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Influence of disjoining pressure on the dynamics of steadily moving long bubbles
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We study the influence of disjoining pressure for moving long bubbles inside cylindrical capillaries. Towards
that end, consistent thin-film equations, for the annular region separating the bubble from the channel surface,
are presented with specific emphasis on three different attributes: (a) the van der Waals interaction, formalized
by the classical Lifshitz form of disjoining pressure; (b) the nonuniformity in film thickness, accommodated by
the necessary corrections in the disjoining pressure; and (c) the electrostatic component of disjoining pressure,
reminiscent of the electrostatic interactions in the presence of surface charges. The present thin-film analysis
appositely uncovers the existence and the breakdown of the two-thirds power law for minimum film thickness
behavior. This is attributed to the alteration in the characteristic length scales governing the underlying physics, as
quantitatively established by our consistent scaling analysis. In the breakdown regimes, the characteristic length
scales are found to be composed of the suitable combinations of the capillary number and the physics driven
intrinsic length scales. The characteristics of the breakdown regime reported by us appear to match excellently
with reported experimental data in the low capillary number regime. Towards unveiling the possible implications
of slope and curvature dependence of disjoining pressure, our analysis reveals that the consequent correction term
endorses an order two-thirds power of the capillary number contribution without alerting the governing length
scales. The subsequent asymptotic analysis reveals that this correction may be neglected to the leading order
approximation. Finally, we consider the electrostatic component of the disjoining pressure which may be realized
in the presence of surface charges. Our analysis reveals that the significance of the electrostatic interaction is
realized over a very small capillary number regime, leading towards the departure from the two-thirds power law
type behavior. Reasonably good agreement is obtained with reported experimental data over this regime.
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I. INTRODUCTION

The dynamics of long gaseous bubbles in cylindrical
capillaries has been a problem of immense interest to the
research community, primarily attributable to a plethora of
relevant practical applications and the rich underlying physics
involved [1–17]. While the broad characteristic features
describing the underlying phenomena have been successfully
uncovered by many researchers on employing the traditional
thin-film based approach [1,3,6,8,9,11,13,16], several of the
consequent inferences have turned out to be questionable in
case the length scales under purview demand an additional
accounting of small-scale interfacial interactions that may best
be represented in terms of the so-called disjoining pressure
[17–24] from a pseudo continuum perspective. In fact, in sev-
eral experimental studies [2,13,25], researchers have attributed
plausible deviations from theoretical predictions to a possible
nontrivial interplay of the disjoining pressure related effects.
However, more studies need to be made on thin-film analysis
of the dynamical evolution of bubbles in narrow confined
geometries, with a comprehensive accounting of the various
facets of disjoining pressure that may become important when
the interfacial length scales approach molecular dimensions.

Here we aim to capture the various consequences of
disjoining pressure on the dynamical evolution of long gaseous
bubbles in cylindrical capillaries, by following the thin-film
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approach. In the disjoining pressure formalism, we specifically
emphasize three distinctive interfacial attributes: (a) the van der
Waals interaction, formalized by the classical Lifshitz form of
disjoining pressure [17,21,22,26]; (b) the nonuniformity in
film thickness, accommodated by the necessary corrections in
the disjoining pressure [19,24]; and (c) the electrostatic com-
ponent of disjoining pressure, reminiscent of the electrostatic
interactions, in the presence of surface charges [20,23,27]. Our
analysis aptly uncovers, in perfect agreement with previous
reported observations, the existence and the breakdown of the
celebrated two-thirds power law based estimation [2]. Our
results, in effect, reveal that unlike the classical Bretherton
scaling [1], the scaling laws derived by taking disjoining
pressure into account match excellently with the experimental
data in the low capillary number regime, and asymptotically
match with the Bretherton scaling as the capillary number is
progressively increased. Following this, we bring out the ex-
istence of different characteristic length scales under different
physical situations. With consistent accounting of those length
scales, we unveil the proper functional dependency of the film
or bubble profile on the inherent governing parameters, leading
towards uncovering the underlying physics, in satisfactory
agreement with other reported theoretical and experimental
evidences [28–30]. Further, our results demonstrate that while
the slope and curvature dependence of disjoining pressure is
unlikely to alter the essential physics of interest, incorporation
of the electrostatic component of the disjoining pressure may
indeed turn out to be important in dictating the interfacial
profile. By accounting for the later effects, we effectively
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delineate that the dynamics of bubbles in the presence of
surface charge is primarily dictated by the traction generated
on the bubble interface, in the two-thirds power law regime.
However, in the very low capillary number regime, the
electrostatic component seems to indeed play a significant role,
yielding reasonably good agreement between our theoretical
predictions and reported experimental data.

II. THE THIN-FILM MODEL

We consider a long gaseous bubble moving with a speed
of U inside a cylindrical capillary of radius R, within another
immiscible liquid medium of dynamic viscosity μ, as shown in
Fig. 1. Over the axial extent, the bubble assumes a cylindrical
shape. We focus our attention on the low capillary number
Ca = μU/σ (here σ is the coefficient of surface tension) limit.
Under this condition, the bubble shape can be approximated
by a hemispherical frontal cap connected to the cylindrical
zone through a transition zone, earmarked as a region of rapid
curvature change [1–3,6,8,9,11,13,14]. In a perfect wetting
scenario, there exists a thin-film region of the background
liquid in between the bubble interface and the channel surface
[1–3,6,8,9,11,13,14], as highlighted in the magnified portion
of Fig. 1.

The basic transport equation over the thin-film region can
be given as

Momentum:
∂p

∂x
= μ

∂2u

∂y2

Continuity:
∂

∂x

∫ h(x)

0
udy = 0

⎫⎪⎪⎬
⎪⎪⎭ , (1)

where u and p represent the velocity along the x direction,
and pressure, respectively. To supplement Eq. (1), the no-slip
boundary condition at the channel surface is considered
throughout. To incorporate the surface charge effect, it is usual
to add some surfactant that allows the accumulation of charges
over the bubble surface, in addition to the charge accumulation
over the channel surface [13]. Over the surfactant-laden bubble
interface, we consider the no-slip boundary condition [13],

FIG. 1. (Color online) Schematic of a long gaseous bubble mov-
ing with speed U inside a cylindrical capillary of radius R, within
another immiscible liquid medium. In the magnified portion, we show
the thin-film region. The reference frame x-y moves with the bubble.
Thus, with respect to the x-y frame, the bubble appears motionless,
but the channel moves with speed U in the opposite direction, as
indicated in the magnified portion. Here h(x) represents the thin-film
profile and h0 represents the minimum film thickness.

and zero shear stress condition otherwise. The contribution of
pressure can be obtained from normal stress balance over the
interfacial region as

p = p0 − σ
∂2h

∂x2
+ �, (2)

where p0 denotes the pressure from the gas side and σ∂2h/∂x2

denotes the Young-Laplace pressure jump across the interface.
The term � in Eq. (2) denotes the pressure contribution due
to additional interfacial interactions and energetics. Using
physics driven specific forms of �, we solve Eqs. (1) and
(2) to obtain the situation specific thin-film equations which
serve as the models for the subsequent analyses.

III. INFLUENCE OF THE VAN DER WAALS
INTERACTION

The van der Waals interaction has its molecular origin.
However, its implications from a continuum perspective
may be brought out from the fundamental principle of free
energy minimization over the interfacial region. This results
in disjoining pressure (�) contribution in the normal stress
balance as [17,21,22,26]

p = p0 − σ
∂2h

∂x2
− AH

6πh3︸ ︷︷ ︸
�=�

, (3)

where AH is the Hamaker constant. This form of � is
often elucidated as the Lifshitz form of disjoining pressure
[17,21,22,26]. With this argument, along with Eq. (1), one can
obtain the thin-film equation of the form

∂

∂x

(
h3 ∂3h

∂x3

)
= 3Ca

∂h

∂x
+ R2

m

∂

∂x

(
1

h

∂h

∂x

)
, (4)

with Rm = √|AH |/2πσ , popularly known as the molecular
length scale [28,29]. From Eq. (4) we can say that taking
disjoining pressure into account, the thin-film profile can be
given in a functional form as h ≡ h (x; Rm,Ca), depending on
both intrinsic molecular length scale (Rm), representing the
physics driven intrinsic length scale for the physical paradigm
under consideration, and the capillary number Ca.

First, we solve Eq. (4) with the initial condition

lim
x→−∞ h → h0, and lim

x→−∞
∂nh

∂xn
→ 0,

for n � 1 being a real integer. (5)

The solution is iteratively matched with the condition

lim
x→∞

∂2h

∂x2
→ 1

R
. (6)

The variation of h0/R, so obtained, is plotted against Ca
in Fig. 2. For the sake of comprehensiveness, we present
Chen’s experimental observations, with soltrol-220 and air
bubbles [2]. In the same figure, we also indicate the two-thirds
power law based estimation [1] h0/R = 0.643(3Ca)2/3. The
dotted line in the figure represents the solution of rescaled
Eq. (16); details regarding its implication are delineated a
posteriori. First of all, from Fig. 2, one can make a very
important inference: The minimum film thickness behavior
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Chen’s experiment  [2] 
Air 
Soltrol-220 

Ca

0h R

( )2 3
0 0.643 3Cah R =

Thin film Eq. (4)  
 Rescaled thin film Eq.  (16) 

FIG. 2. (Color online) Variation of h0/R with Ca.

obeys the two-thirds power law in a somewhat higher capillary
number regime (Ca > 10−4) whereas a marked departure from
that, in the very low capillary number regime (Ca � 10−4),
is evident. From the perfect agreement between the reported
experimental observation and the present thin-film model, the
enticing influence of the van der Waals interaction is apparent.
Thus, we denote this breakdown regime as the van der Waals
interaction regime. It is now, therefore, imperative to unveil the
underlying physics leading to such behavior, as we endeavor
in the subsequent sections.

A. The two-thirds power law regime

The two-thirds power law regime, following Bretherton
scaling analysis [1], is governed by the length scales h0 and
h0/(3Ca)1/3 for the variables h and x in Eq. (4). Using these
scales we obtain the normalized thin-film equation as

∂

∂η

(
F 3 ∂3F

∂η3

)
︸ ︷︷ ︸

�1

= ∂F

∂η︸︷︷︸
�2

+	
∂

∂η

(
1

F

∂F

∂η

)
︸ ︷︷ ︸

�3

, (7)

where η = x (3Ca)1/3/h0, F (η; 	) = h/h0. The factor 	 =
R2

m/h2
0 (3Ca)2/3 defines the order of magnitude of the disjoining

pressure contribution due to van der Waals interaction 	 =
O (�3). Considering AH ≈ 10−20 J and σ = 0.072 J/m2 (for
air bubble in water) [17,29], we estimate the possible values
of 	. For the sake of comprehensiveness, in Fig. 3, we plot
the variation of 	 with Ca, as obtained from the solution of
Eq. (4), Chen’s [2] experimental data, and as predicted by the
two-thirds power law. From the figure, it is noteworthy that
	 � 1 in the two-thirds power law regime. It is also evident
that 	 approaches O (1) as the breakdown is approached,
and finally assumes a very high value in the van der Waals
interaction regime.

Therefore, in this two-thirds power law regime, we can
expand the film profile function F (η; 	) as

F (η; 	) = F0(η) + 	F1(η) + O(	2). (8)

Ca

Γ

The two-third 
power law 

regime 

The van der Waals 
interaction regime 

FIG. 3. (Color online) Variation of 	 with Ca. The markers and
the line styles have the same meaning as in the Fig. 2. The two-
thirds power law and the van der Waals interaction regimes are also
highlighted in the figure. However, the demarcation between these
two regimes is not as sharp as shown here; the present demarcation is
to be considered as the representative demonstration of the essential
feature.

With this argument the thin-film equation Eq. (7) reduces
to the forms, at different orders, as

O(	0) :
∂

∂η

(
F 3

0
∂3F0

∂η3

)
= ∂F0

∂η
,

O(	1) :
∂

∂η

(
F 3

0
∂3F1

∂η3
+ 3F 2

0 F1
∂3F0

∂η3

)

= ∂F1

∂η
+ ∂

∂η

(
1

F0

∂F0

∂η

)
. (9)

Evidently, the leading order approximation represents the
classical Bretherton-Landau-Levich formalism. Following this
Eq. (9) and the corresponding scaling, one can obtain, to the
leading order approximation,

h0

R
=

(
lim

η→∞
∂2F0

∂η2

)
(3Ca)2/3 . (10)

Upon solving Eq. (9), one can further obtain
limη→∞ ∂2F0/∂η2 = 0.643, which recovers the celebrated
two-thirds power law [1]. Thus we have seen that the validity of
Bretherton scaling estimations [1] and subsequent two-thirds
power law based estimation of minimum film thickness behav-
ior is decided by the order of magnitude of 	 = R2

m/h2
0(3Ca)2/3,

essentially defining the contribution of disjoining pressure.
However, as 	 approaches O (1) or higher values, the thin-film
equation (7) cannot be reduced to the Bretherton-Landau-
Levich formalism. Moreover, in the very low capillary number
regime (Ca � 10−4), we have 	 � 1. Thus, Eq. (7) essentially
gets reduced to R2

m∂(h−1∂h/∂x)/∂x ≈ 0, in dimensional form.
This consideration is nevertheless unphysical, since it shows
that the disjoining pressure effect is not even balanced by
surface tension. This is suggestive of a very important aspect:
The underlying physics may be governed by characteristic
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length scales that are somewhat different from the traditional
physical scales considered a priori.

B. The van der Waals interaction regime

Our anticipation regarding the alteration in bubble dynam-
ics due to the alteration in the characteristic length scales
requires consistent scaling analysis and subsequent unfolding
of the observed behaviors. For consistent scaling analysis, first
we begin with the stretching transformation of the form

x = 
xη and h = 
hF, (11)

with η and F as the transformed variables where 
x and

h are the corresponding scales for stretching. With this
consideration and after some manipulation, the normalized
thin-film equation reads as

∂

∂η

(
F 3 ∂3F

∂η3

)
︸ ︷︷ ︸

�1

= 3Ca

(

x


h

)3
∂F

∂η︸ ︷︷ ︸
�2

+ R2
m
2

x


4
h

∂

∂η

(
1

F

∂F

∂η

)
︸ ︷︷ ︸

�3

.

(12)

In long bubble dynamics, we must have

O (�1) = O (�2) ⇒ 3Ca

(

x


h

)3

= 1 ⇒ 
h


x

= , (13)

where = (3Ca)1/3. Note that, following Bretherton’s ap-
proach [1] by assuming 
h = h0 and 
x = h0/ , criterion
(13) is automatically satisfied, balancing surface tension
effect with viscous effect. However, for disjoining pressure
contribution to be effective, there must be a balance between
the contributions of disjoining pressure with the other two
effects. This essentially denotes

O (�1) = O (�3) ⇒ 
2
h


x

= Rm. (14)

Using Eqs. (13) and (14), we finally obtain the relevant
characteristic length scales as


h = Rm/ and 
x = Rm/
2
. (15)

Note that, from Eq. (15), the characteristic lengths are
now dependent on both intrinsic molecular length scale (Rm)
and capillary number (Ca). Thus, Eq. (15) represents the
characteristic length scales governing the underlying physics,
that are obtained from suitable combination of capillary
number and the physics driven intrinsic length scales (the
molecular length scale Rm for the present case).

With this argument, the normalized thin-film equation (12)
reads as

∂

∂η

(
F 3 ∂3F

∂η3

)
= ∂F

∂η
+ ∂

∂η

(
1

F

∂F

∂η

)
. (16)

Using Eq. (16) and invoking the definition = (3Ca)1/3,
the functional form of the thin-film profile (or the bubble
profile), can now be given as

h (x; Rm,Ca) = Rm

(3Ca)1/3
F

[
x

Rm

(3Ca)2/3

]
. (17)

TABLE I. The characteristic length scales at different regimes,
with consideration of van der Waals interaction in the disjoining
pressure.


h 
x

Two-thirds power law regime h0 h0/(3Ca)1/3

van der Waals interaction regime Rm/(3Ca)1/3 Rm/(3Ca)2/3

Equation (16) aptly retains the contribution of van der
Waals interaction with consistent order of magnitude. Now
we solve Eq. (16) numerically, following the same approach
as employed for Eq. (4), with the criteria (5) and (6). The dotted
line in Fig. 2 is from the solution of Eq. (16). The matching
of this solution with the solution of the original thin-film
equation (4) and Chen’s [2] experimental observations is
suggestive of the accuracy of the present scaling analysis to
bring out the essential physics of interest. Since the scaling
analysis is valid for the van der Waals interaction regime,
the estimation from Eq. (16) departs from the estimation
from both the original thin-film equation (4) and Chen’s [2]
experimental observations, as the two-thirds power law regime
is approached.

With the aforementioned arguments and comparisons in the
background, therefore, we can postulate that taking the van der
Waals interaction into account in the disjoining pressure, the
long bubble dynamics is governed by different characteristic
length scales, as indicated in the Table I, for the sake of
comprehensiveness. In a somewhat higher capillary number
limit, the Bretherton scaling analysis seems to be valid.
This eventually makes the disjoining pressure contribution
negligible. Thus, to the leading order approximation, one
can recover the exact Bretherton-Landau-Levich formalism,
leading towards the two-thirds power law based estimation. In
the very low capillary number regime, on the other hand, the
bubble dynamics is governed by completely different length
scales, as obtained from a suitable combination of the intrinsic
molecular length scale and the capillary number, as shown in
Table I. With this accounting, one can properly uncover the
thin film, and hence the long bubble, dynamics in the van der
Waals interaction regime.

C. Benchmarking with dynamic contact angle problem

It is important to mention that the present thin-film based
formalism is very similar to that of the thin-film based analysis
of dynamic contact angle, often elucidated as the Landau-
Levich type formalism of dynamic contact angle problems
[28,29,31]. It is, therefore, enticing to benchmark the present
estimation of the characteristic length scales, for unveiling the
essential features of a dynamic contact angle related problem,
taking van der Waals interaction into account. A schematic of
a dynamic contact angle related problem is shown in Fig. 4,
which we endeavor to use in benchmarking our idea.

Starting from Eq. (16), we integrate it once with respect to
η and set the integration constant to zero, so as to obtain the
modified version of the thin-film equation as

∂3F0

∂η3
= 1

F 2
0

+ 1

F 4
0

∂F0

∂η
. (18)
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FIG. 4. Schematic of a liquid front moving with speed U while
making a dynamic contact angle θd with the channel surface.

Equation (18) is exactly the same as that of the Landau-
Levich type formalism for dynamic contact angle. Following
the lead of Eggers and Stone [29], Eq. (18) can have the
solution of the form

F0 = Aη [ln (Bη)]1/3 , (19)

to the leading order approximation, in the limit η → ∞,
where one can define the contact angle. In Eq. (19), A and
B are the constants of integration (for detailed derivations see
Ref. [29]). Approximating dynamic contact angle θd = dh/dx

in the small angle limit, and using Eq. (19) and the present
scaling estimation (15), the dynamic contact angle relation
can be recovered as

θ3
d = 3ACa ln

(
x

Lc

)
, (20)

to the leading order approximation, with

Lc = Rm

B
(3Ca)−2/3 (21)

as the characteristic length scale. Equation (21) represents
the celebrated Tanner law for dynamic contact angle. Eggers
and Stone [29] have shown that upon employing a suitable
thin-film based formalism for dynamic contact angle problems,
one may end up with a “model specific” characteristic length
scale of the generic form Caα (with α being a real number).
With consideration of the Lifshitz form of disjoining pressure,
the generic form assumes the specific form, as shown in
Eq. (21), and is similar to that shown in their study [29].
Such characteristic length scales are perfectly in tune with
the experimental findings [30], even in the very low capillary
number limit. Following this argument, we can say that our
present scaling is acceptable to the limit that it can bring out
the essential physics of interest.

IV. EFFECT NONUNIFORMITY IN BUBBLE PROFILE

So far we have considered the classical Lifshitz form of
disjoining pressure, as given in Eq. (3). However, in reality,
the disjoining pressure varies with the local slope and curvature
of the thin-film profile [18,19,24]. With this accounting, the
disjoining pressure can be given as [19]

� = − AH

6πh3

, (22)

where


 = 1 − 3

4

{(
∂h

∂x

)2

− h
∂2h

∂x2

}
(23)

acts as the correction due to nonuniformity in film thickness
(see Appendix for details). With this argument, the thin-film
equation assumes the form

∂

∂x

(
h3 ∂3h

∂x3

)
= 3Ca

∂h

∂x
+ R2

m

∂

∂x

(



h

∂h

∂x
− 1

3

∂


∂x

)
. (24)

Now, we follow the similar stretching transformation
strategy h = 
hF and x = 
xη [Eq. (15)], and obtain the
normalized thin-film equation of the form

∂

∂η

(
F 3 ∂3F

∂η3

)
︸ ︷︷ ︸

�1

= 3Ca

(

x


h

)3
∂F

∂η︸ ︷︷ ︸
�2

+ R2
m
2

x


4
h

∂

∂η

(



F

∂F

∂η
− 1

3

∂


∂η

)
︸ ︷︷ ︸

�3

, (25)

where the correction term reads as


 = 1 −
(


h


x

)2 3

4

[(
∂F

∂η

)2

− F
∂2F

∂η2

]
. (26)

Employing the consistent order of magnitude considera-
tions, we obtain the intrinsic length scales as

O (�1) = O (�2) and O (�1) = O (�3)

⇒ 
h = Rm/ and 
x = Rm/
2
. (27)

Thus, the characteristic length scales remains the same as in
Eq. (15). This transforms the thin-film equation into the form

∂

∂η

(
F 3 ∂3F

∂η3

)
= ∂F

∂η
+ ∂

∂η

(



F

∂F

∂η
− 1

3

∂


∂η

)
, (28)

where the correction term assumes the form


 = 1 − 2 3

4

[(
∂F

∂η

)2

− F
∂2F

∂η2

]
︸ ︷︷ ︸

�

. (29)

In contrast to the normalized thin-film equation (16),
Eqs. (28) and (29) demonstrate the contribution of the
correction term in disjoining pressure due to nonuniformity
in film thickness.

The accommodation of the correction in disjoining pressure
due to nonuniformity in the film thickness seems to be rational,
owing to the typical bubble profile. However, our previous
arguments and comparisons show that even without incurring
such correction, it is sufficient to demonstrate the essential
physics of interest. For the sake of further verification, we solve
the thin-film equations (16) and (28). The bubble profiles, so
obtained, are plotted in Fig. 5. The figure aptly reveals that
the contribution of the correction in disjoining pressure, due
to nonuniformity in film thickness, can be neglected, without
any loss of generality. This is, nevertheless, quite contrary to
the common expectation.

It is important to mention that the characteristic length
scales remain the same for both the cases with and with-
out slope and curvature dependence of disjoining pressure
[compare Eqs. (15) and (27)]. Following Eqs. (28) and (29)
and invoking the definition = (3Ca)1/3, the functional form
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4Ca 1 10−= × 7Ca 5.62 10−= ×

( )Bubble profiles F η
Without correction term (Eq. (16)) 
With correction term (Eq. (28) and (29)) 

FIG. 5. Comparison of the bubble profiles F (η) without and with accommodation of the correction due to slope and curvature dependence
of disjoining pressure.

of the thin-film profile (or the bubble profile), can now be
given as

h (x; Rm,Ca) = Rm

(3Ca)1/3
F

[
x

Rm

(3Ca)2/3 ; (3Ca)2/3

]
. (30)

In comparison to Eq. (17), the (3Ca)2/3 contribution
emerges out of the correction in disjoining pressure. Now,
we can represent Eq. (30) as h (3Ca)1/3/Rm = F (η; ξ ), where
η = x (3Ca)2/3/Rm and ξ = (3Ca)2/3. In the low Ca limit, we
can expand F (η; ξ ) as

F (η; ξ ) = F0 (η) + ξF1 (η) + O(ξ 2). (31)

Now, for the sake of comprehensiveness, we rewrite
Eq. (28) as

∂

∂η

(
F 3 ∂3F

∂η3

)
= ∂F

∂η
+ ∂

∂η

(
1

F

∂F

∂η

)
− ξ�, (32)

where

� = ∂

∂η

(
�

F

∂F

∂η

)
− 1

3

∂2�

∂η2
, (33)

with � being defined as indicated in Eq. (29). Therefore,
� carries the effect of slope and curvature dependence of
disjoining pressure. To bring out the contribution of the term
ξ� in Eq. (32), we first note that the term � is reducible to the
form

� = 3

4

[(
∂F0

∂η

)2

− F0
∂2F0

∂η2

]
︸ ︷︷ ︸

�0

+ ξ
3

4

[
2
∂F0

∂η

∂F1

∂η
− F0

∂2F1

∂η2
− F1

∂2F0

∂η2

]
︸ ︷︷ ︸

�1

+O(ξ 2)

= �0 + ξ�1 + O(ξ 2). (34)

Now, using Eqs. (31), (33), and (34), we can approximate
� as

� = �0 + ξ�1 + O(ξ 2)

with

�0 = ∂

∂η

(
�0

F0

∂F0

∂η

)
− 1

3

∂2�0

∂η2
and

�1 = ∂

∂η

[
1

F0

(
�0

∂F1

∂η
+ �1

∂F0

∂η
− �0

F1

F0

∂F0

∂η

)]
− 1

3

∂2�1

∂η2
.

(35)

Therefore, the contribution of the term ξ� in Eq. (32) is
reducible to the form

ε� = ε�0 + ε2�1 + O(ε3). (36)

Following Eqs. (31)–(36), therefore, Eq. (32) can be
represented, to the different orders of magnitude, as

O(ξ 0) :
∂

∂η

(
F 3

0
∂3F0

∂η3

)
= ∂F0

∂η
+ ∂

∂η

(
1

F0

∂F0

∂η

)
, and

O(ξ 1) :
∂

∂η

(
F 3

0
∂3F1

∂η3
+ 3F 2

0 F1
∂3F0

∂η3

)

= ∂F1

∂η
+ ∂

∂η

[
1

F0

(
∂F1

∂η
− F1

F0

∂F0

∂η

)]

− ∂

∂η

(
�0

F0

∂F0

∂η

)
+ 1

3

∂2�0

∂η2
. (37)

From Eq. (37) it is evident that the leading order approxi-
mation recovers the thin-film equation (16). The higher order
approximations contain the contribution of slope and curvature
dependence of disjoining pressure, through accounting of �.
Moreover, following Eq. (37), to the leading order approxima-
tion, the thin-film profile can be represented as

h = Rm

(3Ca)1/3
F0

[
x

Rm

(3Ca)2/3

]
, (38)
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recovering the same notion as in Eq. (17). Therefore, we can
state that to the leading order approximation, it is sufficient to
impose the Lifshitz form of disjoining pressure −AH /6πh3,
for unveiling essential physics of long bubble dynamics,
under the influence of van der Waals interaction. At the
same time, abiding by the present scaling estimation, it is
possible to bring out the order of magnitude contribution of the
slope and curvature dependence of disjoining pressure which
is following a two-thirds power relationship with capillary
number [see Eq. (30)].

V. INFLUENCE OF THE ELECTROSTATIC COMPONENT
OF DISJOINING PRESSURE

The electrostatic component of disjoining pressure becomes
important when the carrier liquid is an electrolyte solution
[13,20,23,27]. Charges from the electrolyte solution accu-
mulate over the channel surface. If there are any surface
active agents, such as surfactants, the charges also accumulate
over the bubble interface. The situation, in absence of any
external electric field, pertains to the following set of governing
transport equations and boundary conditions [13]:

Momentum: ∂p

∂x
= μ∂2u

∂y2 , with u (0) = −U and u (h) = 0

Continuity: ∂
∂x

∫ h

0 udy = 0

⎫⎬
⎭ . (39)

The traction generated over the bubble interface, due to the
adsorption of the surface active agents, allows the imposition of
the no-slip boundary condition without any loss of generality
[13]. The normal stress balance (2) reads as [13,20,23,27]

22
0

0 2 3 2
.

6 2 e

es

H BA k Th
p p

x h h Z

εε πσ
π

Σ

Π Π

∂= − − −
∂

(40)

In addition to van der Waals contribution �, the disjoining
pressure now has an electrostatic component �es due to the
surface charges. Here ε0 = 8.85 × 10−12 F/m is the permit-
tivity of the free space, kB = 1.38 × 10−23 kg m2/K s2 is the
Boltzmann constant, and e = 1.6 × 10−19 C is the elementary
charge [13,20,23,27]. In Eq. (40) Z, T , and ε represents the
charge dissociated ion, temperature (in absolute scale), and
the dielectric constant of the carrier liquid medium. For the
present study, we consider ε = 78 (aqueous solution), Z = 1,
and T = 300 K (the normal room temperature condition)
[13,20,23,27]. Upon solving Eq. (39), and using Eq. (40), one
can get the thin-film equation of the form

∂

∂x

(
h3 ∂3h

∂x3

)
= 6Ca

∂h

∂x
+ R2

m

∂

∂x

(
1

h

∂h

∂x

)
+ Les

∂2h

∂x2
, (41)

where Les = (εε0/4σ ) (πkBT /Ze)2 represents the physics
driven intrinsic length scale due to surface charge effect.

We now solve Eq. (41) iteratively following the approach,
as discussed previously. The h0/R variation, so obtained,
is plotted against Ca, as shown in Fig. 6. For the sake of
comparison, we also plot the solution from Eq. (4) and the
two-thirds power law based estimations. Moreover, Chen’s [2]
experimental observations with air bubbles are also presented
in the figure. Additionally, in the same figure, we also
present the solution of the rescaled Eq. (51); its implications
are delineated a posteriori. First of all, we note that the
electrostatic component of disjoining pressure endorses a
higher film thickness, in all the ranges of Ca considered here.
In a somewhat higher capillary number regime, though the film
thickness follows two-thirds power law behavior, it matches
with the estimation h0/R = 1.02 (3Ca)2/3, in contrast with the
conventional estimation [1] h0/R = 0.643 (3Ca)2/3. It is also

important to note that Chen’s [2] experimental observation
with air bubbles, as presented in Fig. 6, seems to match
the estimation h0/R = 1.02 (3Ca)2/3 in the higher capillary
number regime. Such behavior can be attributed to the traction
generated over the bubble interface, which makes it behave like
an immobile surface [1,2,9,11]. In reality, maintaining absolute
cleanliness during experiment is difficult. The presence of
impurities, even in trace amounts, may alter the air-bubble
dynamics. This feature is often argued to be responsible for
mismatching of the estimation h0/R = 0.643 (3Ca)2/3 while
experimenting with air bubbles [1,2,9,11]. This is indicative
of the fact that the bubble dynamics in the presence of surface
charge is primarily dictated by the traction generated on
the bubble interface, in the two-thirds power law regime. In the
very low capillary number regime, the electrostatic component
seems to play a significant role. Thus, we obtain somewhat
higher film thickness than that obtained from considering the
van der Waals interaction only. Therefore, we earmark this
deviant regime as the electrostatic interaction regime. It is
now imperative to unveil the underlying physics leading to the
aforementioned behaviors.

( )2 3
0 0.643 3Cah R =

Ca

0h R

( )2 3
0 1.02 3Cah R =

Without surface charge (Eq. (4) ) 
With surface charge (Eq. (41)) 

Rescaled  
thin film Eq. (51) 

Chen’s  experiment  
with air bubbles  [2] 

FIG. 6. (Color online) Comparison of the variation of h0/R with
Ca, with and without consideration of the surface charge effect.
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A. The two-thirds power law regime

Starting from Eq. (41) we impose the similar stretching
transformation strategy h = 
hF and x = 
xη [Eq. (15)], and
obtain the normalized thin-film equation of the form

∂

∂η

(
F 3 ∂3F

∂η3

)
︸ ︷︷ ︸

�1

= 6Ca

(

x


h

)3
∂F

∂η︸ ︷︷ ︸
�2

+ R2
m
2

x


4
h

∂

∂η

(
1

F

∂F

∂η

)
︸ ︷︷ ︸

�3

+ Les

2
x


3
h

∂2F

∂η2︸ ︷︷ ︸
�4

. (42)

The term �4 emerges out of the electrostatic interaction.
The existence of two-thirds power law type behavior is
suggestive of the validity of the Bretherton scaling argument
[1]. This argument, on the other hand, emanates, essentially,
from the balance between the surface tension and the viscous
effect. Imposing this argument, from Eq. (42), we obtain

O (�1) = O (�2) ⇒ 6Ca

(

x


h

)3

= 1 ⇒ 
h


x

= . (43)

Note that here = (6Ca)1/3, which is higher than the
previous consideration of . Now we consider 
h = h0, and
following Eq. (43) we obtain 
x = h0/ . With this argument,
Eq. (42) transforms to the form

∂

∂η

(
F 3 ∂3F

∂η3

)
= ∂F

∂η
+ R2

m

h2
0 (6Ca)2/3︸ ︷︷ ︸

ε�

∂

∂η

(
1

F

∂F

∂η

)

+ Les

h0 (6Ca)2/3︸ ︷︷ ︸
ε�es

∂2F

∂η2
. (44)

The factors ε� and ε�es
denote the order of magnitude

contribution of � and �es respectively, in the two-thirds power
law regime. In Fig. 7 we demonstrate the variation of the factors
ε� and ε�es

with Ca. Note that in the two-thirds power law
regime, both ε� and ε�es

are less than unity. In the electrostatic
interaction regime, on the other hand, their magnitudes are
well higher than unity, demonstrating the breakdown of the
scaling estimations 
h = h0 and 
x = h0/ , at the same
time, indicating the existence of different characteristic length
scales. Nevertheless, in all the regimes ε�es

> ε�. For the sake
of further clarification, in the inset of Fig. 7, we also plot
γ = ε�/ε�es

against Ca. Evidently, γ < 1 in all the regimes,
indicating the suppression of the contribution of � under the
presence of the contribution of �es . It is also noteworthy that
in the two-thirds power law regime γ � 1.

For the sake of further analysis, we first rewrite Eq. (44) as

∂

∂η

(
F 3 ∂3F

∂η3

)
= ∂F

∂η
+ γ ε�es

∂

∂η

(
1

F

∂F

∂η

)
+ ε�es

∂2F

∂η2
.

(45)

Thus, the film profile function can be represented as h/h0 =
F (η; γ,ε�es

), allowing an expansion of the form

F
(
η; γ,ε�es

) = F0 (η; γ ) + ε�es
F1 (η; γ ) + O

(
ε2

�es

)
. (46)

γ

es
εΠ

εΠ

Ca

The two-third 
power law regime

The electrostatic 
interaction regime 

FIG. 7. (Color online) Variation of ε� and ε�es
with Ca. The inset

shows the variation of γ = ε�/ε�es
with Ca. Similar to Fig. 3, the

demarcation between the two regimes is to be considered as the
representative demonstration of the essential features.

Using Eq. (46), the scaled film equation (45) reduces to the
form, at different orders, as

O
(
ε0

�es

)
:

∂

∂η

(
F 3

0
∂3F0

∂η3

)
= ∂F0

∂η
,

O
(
ε1

�es

)
:

∂

∂η

(
F 3

0
∂3F1

∂η3
+ 3F 2

0 F1
∂3F0

∂η3

)

= ∂F1

∂η
+ γ

∂

∂η

(
1

F0

∂F0

∂η

)
+ ∂2F0

∂η2
. (47)

Thus, from Eq. (47) we can see that the leading order of
approximation recovers the Bretherton-Landau-Levich type
formalism, albeit with slightly different scaling. Moreover,
the contribution of � and �es gets transferred to the higher
order approximations. This is in tune with the fact that
the bubble dynamics is primarily decided by the traction
generated over the bubble interface, as anticipated previously.
Likewise, upon solving the leading order equation, we ob-
tain ∂2F0/∂η2 = 0.643, as η → ∞. This eventually provides
h0/R = (limη→∞ ∂2F0/∂η2)(6Ca)2/3 = 1.012 (3Ca)2/3, as pre-
dicted previously.

B. The electrostatic interaction regime

In the electrostatic interaction regime, the scaling argu-
ments 
h = h0 and 
x = h0/ break down, as shown previ-
ously. Thus, by beginning with the general notion, x = 
xη

and h = 
hF , we finally end up with the scaled thin-film
equation (42). Here, the primary criterion (43) also holds
true. Additionally, for any perceptible contribution of the
electrostatic component of the disjoining pressure, we must
have

O (�1) = O (�4) ⇒ Les

2
x


3
h

= 1 ⇒ 
3
h


2
x

= Les. (48)
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Using Eqs. (43) and (48), therefore, we obtain the consistent
length scales as


h = Les/
2 and 
x = Les/

3
. (49)

Now using Eq. (49) we can also estimate

O (�3) = R2
m
2

x


4
h

= R2
m

2

L2
es︸ ︷︷ ︸
δ

. (50)

Following the above-mentioned arguments, therefore, the
normalized thin-film equation reads as

∂

∂η

(
F 3 ∂3F

∂η3

)
= ∂F

∂η
+ ∂2F

∂η2
+ δ

∂

∂η

(
1

F

∂F

∂η

)
. (51)

Thus, the functional form of the film profile function can
be given as

h (x; Les,Ca,Rm) = Les

(6Ca)2/3
F

[
x

Les

(6Ca) ;
R2

m

L2
es

(6Ca)2/3

]
.

(52)

In contrast to the predominance of traction driven bubble
dynamics in the two-thirds power law regime, Eq. (51) aptly
retains the consistent order of magnitude contribution of the
electrostatic component of disjoining pressure, following the
consistent scaling arguments (49). The factor R2

m (6Ca)2/3/L2
es

in Eq. (52) emanates from the contribution of the van der Waals
component of disjoining pressure. Now we solve Eq. (51)
iteratively and obtain the variation of minimum film thickness
with capillary number. The dotted line in Fig. 6 demonstrates
this variation. Within the zone of validation of the scaling
estimation (49), and the subsequent thin-film equation (51),
we find a very satisfactory matching with the original thin-film
equation (41), as shown in Fig. 6. This essentially demonstrates
the validity of the present scaling estimation to capture the
essential physics of interest, in the electrostatic interaction
regime.

Finally we note that the van der Waals component of
disjoining pressure endorses an O (δ) = O[R2

m (6Ca)2/3/L2
es]

contribution in the bubble dynamics. Taking consistent data
from the literature, one can easily find that δ � 1, in the
electrostatic interaction regime. Thus, we can expand F (η; δ)
as

F (η; δ) = F0 (η) + δF1 (η) + O(δ2). (53)

Imposing the expansion (53), Eq. (51) is now reducible to

O(δ0) :
∂

∂η

(
F 3

0
∂3F0

∂η3

)
= ∂F0

∂η
+ ∂2F0

∂η2
,

O(δ1) :
∂

∂η

(
F 3

0
∂3F1

∂η3
+ 3F 2

0 F1
∂3F0

∂η3

)

= ∂F1

∂η
+ ∂2F1

∂η2
+ ∂

∂η

(
1

F0

∂F0

∂η

)
. (54)

Note that the leading order approximation does not contain
any contribution of �; it is realized in the higher order
approximations. For the sake of verification we compare the
variation of minimum film thickness as obtained from solving
Eq. (51) with that of its leading order approximation, Eq. (54),

Ca

0h R

Thin film Eq. (41) 

Thin film equation for disjoining pressure regime 
Full scaled equation (Eq. (51)) 

( )0O δ  approximation (Eq. (54)) 

FIG. 8. (Color online) Comparison of the h0/R variation with Ca,
as obtained from the full scaled Eq. (51) and its O(δ0) approximation
from Eq. (54). For the sake of comprehensiveness, in the figure, we
also show the results from the original thin-film Eq. (41).

as shown in Fig. 8. From the close matching of the two
solutions, it is now quantitative that under the presence of
surface charges, the electrostatic component of disjoining
pressure well surpasses the van der Waals interaction to
dictate the long bubble dynamics, indicating the significance of
considering the electrostatic component of disjoining pressure,
in the presence of surface charges. Such behaviors are perfectly
in tune with other reported observations [13,23,27].

Thus, we have seen that taking the electrostatic interaction
into consideration, by introducing the corresponding elec-
trostatic component of disjoining pressure, the long bubble
dynamics is governed by different characteristic length scales,
as indicated in Table II, for the sake of comprehensiveness. In a
somewhat higher capillary number limit, the bubble dynamics
is primarily governed by the traction generated over the bubble
interface, leading towards a Bretherton-Landau-Levich type
description of the bubble dynamics without incurring, to the
leading order approximation, much contribution from the
van der Waals interaction and the electrostatic component.
In the low capillary number regime the contribution of the
electrostatic component starts to play a significant role. Under
this circumstance, the bubble dynamics is decided by the
intrinsic length scale Les and the capillary number; their
suitable combinations, as shown in the Table II, provide the
characteristic length scales governing the underlying physics.

TABLE II. The characteristic length scales at different regimes,
with consideration of the electrostatic interaction in the disjoining
pressure.


h 
x

Two-thirds power law regime h0 h0/(6Ca)1/3

Electrostatic interaction regime Les/(6Ca)2/3 Les/(6Ca)
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VI. CONCLUSIONS

In conclusion, we theoretically study the influence of
disjoining pressure for moving long bubbles inside cylindrical
capillaries. Towards that end, consistent thin-film equations,
for the annular region separating the bubble from the channel
surface, are presented with specific emphasis, and a consistent
accounting of three different attributes: (a) the van der
Waals interaction, as formalized by classical Lifshitz form of
disjoining pressure; (b) the nonuniformity in film thickness, as
accommodated by the necessary corrections in the disjoining
pressure; and (c) the electrostatic component of disjoining
pressure, reminiscent of the electrostatic interactions in the
presence of surface charges. Taking van der Waals interaction
into account, the resulting thin-film equation captures, in
perfect agreement with previous experimental observations,
both the celebrated two-thirds power behavior of the minimum
film thickness and its departure in the very low capillary
number regime. Consecutively we conduct scaling analysis,
by employing stretching transformation followed by order
of magnitude and subsequent asymptotic analysis of the
resulting thin-film equation, and quantitatively demonstrate
the dynamics of these two regimes, as decided by different
characteristic length scales. Moreover, the characteristic length
scales are found to be exactly the same as those governing
the dynamics of dynamic contact angles. Our analysis reveals
that the additional correction due to the slope and curvature
dependence of disjoining pressure does not alter the char-
acteristic length scales; however, it endorses a contribution
which is significant to the order of the two-thirds power of
the capillary number. The subsequent asymptotic analysis
reveals that this correction may be neglected to the leading
order approximation. Finally, we consider the electrostatic
component of the disjoining pressure which may be realized
in the presence of surface charges. Here we also find out a
two-thirds power law behavior, of minimum film thickness,
and its departure in the very low capillary number regime.
The dynamics in the two-thirds power law regime seems to be
primarily governed by the traction generated over the bubble
interface. The significance of the electrostatic interaction is
realized over a very small capillary number regime, leading
towards the departure from the two-thirds power law type
behavior. Subsequently, our scaling analysis quantitatively
rationalizes these behaviors.
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APPENDIX: ON ACCOUNTING DISJOINING PRESSURE
FOR NONUNIFORM THIN FILMS

Following the considerations of Dai et al. [19] and Wu and
Wong [24], the interfacial free energy of the present situation
of bubble in liquid medium can be given as

Eint =
∫ x2

x1

(
σ

√
1 + h2

x + σLS − σSG + E + �ph
)
dx,

(A1)

where E denotes the excess free energy per unit area of
the solid-liquid interfacial zone and �p accounts for the
Lagrange multiplier for mass conservation (eventually having
the features of pressure). In Eq. (A1), σLS and σSG defines the
interfacial energy per unit width in between the “liquid-solid”
and “solid-gas” interfacial regions, respectively. Note that in
the accounting of excess interfacial free energy, we do not
account for the contribution of excess interfacial free energy
outside the solid-liquid region. Accounting of such attributes
is important for the analysis of contact line dynamics, since
the energetic contribution of the solid-vapor region, outside the
contact line region, plays a significant role in the underlying
phenomenology [19,24]. However, for gas bubble in liquid
medium, the existence of such region can be discarded without
any loss of generality, for the background liquid to be perfectly
wetting the channel surface.

Now, the excess free energy E can be a function of film
thickness h and its axial gradients (h(n)

x = ∂nh/∂xn, where n

can be any real, positive integer greater than zero). The energy
minimizing principle demands

δEint

δh
= − σ∂2h/∂x2

{1 + (∂h/∂x)2}3/2
+ �p + ∂E

∂h

+
∑

n

(−1)n
dn

dxn

(
∂E

∂h
(n)
x

)
= 0, (A2)

from which one can define the Lagrange multiplier, hence the
disjoining pressure, as

�p = σ∂2h/∂x2

{1 + (∂h/∂x)2}3/2
− ∂E

∂h
−

∑
n

(−1)n
dn

dxn

(
∂E

∂h
(n)
x

)
.

(A3)

The first term on the right-hand side of Eq. (A3) represents
the Young-Laplace pressure jump, and can be given as
σ∂2h/∂x2, in the low capillary number limit [1,3,6,8,13]. The
remaining terms on the right-hand side of Eq. (A3) represent
disjoining pressure,

� = −∂E

∂h
−

∑
n

(−1)n
dn

dxn

(
∂E

∂h
(n)
x

)
. (A4)

The classical definition of disjoining pressure is the gradient
of excess interfacial free energy per unit width of the
surface (i.e., −∂E/∂h) [19,21,24,26]. Compared to this, the
augmentation in the definition of disjoining pressure emerges
out of the nonuniformity in film thickness [19,24]. Therefore,
the disjoining pressure contains the effects of film thickness
and its axial gradients.

Following Dai et al. [19], from considerations of molecular
interaction, E can be given as

E = −AH

[
1

12πh2
+

(
h(1)

x

)2

16πh2

]
, (A5)

in the limit |∂h/∂x| � 1. For steadily moving long bubbles
inside cylindrical capillaries, in the low capillary number limit,
the small slope criteria (|∂h/∂x| � 1) remain valid as well
[1,3,6,8,13]. Note that the second term on the right-hand side of
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Eq. (A5) denotes the energy contribution due to nonuniformity
in film thickness.

Now, using Eq. (A5) in Eq. (A4), the disjoining pressure
can be given as

� = − AH

6πh3

, (A6)

with


 = 1 − 3

4

{(
∂h

∂x

)2

− h
∂2h

∂x2

}
. (A7)

This is the form of disjoining pressure, adopted for the present
study.
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