1 = 2, α = 25◦, γ = 0◦,
and H/L varying. The full circles correspond to values obtained
with the Fredholm integral approach with N = 30 grid points on
each wall; the line is a linear fit to these data points. Open symbols
are calculated within the TPMC method with N = 107 boundary
collisions for different separations H/L of the moving wall from the
structured wall.

much flatter in this case and in particular the pile-up of particles
in front of the ridges of the structure is not nearly as strong as
in the case of a closed domain.

Knowledge of the particle flux density allows calculating
the forces on the moving wall 1, shown in Fig. 4 for different
relative wall velocities for a particular set of geometric
parameters and wall temperatures. To a good approximation
the tangential force decreases linearly with the wall velocity,4

which in turn means that the work extracted from the system
initially increases, but then goes through a maximum as the
wall velocity is increased. This is reflected in Fig. 5 in terms
of the thermodynamic efficiency η = Ftuw/ε. Note that the
maximum efficiency occurs at relative velocities Û1 = u1/c̄1

of the order of 0.1. Since at ambient temperatures the thermal
velocities are several 100 m/s, this means that the wall has
to move at a substantial speed. Both figures also show results
obtained within the TPMC method (open symbols) in cases
where H/L � 0. As expected, the reduced pile-up of particles
in front of the ridges results in larger tangential forces in the
case of a moving wall and hence larger efficiencies.

Repeating the procedure just outlined, we calculate the
maximum efficiency as a function of the angle α as shown
in Fig. 6 for a thermal velocity ratio of c̄2/c̄1 = 2. Similar
to our estimate [Eq. (14)] we find a strong dependence on
α. Within the Fredholm integral approach we have verified
that the dependence on the angle γ is very weak (with
variations smaller than the symbol size if −10◦ � γ � 20◦),
in accordance with our estimate [Eq. (14)]. The maximum
efficiency is obtained at values of α roughly between 15◦ and
20◦ for H/L = 0. In this case our estimate [Eq. (14)] is roughly
a factor of 1.5 higher than the calculated values. As expected,

4We remark that the deviation (ν/ν̄ − 1) of the particle flux density
from the value at Û1 = 0 is not linear in Û1. Nevertheless, for small
Û1 this is approximately true, which together with the linearity of the
outward momentum flux is the reason for the nearly linear decrease
of the force in Fig. 4.
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FIG. 5. (Color online) Efficiency of heat engine as a function of
wall velocity. c̄2/c̄1 = 2, α = 25◦, γ = 0◦, and H/L varying. The
full circles correspond to values obtained with the Fredholm integral
approach with N = 30 grid points on each wall. The (red) curve is
a spline fit from which the maximum efficiency and corresponding
wall velocity for the given geometry and wall temperatures is deduced
(green vertical line). Open symbols are calculated within the TPMC
method with N = 107 boundary collisions for different separations
H/L of the moving wall from the structured wall.

for H/L > 0 the maximum efficiency increases compared
to the case H/L = 0 due to the reduced accumulation of
particles close to the ridges of the lower surface, cf. Fig. 3. It is
interesting to note that for H/L = 0.1 the maximum efficiency
even increases above the estimate of Eq. (14) for small angles.
This can be attributed to direct backscattering for particles
emitted from the flat wall 1 at the specular wall 2, as already
noted in Sec. V. In that context, we initially assumed that
compared to the case of a moving wall all that happens is that
each particle carries away an additional tangential momentum
mu1, reducing the tangential force. However, for small angles
α, this tangential momentum is only reduced a little upon
specular reflection at wall 2, and much of it is returned to
wall 1.
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η

FIG. 6. (Color online) Maximum efficiency of the heat engine as
a function of α. c̄2/c̄1 = 2, γ = 0◦, and H/L varying. The full circles
correspond to values obtained with the Fredholm integral approach
with N = 30 grid points on each wall. Open symbols are calculated
within the TPMC method with N = 107 boundary collisions for
different separations H/L of the moving wall from the structured
wall. The dashed green line corresponds to the efficiency estimate of
Eq. (14).
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FIG. 7. (Color online) Maximum efficiency of the heat engine as
a function of the thermal velocity ratio c̄2/c̄1 for α = 5◦, γ = 0◦. The
green line corresponds to the efficiency estimate, Eq. (14). Filled and
open circles correspond to H/L = 0 (evaluated with the Fredholm
integral approach) and H/L = 0.1 (using the TPMC method, N =
107 collisions), respectively.

Finally, we investigate the dependence of the maximal
efficiency on the ratio of thermal velocities c̄2/c̄1 in Fig. 7
for shallow grooves (α = 5◦). We again compare the simple
analytical estimate, Eq. (14), with the numerical data obtained
within the Fredholm integral approach (H/L = 0) and the
TPMC method (H/L = 0.1). For c̄2/c̄1 > 1 wall 1 moves in
direction t1 for the extraction of mechanical energy, and vice
versa for c̄2/c̄1 < 1. As remarked previously, the analytical
estimate is symmetric under the exchange c̄1 � c̄2. From the
graph it can be seen that this is only approximately valid for the
numerically obtained data. This is partially due to the different
particle flux density distributions on the wall emerging in
the two situations. Moreover, the symmetry between the two
cases is broken by the fact that the wall velocity at maximum
efficiency scales with the difference in thermal velocities
c̄1 − c̄2, at least in our simple analytical estimate of Sec. V.
Hence the relative wall velocity Û1 = u1/c̄1, which strongly
influences the scattering behavior via the moments Gn of the
Maxwell-Boltzmann distribution, scales quite differently in
the two cases. Nevertheless, the simple estimate is able to
roughly reproduce the dependence of the efficiency on the
thermal velocities at the walls.

Obviously, with increasing temperature ratio between the
two walls the efficiency increases; according to the analytical
estimate up to a maximum value dictated by the geometry.

VII. ALTERNATIVE WALL STRUCTURES

As we have seen, for the considered thermal velocity
ratios the efficiency obtainable for the triangular configuration,
Fig. 1, remains below roughly 5%, even under optimistic
assumptions. The question arises to what extent this result
is generic for a geometry of a structured and an unstructured
surface at different temperature and whether we can do better.
Besides the triangle, another generic configuration of similar
complexity is the square groove with two specular walls,
cf. Fig. 8(a). From our intuition gained with the triangular
geometry, we expect that the highest efficiencies are obtained
for shallow grooves. For both the triangular and square groove
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FIG. 8. (Color online) Other generic geometries. (a) Square
grooves and (b) “ray guide”. Walls 1 and 2 are diffusely reflecting
walls held at temperatures T1 and T2, respectively; walls 3 and 4 are
specularly reflecting; dashed lines P and P ′ designate periodic pairs.
In (b) α denotes the “inclination angle” of the guiding structure.

cases the specular wall essentially serves as a “guide” for
particles leaving wall 2 towards wall 1 as well as a reflector
for particles from wall 1. As such, the efficiency obtained for
the two cases is expected to be very similar.

Let us briefly elaborate on the idea of a guiding structure
mentioned in the previous paragraph. Obviously, each particle
moving at a velocity c inevitably carries both momentum mc

and a kinetic energy of mc2/2, and the velocity spectrum
is dictated by the thermal Maxwell-Boltzmann statistics at
the wall. Since energy and momentum transfer are inherently
linked in this way, the best we can do for maximizing the force
on the unstructured wall 1 due to particles leaving wall 2, the
diffuse part of the structured wall, is to make these particles
hit wall 1 at large angles with respect to its normal. Such a
rectification of momentum can be achieved by a tapered trough
with specular walls shown in Fig. 8(b), which essentially
serve as a “ray guide,” directing particles from wall 2 and
reflecting particles from wall 1. Qualitatively, this structure
can be analyzed by multiple reflection of the geometry at the
specular walls, similarly as we have done for the triangular
geometry. Unfortunately, this procedure reveals that for small
inclination angles α of the guiding structure the effect this
geometry produces is qualitatively not much different from the
guiding that the triangular structure already provides at small
angles. Essentially, the forces due to incoming particles on a
specific surface are determined by the angle under which other
surfaces of a given temperature are seen from that wall, which
includes mirror images due to specular reflection. Therefore
the forces become largest when a hotter (or colder) surface is
seen under a small angle only, a situation already achieved with
the shallow triangle. A more detailed discussion, together with
some numerical calculations for this structure, can be found
in Appendix C. As an afterthought, we mention that with our
current methods we are unable to analyze a situation with two
structured walls moving relative to each other. It is possible
that in such a situation a higher efficiency can be reached.

VIII. CONCLUSION AND OUTLOOK

To conclude, we have analyzed a new mechanism for the
conversion of thermal energy into mechanical energy, relying
on the momentum transfer occurring in the free-molecular flow
regime. It was found that with the considered device significant
thermodynamic efficiencies should be achievable. Our analysis
reveals that the geometry and temperature dependence of the

obtainable efficiency can be estimated reasonably well by a
simple analytical expression. The litmus test for the efficiency
of a heat engine is, of course, a comparison to the Carnot
efficiency of an ideal heat engine. For a Carnot cycle run
between hot and cold reservoirs at Th and Tc, respectively, the
efficiency is ηC = 1 − Tc/Th = 1 − c̄2

Tc
/c̄2

Th
in our notation.

Using our efficiency estimate (14), the ratio of efficiencies
roughly scales as ηmax/ηC ∼ M(α)/(1 + c̄Tc

/c̄Th
)2, where

M(α) is the velocity-independent prefactor in Eq. (14). For
large temperature differences this ratio is dictated by M(α),
which stays below 0.05 for all angles. It is thus mainly this
geometrical factor that limits the possible energy extraction
efficiency of the present system. Along with the paramount
importance of the geometrical structure of the device comes
the expectation that with more complex geometries higher
efficiencies will be achievable. Specifically, setups with two
structured walls could be promising candidates. The analysis
and optimization of such devices, however, requires consider-
ing changes of the domain boundaries over time, a task that is
beyond the scope of the numerical methods employed here.

The analysis presented in this article can be applied to a
gas at rarefied conditions. However, when considering a gas
at standard pressure and temperature, the free-molecular flow
regime we have focused on corresponds to a very small device
dimension. At standard conditions, and taking into account
the state-of-the-art of nanostructuring techniques, a Knudsen
number of the order of one gives a more realistic scenario
than free-molecular flow. This raises the question on how our
results would be modified when considering the transition flow
regime. To answer this question, one would have to solve
the Boltzmann equation using an appropriate method such
as DSMC. Since the velocity of the corresponding thermally
induced flow is very small compared to the molecular velocity,
such simulations are computationally very expensive [8]. The
computational challenges become even more severe when
parameter or optimization studies have to be conducted, as
in the present article. For this reason we had decided to limit
our studies to the free-molecular flow regime.

To get a rough idea of how the thermodynamic efficiency
changes when going from the free-molecular flow to the
transition flow regime, the following line of arguments can be
employed. According to Eq. (14), the maximum mechanical
power scales approximately like Pmax ∝ (F (1)

t )2. From the
DSMC simulations of [8] it is known that the tangential
force reduces to about 2/3 of the free-molecular flow value
(Kn → ∞) when considering a Knudsen number of 1. On the
other hand, from Monte Carlo simulations of heat transport in a
thin nitrogen layer between two surfaces at fixed temperatures,
it can be deduced that the heat flux decreases to about 68%
when reducing the Knudsen number from 10 to 1 [26]. In that
case the Knudsen number was varied by increasing the distance
between the parallel plates. When studying the transition be-
tween Kn → ∞ and Kn = 1, an even larger reduction factor is
expected. Therefore, we find that upscaling the model domain
to dimensions characteristic for a Knudsen number of 1 at
standard conditions comes along with two different effects that
roughly cancel each other when computing the thermodynamic
efficiency: A decrease of the tangential force and a decrease of
the heat flux. From these very simplistic arguments we would
expect that the thermodynamic efficiency in the transition-flow
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regime is not much different from that in the free-molecular
flow regime; however, in the continuum limit the efficiency
must certainly vanish. Clearly, more quantitative studies based
on a numerical solution of the Boltzmann equation are needed
to answer these questions conclusively.
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APPENDIX A: MOMENTS OF VELOCITY, Gn(rs′,ϑ ′)

In this section we evaluate the function Gn(rs ′ ,ϑ ′) defined
in Eq. (5). As specified in Sec. II, we use nss ′ = (ns ′ cos ϑ ′ +
ts ′ sin ϑ ′), where ns ′ and ts ′ are the normal and tangential unit
vectors at position rs ′ on the boundary. Implicitly, Gn(rs ′ ,ϑ ′)
depends on both u(rs ′ ), the tangential wall velocity at rs ′ ,
and c̄(rs ′ ), the thermal velocity scale of a molecule reflected
at rs ′ . For convenience, we introduce their ratio, Û (rs ′ ) =
u(rs ′ )/c̄(rs ′ ). Then

Gn(rs ′ ,ϑ ′) =
∫ ∞

0
cn F2D(rs ′ ,c nss ′ ) dc

= e−Û (rs′ )2
c̄(rs ′ )n−2

√
π

{
�

(
n + 1

2

)

× 1F1

[
n + 1

2
;

1

2
;

(
Û (rs ′ ) sin ϑ ′

)2]

+ (Û (rs ′ ) sin ϑ ′)n�

(
n

2

)

× 1F1

[
n

2
+ 1;

3

2
; (Û (rs ′ ) sin ϑ ′)2

]}
. (A1)

Here 1F1(a; b; z) is the Kummer confluent hypergeomet-
ric function [27], which has the series representation
1F1(a; b; z) = ∑∞

n=0
(a)nzn

(b)nn! , with (c)n = �(c + n)/�(c) being
the rising factorial (or Pochhammer function) (c)0 = 1, (c)n =
c(c + 1)(c + 2) · · · (c + n − 1).

More familiar forms can be obtained by expanding
Gn(rs ′ ,ϑ ′) in Û (rs ′ ) as follows:

Gn(rs ′ ,ϑ ′)

≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 +

√
4
π
Û (rs ′ ) sin ϑ ′ for n = 2,

c̄(rs ′ )
(

1√
π

+ 3
2 Û (rs ′ ) sin ϑ ′) for n = 3,

c̄(rs ′ )2
[

3
4 + 4√

π
Û (rs ′ ) sin ϑ ′

− 3
4 (Û (rs ′ ))2(1 − 5 sin2 ϑ ′)

]
for n = 4.

(A2)

Note that since the lowest order correction to the energy
transfer scales as ∼ u2

i , the transfer function G4 needs to be
expanded up to second order in Û (rs ′ ). For our numerical
calculations within the Fredholm integral approach, we use the
analytical form (A1), which can be simplified for the specific
values of n. However, for the TPMC method we adopt the
series expansion (A2) for calculating the momentum and en-
ergy transfer to reduce the computational effort. Therefore we
limit the relative wall velocity to Û � 0.1 for all calculations

using the TPMC method (which, as it turns out, is not a strong
restriction).

APPENDIX B: DETAILS ON THE TEST PARTICLE
MONTE CARLO METHOD

As mentioned in the main text, the test particle Monte Carlo
method is easily implemented and consists of a straight-line
ray-tracing routine for movement from one boundary to the
next and an implementation of the boundary conditions,
specifying the trajectory after collision with a boundary.

As boundary conditions, we implement diffuse and specular
reflection as well as periodicity. Under specular reflection
the normal component of a particle’s momentum is reversed,
while the component tangential to the boundary is con-
served. Periodic boundaries result in a translation of the
particle position while the momentum is conserved. For
diffuse reflection, we note that the normalized particle flux
density Pr(c) ≡ (c · n)fr (r,c)/ν(r) can be interpreted as the
probability of a particle being emitted with velocity c from
the wall. This can be written as a product of the probability
densities for the normal and tangential velocity components
(with c = cnn + ct t; cn ∈ R+, ct ∈ R)

Pr(c) = cnF2D(r,c) = Pn
r (cn)Pt

r(ct ), (B1)

Pn
r (cn) = 2βcne

−βc2
n , (B2)

Pt
r(ct ) =

√
β/π e−β(ct−u)2

, (B3)

where the wall moves at velocity u in the tangential direction,
and n, t are the unit wall normal and tangential vectors at
position r. Based on the inverse transformation sampling
method (inversion of the cumulative distribution function [28])
and on the Box-Muller transform for the tangential compo-
nent [28], efficient algorithms exist for generating velocities
in accordance with these distributions (Weibull and normal).
Following [29], the random variables Cn = √− ln X/

√
β and

Ct = (
√− ln Y cos(2πZ)/

√
β + u) are distributed according

to Eqs. (B2) and (B3) when X, Y , and Z are random variables
uniformly distributed in the interval [0,1].

For the TPMC method only the normalized velocity vector
ĉ = c/c matters. To calculate the momentum and energy each
ray carries away under the angle ϑ = arcsin(ct/c) from a
diffuse wall, the moments 〈cn〉r(ϑ) are needed. In terms of
the angle and velocity magnitude ϑ and c, the scattering
kernel corresponding to Eq. (B1) becomes [with c(ϑ,c) =
(n cos ϑ + t sin ϑ)c; ϑ ∈ [−π,π ], c ∈ R+]

pr(ϑ,c) = cos ϑ c2 F2D[r,c(ϑ,c)], (B4)

which is the probability of a particle being emitted into angles
between ϑ and ϑ + dϑ with respect to the wall normal and
with velocity magnitudes between c and c + dc. Thus

〈cn〉r(ϑ) =
∫ ∞

0
cn pr(c|ϑ) dc =

∫ ∞

0
cn pr(ϑ,c)

pr(ϑ)
dc (B5)

= cos ϑ

pr(ϑ)

∫ ∞

0
cn+2 F2D[r,c(ϑ,c)] dc, (B6)

053003-8



ENERGY HARVESTING THROUGH GAS DYNAMICS IN THE . . . PHYSICAL REVIEW E 89, 053003 (2014)

where we have used the definition of the conditional prob-
ability pr(c|ϑ) = pr(ϑ,c)/pr(ϑ) and marginal probability
pr(ϑ) = ∫ ∞

0 pr(ϑ,c) dc. Since 〈c0〉r(ϑ) = 1 and with the defi-
nition [compare to Eqs. (5) and (A1)]

Gn(r,ϑ) =
∫ ∞

0
cn F2D[r,c(ϑ,c)] dc, (B7)

we further get pr(ϑ) = cos ϑ Gr,2(ϑ) and finally

〈cn〉r(ϑ) = Gn+2(r,ϑ)

G2(r,ϑ)
. (B8)

Note that these moments are conserved on specular reflection
and at periodic boundaries and thus will simply be carried
further along to the next diffuse boundary. Also note that
restricting the attention to rays, i.e., only velocity magnitudes
play a role during tracing, only stationary states can be
simulated. In particular no normal wall movement is allowed
since that changes the geometry.

Finally, we note that for a stationary wall the probability
distribution of scattering angles is Lambert’s law, pr(ϑ) =
cos(ϑ)/2. This can be effectively sampled using the inverse
transformation sampling method, i.e., the random variable
� = arcsin X will be distributed according to Lambert’s law
when X is a random variable uniformly distributed in the
interval [−1,1]. Unfortunately, in the case of a moving wall
no analytic inverse of the cumulative distribution function
of pr(ϑ) is known and the inverse transformation sampling
method can only be used approximately, e.g., by a series
expansion of pr(ϑ) in the small parameter Û (r). However,
the computational cost of this method turns out to be high
(already Lambert’s law requires the inverse of a trigonometric
function) and the method of independently sampling a normal
and tangential velocity component described above is faster
and more exact.

To complete the discussion of the Monte Carlo approach
we remark that in the limit of infinitely many traced rays,
N → ∞, each ray in the whole set of rays can be thought of
as being distributed according to the probability density

p(r,ϑ,c) = p(r)p(ϑ,c|r), (B9)

for rays originating at some point r on the diffuse boundary.
The conditional distribution p(ϑ,c|r) is given by Eq. (B4)
while the r distribution is generated by the ray-tracing method
in the limit of N → ∞

p(r) dr ∼ ν(r) dr ∼ Ndr (r)/N, (B10)

where Ndr (r) is the number of wall collisions within a region
of width dr around r, and ν(r) is the particle flux density.

Due to the stochastic nature of the sampling method
in TPMC, with N wall collisions the convergence is only
∼1/

√
N , potentially requiring a large number of collisions.

In the Fredholm integral approach with N bins on each wall
the convergence is ∼1/N while the effort rises ∼N2, scaling
even worse than the Monte Carlo method. However, as seen in
Fig. 3, a smooth wall distribution is easily obtained for N = 30
grid points on each wall within the integral approach, while a
comparably smooth distribution takes N ∼ 107 collisions for
the TPMC.

APPENDIX C: “RAY GUIDE” GEOMETRY

In Sec. VII we surmized that an optimally efficient heat
engine should eject molecules from a hot surface towards
a cold surface in such a way that the particle’s momentum
is absorbed mainly tangentially to the receiving surface. A
promising geometry to accomplish this is the wedge-shaped
“ray guide” shown in Fig. 9(a). Here any molecule leaving the
diffuse wall 2 is guided between the two specular walls 3 and
4 towards the second diffuse wall 1. Due to the tapering of the
wedge the momentum of the molecules will be aligned with
the wedge [along the double-sided arrow in Fig. 9(a)], and so
the momentum transfer from wall 2 to wall 1 can be made to
occur almost tangentially to wall 1. Similarly, particles leaving
wall 1 into the trough have a high probability of being reflected
unless they are aimed almost directly at wall 2. If for the sake
of the argument we assume for the moment that T1 � T2, i.e.,
the energy and momentum leaving wall 1 can be neglected,
we might hope to have a suitable “momentum rectifier.”

To qualitatively analyze this system we proceed similarly as
for the wedge-shaped geometry. First we mirror the geometry
repeatedly along the specular walls to obtain the “rosette”
shown in Fig. 9(b). Since we are interested in the net
momentum and energy transfer at wall 1, which can be
calculated via Eq. (3), it is not necessary to complete the rosette
since it is enough knowing the temperature (and particle flux
density) at the wall under a particular line of sight to calculate
the transfer. When all walls are at rest the particle flux density
on all walls is constant, and it is not too hard to calculate the
force on wall 1.

However, let us continue the qualitative analysis with T1 �
T2. From Fig. 9(b) we deduce that the force becomes large,
when the “inner polygon” occupies much of the viewing angles
to the left, while the viewing angles to the right are shielded
by the “outer polygon.” Such a situation is achieved for small
angles α and a sufficiently large “inner polygon.” However, this
situation is qualitatively not much different from the situation
in our triangular geometry for small opening angles. It is thus
expected that the forces and efficiencies will not greatly deviate
from the ones we have found in the detailed analysis of the
triangular geometry. A similar reasoning can be performed
for the opposite case of T1 � T2, where now we would want

FIG. 9. (Color online) (a) The “ray guide” geometry is
parametrized by the angle α and the three lengths L, R, and D.
Walls 1 and 2 are diffusely reflecting, being held at temperatures T1

and T2, respectively. Walls 3 and 4 are specularly reflecting walls. (b)
Rosette obtained by repeatedly mirroring the “ray guide” geometry
at the specular walls 3 and 4.
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FIG. 10. (Color online) Maximum efficiency of the “rguide” heat
engine as a function of the geometry parameters for α = 9◦. c̄2/c̄1 =
2. The base parameter set is R/L = 4, D/L = 0.1. Results using the
TPMC method with N = 107 boundary collisions.

2α ≈ π/2, and again a large “inner polygon” such that the
right field of view is largely occupied by the hot wall while the
left field of view is “cold”.

To underpin this simple qualitative argument, we have
calculated the efficiencies that can be obtained using this “ray
guide” geometry for different angles and lengths D/L and
R/L, cf. Fig. 10. To be able to compare to the triangular
geometry we again use the ratio c̄2/c̄1 = 2. As expected,
varying α at fixed D/L = 0.1 and R/L = 4, we see that the
efficiency decreases drastically with larger angles, illustrating
the momentum-rectifying nature of the geometry [Fig. 10(a)].
Next, using a small angle α = 9◦, we vary D/L, illustrating
the importance of a large “inner polygon” in the rosette of
Fig. 9(b). Note that the efficiency approximately saturates
for D/L ≈ 0.1, close to D/L = sin α ≈ 0.16, where wall
2 becomes the projection of wall 1 under the angle α

[Fig. 10(b)]. Due to this fact the efficiency does not strongly
depend on R/L for this relatively large value of D/L = 0.1
[Fig. 10(c)]. This can be explained by noting that in Fig. 9(b)
the “radius” of the “inner polygon” scales approximately
as RD/R ≈ (L sin α/D − 1)−1 for not too large tapering
angles, showing that while changing the distance of the
inner polygon its size is scaled accordingly. Thus the angle
under which the “inner polygon” is seen from wall 1 remains
the same.

As expected from our qualitative analysis, the efficiency
remains at the same order of magnitude as for the tri-
angular geometry, analyzed throughout the main part of
the paper.
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