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We study localized nonlinear excitations in diffusive Hindmarsh-Rose neural networks. We show that the
Hindmarsh-Rose model can be reduced to a modified Complex Ginzburg-Landau equation through the application
of a perturbation technique. We equally report on the presence of envelop solitons of the nerve impulse in this
neural network. From the biological point of view, this result suggests that neurons can participate in a collective
processing of information, a relevant part of which is shared over all neurons but not concentrated at the single
neuron level. By employing the standard linear stability analysis, the growth rate of the modulational instability
is derived as a function of the wave number and systems parameters.
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I. INTRODUCTION

Nonlinear excitations of solitons type are localized solu-
tions of a widespread class of weakly nonlinear dispersive
partial differential equations. They were first observed by
John Scott Russel [1–4] and turned out to originate from the
balance between nonlinearity and dispersion. Their remarkable
properties have been used to explain many yet unexplained
phenomena such as the Fermi-Pasta-Ulam paradox [5] and to
discover and establish new theories in many aspects of science
and technology [2,4,6–9].

In the neuronal system, many studies have been carried
out that noticed the presence of those peculiar nonlinear
waves [10–13]. Note that the analysis of the mechanisms
underlying spatial structures of activity in the neural tissue is
important for understanding a wide range of both naturally
occurring and pathological phenomena [14,15]. Thus, this
work is motivated by experimental findings in the cortex
and previous studies on diffusively coupled systems. For
instance, in a nerve model with self-excitable membrane,
localized short impulses were observed [16]. Modulated wave
forms were obtained numerically from the time series of the
membrane potential derived from the dynamical mechanisms
of waxing and waning oscillations in thalamic relay neu-
rons [17]; self-sustained oscillations were observed in real
neural tissue [16,18]. In Ref. [19], it was shown numerically
that the Hindmarsh-Rose (HR) neurons display nonlinear
excitations in a spiking bursting behavior. All these studies
report on the presence of nonlinear localized waves in a specific
population of linked neurons under proper assumptions.

However, a clear analytical solution describing the dynam-
ics of those diffusive nonlinear excitations has not yet been
established. The form of the nerve impulse propagating in
the neural network is very relevant because it stands as a
signature to certain brain pathologies [20]. Moreover, knowing
the conditions under which traveling waves of nerve activity
can propagate in the cortical neural tissue is increasingly
becoming an active area of research. This is due to the
fact that, determining conditions under which cortical waves
propagation occurs is primordial to comprehend the normal
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processing of sensory stimuli as well as more pathological
forms of behavior such as migraines, epileptic seizures,
Parkinson diseases etc. [20–23].

Consequently, the present work aims at using both analyti-
cal and numerical methods to study the dynamics of nonlinear
excitations in a network of diffusively coupled HR neurons. We
use the Liénard form of the diffusive HR model to come out
with a modified complex Ginzburg-Landau (CGL) equation
by means of a specific perturbation technique. The modified
CGL equation is an equation that describes the evolution of
modulated waves in this neural network. From there, we make
use of the envelope soliton solution of the CGL established
by Nozaki and Bekki [24] to obtain an expression of the
nerve impulse. The modulational instability in the diffusive
HR neural network is performed and it points to the fact that
due to the combine effects from nonlinearity, dispersion, and
dissipation, a small perturbation on the envelope of a nerve
impulse plane wave may induce an exponential growth of its
amplitude, resulting in the carrier-wave breakup into a train of
localized waves [25–27].

Thus, this paper is organized as follows: Section II is
devoted to the description of the coupled HR neural model.
Section III aims at finding envelope solitons in the diffusive
HR model by applying the multiple scale expansion in the
semidiscrete approximation. In Sec. IV, we look for the
conditions under which plane wave propagating in the diffusive
neural network will become stable or unstable to small
perturbation. We end the work with a conclusion in Sec. V.

II. THE HINDMARSH-ROSE COUPLED MODEL

There exists a variety of models used to mimic neuronal
activities. We have the Hodgkin-Huxley model [28], Fitzhugh-
Nagumo model [29], or more recently the ones of Morris-
Lecar [30] and of Hindmarsh-Rose [31,32]. The later gives
a wider view of the Fitzhugh-Nagumo model by taking into
consideration bursting (series of spikes). Its primary goal is to
study the spiking-bursting behavior of the membrane potential
observed in experiments made with a single neuron. The
Hindmarsh-Rose model is governed by a set of three nonlinear
ordinary differential equations on the dimensionless variables
x(t), y(t), and z(t). The most important variable in this model is
x(t), which represents the membrane potential (nerve impulse).
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The variable y(t) accounts for the measure of the rate at which
transport of sodium and potassium ions is made through fast
ion channels; it is also called the spiking variable. z(t) instead
is the bursting variable, which takes into consideration the
rate at which the transport of other ions (Cl

− and proteins
anions) made through slow ions channels. It enables the
model to control the rest period between two action potentials.
These equations are a simple polynomial model of bursting in
thalamic cells, which capture certain generic features of more
complicated biophysical models [19,31,32]. Since neuronal
activity takes all its significance when considered in a network,
we are going to consider a network of N dynamical neurons.

The equation for a network of N Hindmarsh-Rose neurons
coupled through the gap junction is given by

ẋi = yi − axi
3 + bxi

2 − zi + I,

+K(xi+1 − 2xi + xi−1) (1)

ẏi = c − dxi
2 − eyi,

żi = r[s(xi − x0) − zi],

with i = 1,...,N.

The roles played by the system parameters are the follow-
ing:

The parameter b allows one to switch between bursting
and spiking behaviors; it also controls the spiking frequency.
r controls the speed of variations of the bursting variable. s is
the recovery variable. a is a unitary value of s that determines
spiking behavior. x0 is the equilibrium coordinate of the two-
dimensional subsystem given by the first two equations of
Eqs. (1) when I = 0 and zi = 0. c, d, and e are constant
parameters.

The coupling strength of the gap junction is K . In this paper,
we have considered two nearest neighbors coupling in a weak
coupling regime. From the biological point of view, neurons
only make electrical connections with their nearest neighbors.
Also a weak coupling between neighboring cells is a situation
that arises in the study of bursting activity in the β-cell islets
of the pancreas, which secrete insulin in response to glucose
in the blood [19,33]. In normal physiological conditions, this
variability may reflect different levels of expression of certain
types of receptors or differences in regulatory effects induced
by internal or external neuromodulatory processes. Some
pathological conditions elicited by specific genetic mutations
or by drug abuse are also known to be related to significant
modifications of the level of neural membrane excitability [15].

I represents the stimulation current and it is the bifurcation
parameter, determining the qualitative behavior of the neuron.
In general, depending on the value of the stimulation current
I the dynamical regime of the HR neuron can describes
quiescence, subthreshold, suprathreshold, and chaotic bursting
behaviors. For instance, in the case of an isolated HR neuron,
when I = 0 there can be only one stable stationary solution
and it corresponds to the stable quiescence behavior of the
neuron. Furthermore, for I ∈ (0,1.3) the HR neuron exhibits
only subthreshold responses. However, for I ∈ (2.92,3.40),
and for the commonly used values of other parameters as given
below, the HR model describes chaotic bursting, i.e., a series of
spikes that are chaotically interspersed with refractory periods
and quiescence behavior. The original values of the parameters

that define the HR model are: a = 1.0, b = 3.0, c = 1.0,
d = 5.0, r = 0.008, s = 4.0, x0 = − (1+√

5)
2 , and e = 1.0.

Typically, large scale neuronal networks can exhibit a
number of spatially structured activity states. Oscillations,
waves, and spatial structure of diffusively coupled neurons
systems have been observed through numerical simula-
tions [10–13,19]. Numerical simulations, however, typically
show complex dynamics because a large number of tilted
waves can be excited and compete with others. We therefore
use the semidiscrete approach to analytically derive the type of
localized excitations that propagate in network of coupled HR
neuron model. In order to apply this method, it is convenient
to transform the system into the wave form. To do so, we
reduce the first and second equations in Eqs. (1) into a
second-order ODE in xi . We achieve this by differentiating the
first equation in Eqs. (1) and substituting ẏi into the obtained
second-order ODE. From the biological standpoint, single cell
models of bursting consist of a set of ordinary differential
equations governing the behavior of the fast variable and at
least one slow variable [19]. The above transformations allow
us to conveniently write Eqs. (1) in a Liénard form that is a
second-order differential equation with a small damping term.
The governing equations then become

ẍi + �0
2xi + (

γ0 + γ1xi + γ2xi
2)ẋi + λ1xi

2

+ γ2

3
xi

3 + λ3zi + I0 = D0(xi+1 − 2xi + xi−1)

+D1(ẋi+1 − 2ẋi + ẋi−1) (2)

żi = r[s(xi − x0) − zi]

where �0,γ0,γ1,γ2,λ1,λ3,I0,D0, and D1 are constant parame-
ters of different order to be determined during the application
of the semidiscrete approach.

It is important to note that the transformation did not
fundamentally affect the structure of the system. It is thus still
possible to decompose the obtained system, activity into a fast
subsystem described by x, which treats the slow variables as
parameters, and a slow subsystem defined by z. Equation (2) is
a set of coupled nonlinear ODEs similar to those that generally
describe the dynamics of atomic chain. It is almost impossible
to solve these equations analytically; however, nearly exact
solutions can be obtained using perturbation methods. In order
to determine the order of the different terms, we introduce the
variables

xi = εϕi, (3)

zi = εψi, (4)

where ε � 1. In Eqs. (2), the parameter λ3 couples the
equations of the membrane potential to those of the bursting
variable. However, due to the fact that the variation of the
bursting variable is slower than the one of the membrane
potential, we can consider λ3 to be a perturbed parameter
of order ε2. Also, since we are looking for solution in a
weakly dissipative medium, the parameters γ0 and D1 are also
considered to be perturbed at the order ε2. Keeping the first
two nonlinear terms of the development, the system of Eqs. (2)
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becomes

ϕ̈i + �0
2ϕi + ε

(
εγ0 + γ1ϕi + εγ2ϕi

2
)
ϕ̇i + ελ1ϕi

2

+ ε2 γ2

3
ϕi

3 + ε2λ3ψi = D0(ϕi+1 − 2ϕi + ϕi−1)

+ ε2D1(ϕ̇i+1 − 2ϕ̇i + ϕ̇i−1), (5)

ψ̇i − rψi − �0
2ϕi = 0. (6)

Equation (5) is therefore the equation regulating the dynamics
of the membrane potential in the HR coupled model, and it
resembles the one governing the nondimensional dynamics
of the potential difference across the cell membrane for a
FitzHugh-Nagumo model [34]. The second equation, Eq. (6),
is the coupling term describing the dynamic of the wave due
to the burst variable of the HR neural model.

As stated earlier in this work, we are looking for solitons
made up of carrier waves modulated by envelope signal,
which are called envelope solitons. This type of solitons
appears naturally for most weakly dispersive and nonlinear
systems, which are described by a wave equation in the small
amplitude limit [2,3]. Since we are studying low-amplitude
nonlinear excitations in a weakly diffusive neural network, it
is adequate to use multiple scale expansions, which can be
applied to the semidiscrete approximation. Thus, the aim of
the following section is to find analytically and numerically
envelope solitons of the diffusive Hindmarsh-Rose model.
We will start by describing the multiple scale method in the
semidiscrete approximation, then we will apply it to our model
in order to obtain a modified complex Ginzburg-Laudau (CGL)
equation. Analytical and numerical solutions of this equation
will be established.

III. MULTIPLE SCALE EXPANSION IN THE
SEMIDISCRETE APPROXIMATION

The semidiscrete approximation is a perturbation technique
in which the carrier waves are kept discrete while the amplitude
is treated in the continuum limit. Applying this method allows
one to study the modulation of a plane wave caused by
nonlinear effects.

We proceed by making a change of variables according
to the new space and time scales Ui = εiu and Ti = εi t ,
respectively. It should be noted that the principal purpose of
using the multiple scale expansion is to find a solution x(u,t)
depending on these new sets of variables as a perturbation
series of functions. We will consider here that

x(u,t) =
∑∞

i=1
εiϕi(U0,U1,U2,...,T0,T1,T2,...), (7)

z(u,t) =
∑∞

i=1
εiψi(U0,U1,U2,...,T0,T1,T2,...), (8)

where each Ui and Ti is treated as an independent variable.
Thus, we also obtain a perturbation series of operators from
all independent variables:

∂

∂t
= ∂T0

∂t

∂

∂T0
+ ∂T1

∂t

∂

∂T1
+ ∂T2

∂t

∂

∂T2
+ ...,

implying that

∂

∂t
= ∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ .... (9)

An important feature of this method is that the solution of the
original problem will only be obtained if the multidimensional
space generated by the new sets of variables Xi and Ti come
from the physical line [2,3]: T0 = t ; T1 = εt ; T2 = ε2t . The
greatest asset of these auxiliary variables is that they permit us
to impose appropriate conditions to the system, thus assuring
that the asymptotic expansion converges uniformly for small
values of ε [2,3]. Using the notation Di = ∂

∂Ti
, we thus obtain

∂

∂t
= D0 + εD1 + ε2D2 + .... (10)

And similarly, the spatial derivatives can be expressed by

DUi
= ∂

∂Ui

,

∂

∂u
= DU0 + εDU1 + ε2DU2 + .... (11)

The following analytical procedure consists of replacing the
new form of the nerve impulse and of the bursting variable
(the one depending on new variables) and the derivatives in the
different terms of the membrane potential equation of motion.
We then group terms in the same power of ε, which leads us to
a system of equations. Each of those equations will correspond
to each approximation for specific harmonics.

A. Equation of motion of the amplitude

Now, let us consider the following solutions of our coupled
HR model:

ϕi = Bie
iθi + B∗

i e−iθi

+ ε(Ci + Die
2iθi + D∗

i e
−2iθi ) + O(ε2), (12)

ψi = Fie
iθi + F ∗

i e−iθi

+ ε(Gi + Hie
2iθi + H ∗

i e−2iθi ) + O(ε2), (13)

with θi = qui − wt where q is the normal mode wave vector
and w is the angular velocity of the wave.

Here, we look for nerve impulses having the form of
nonlinear localized excitations of the diffusive neuronal
network. The fact that there are nonlinear terms in Eq. (5)
[respectively, Eq. (6)] incites one to predict that through
frequencies superpositions, the first harmonics of the wave will
contain terms in e±2iθi as well as terms without any exponential
dependence. We will equally consider that the amplitudes B,
C, D(respectively, F, G, H) change slowly in space and time.
That is why for them, we are going to do a continuum limit
approximation and a multiple scale expansion. To sum up, we
are going to deal with the amplitude in the continuum limit
while keeping the carrier wave discrete.

In this semidiscrete approximation, B, C, D (respec-
tively, F, G, H) are supposedly independent of the “fast”
variables t and u. Instead, they depend on the “slow”
variables U1 = εu, U2 = ε2u, T1 = εt , T2 = ε2t . Applying
now the continuum limit approximation on these amplitudes
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FIG. 1. (Color online) The dispersion relation of the nerve
impulse. D0 = 0.04, �2

0 = 0.032.

will yield to Bi(t), Ci(t), and Di(t) becoming, respectively,
B(U1,U2,T1,T2), C(U1,U2,T1,T2), and D(U1,U2,T1,T2). Bi±1

is obtained at ε2 by a Taylor expansion,

Bi±1 = B ± ε
∂B

∂U1
± ε2 ∂B

∂U2
+ ε2

2

∂2B

∂U 2
1

+ O(ε3),

and its temporal derivative is given by

∂Bi

∂t
= ε

∂B

∂T1
+ ε2 ∂B

∂T2
+ O(ε3).

An identical process is done for Ci and Di (respectively,
Fi , Gi , Hi); therefrom, we substitute the above equations in
Eqs. (5) and (6). We look for relations at different order of ε

for which terms in e±iθi , e±2iθi and terms without exponential
dependence cancel out.

At the order ε0, the annihilation of terms in e±iθi give the
dispersion relation of linear waves of the system made up of
Eqs. (5) and (6) (See Fig. 1):

w2 = �2
0 + 4D0 sin2 q

2
. (14)

As expected, this is indeed the dispersion relation of a
discrete model. The axonal waves dispersion is related to the
system parameters of the neuronal network.

At the order ε1, the cancellation of terms in eiθi gives

∂B

∂T1
+ vg

∂B

∂U1
= 0, (15)

where

vg = D0 sin q

w
(16)

is the group velocity.
We observe that the velocity of axonal waves depends on

the diffuseness of the plasma membrane. The more diffusive
the axon, the faster the nerve impulses. Resulting in a quick
movement of the ions across the ion pumps and ion channels
of the nerve cell membrane.

Terms without exponential dependence give the relation

C = −2λ1

�2
0

BB∗. (17)

Terms with ei2θi give the relation

D = (λ1 − iwγ1)

3

B2

�2
0 + 16

3 D0 sin4 q

2

. (18)

At the second order of perturbation, terms with eiθi dependence
give the relation for Eq. (6):

F = −�2
0(r − iw)

r2 + w2
B. (19)

This relationship comes from the coupling between the action
potential and the bursting variable in the neural network. We
note that it is complex and depends on system parameters.
Still, at this order, terms depending on eiθi yield the following
relation for Eq. (5):

∂2B

∂T 2
1

− 2iw
∂B

∂T2
= iwγ0B + (iwγ1 − 2λ1)(BC + B∗D)

+ (iw − 1)γ2|B|2B + λ3
(
r − iw�2

0

)
r2 + w2

B

+ 4iwD1sin
q

2

2
B + 2iD0 sin q

∂B

∂U2

+D0 cos q
∂2B

∂U 2
1

. (20)

The solvability condition written in the mobile reference
frame ξi = Ui − vgTi and τi = Ti with velocity vg yields the
equation of evolution of the envelope function,

i
∂B

∂τ2
+ P

2

∂2B

∂ξ 2
1

+ Q|B|2B + i
R

2
B = 0, (21)

where the coefficients P , Q, and R are given by

P = D0w
2 cos q − D2

0 sin2 q

w3
, (22)

Q = Qr + iQi, (23)

R = Rr + iRi. (24)

Qr and Qi are the real and imaginary parts of the nonlinearity
coefficient. The same terminology is applied for the dissipation
coefficient:

Qr = 1

w

[
2λ2

1

�2
0

+ γ 2
1 w2 − 2λ2

1

6
(
�2

0 + 16
3 D0 sin4 q

2

) − γ2

2

]
, (25)

Qi = λ1γ1

6
(
�2

0 + 16
3 D0 sin4 q

2

) − λ1γ1

�2
0

+ γ2

2
, (26)

Rr = γ0 + 4D1 sin2 q

2
− λ3�

2
0

r2 + w2
, (27)

Ri = − rλ3�
2
0

w(r2 + w2)
. (28)

This equation shows that the evolution of modulated waves
in this neural network model is described by the modified
complex Ginzburg-Landau equation where the nonlinearity
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and dissipation coefficients Q and R, respectively, are complex
and the dispersion coefficient P is real [35].

The generalized complex Ginzburg-Landau equation is
of paradigmatic importance to many field in physics. It
is of tremendous importance in nonlinear optics, where it
describes the full spatiotemporal optical solitons [36]. The
study of the envelope soliton dynamics in monoatomic and
diatomic lattices pays special attention in the last case to
dependence of such dynamics on the width of the gap of the
spectrum and to the companion modes [37]. The fact that
one-dimensional nonlinear atomic chains support propagation
of the so-called envelope solitons has been realized rather
long ago and today they have become a subject of numerous
studies (see, e.g., Ref. [2] and references therein). Such
excitations are characterized by small amplitudes and involve
quasiharmonic oscillations of many atoms. They display a
rather stable behavior and in the leading approximation are
described by the nonlinear CGL equation. In some cases, when
the dissipation is not considered in the model, the modified
complex Ginzburg-Landau equation reduces to the nonlinear
Schrödinger equation in the case of diatomic lattices. For
example, this is a fact that C. Tchawoua investigated when
he studied the dynamics of solitons in diatomic nonlinear
networks with a double-well site potential and a cubic coupling
potential between nearest neighbors [3]. There, the motion of
modulated waves were proven to be described by the complex
Ginzburg-Landau equation. He showed that if the diatomic
chain had to be substituted into a monoatomic chain without
taking into account dissipation, the CGL equation would
reduce to a nonlinear Schrödinger equation. However, that
is not the case for the model under consideration in the present
work; because even when the dissipation is neglected, the
nonlinearity coefficient of the CGL equation remain complex.
Thus, the equation of motion will always be modeled by the
complex Ginzburg-Landau equation. To our knowledge, this is
the first research work that attempts to describe the evolution
dynamical behavior of solitons in networks of coupled HR
neurons. From the biological point of view, this result suggests
that neurons can participate in a collective processing of
long-scale information, a relevant part of which is shared over
all neurons but not concentrated at the single neuron level.
Thus, the brain may actively work not only in time domain
but also effectively use the spatial dimension for informa-
tion processing [11,38–40]. The neuronal chain can process
stimulus differently or identically in different circumstances.
For example, waves of neural activity, functionally related to
behaviors and global dynamics, have been found in visual,
sensory-motor, auditory, and olfactory cortices [11,41].

The variations of constants P , Qr , Qi and of the product
PQr with respect to the wave vector q are represented
in Fig. 2. Whereas the variations of real and imaginary
dissipative coefficients are presented in Fig. 3. Note that the
real dissipative coefficient is positive, whereas the imaginary
one is negative and very small.

Since the dispersion coefficient is real, the modulational
instability depends on the sign of PQr . According to
Benjamin-Feir instability, plane waves are unstable for positive
values of PQr , while they are stable for negative values. Note
that this stability criterion does not depend on the manner with
which the wave propagates. Thus, one can expect to find in the
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FIG. 2. (Color online) Variations of coefficients (a) P , (b) Qr ,
(c) Qi , (d) the product PQr in terms of the wave vector q of the carrier
wave. D0 = 0.04, �2

0 = 0.032, λ1 = 0.01, γ1 = 0.001, γ2 = 0.15,
r = 0.008.

diffusive neural network spatially localized nerve impulses for
any wave carrier whose wave vector is in the positive range of
PQr .
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FIG. 3. (Color online) Variations of dissipation coefficients
(a) Rr and (b) Ri in terms of the wave vector q of the carrier wave.
D1 = 0.04, �2

0 = 0.032, λ3 = 0.01, γ0 = 0.1, r = 0.008.

B. Nonlinear solution of the equation of motion

If we consider the dissipation term to be purely real (Ri =
0), that is we neglect the motion of ions and protein anions
across slow ions channels, the form of the envelope soliton
solution of Eq. (21) will be given by [3,24,42]

B(ξi,t) = B0e
φ

1 + e(φ+φ∗)(1+iα) , (29)

where

φ = qξi − wτ, (30)

α = β ± (2 + β2)
1
2 , (31)

β = 3Qr

2Qi

. (32)

After some computations, one can easily find that

B = Br + iBi, (33)

with

Br = B0
e−φ + cos 2αφeφ

2(cosh 2φ + cos 2αφ)
, (34)

Bi = −B0
sin 2αφeφ

2(cosh 2φ + cos 2αφ)
. (35)

From Eq. (12), we obtain

ϕ = 2(Br cos θ − Bi sin θ )

+ ε[C + 2(Dr cos 2θ − Di sin 2θ )] + O(ε2). (36)

Dr and Di are, respectively, the real and imaginary parts of
D.

Now if we suppose that

D = (a1 − ia2)B2

= (a1 − ia2)(Br + iBi)
2

= [
a1

(
B2

r − B2
i

) + 2a2BrBi

]
(37)

+ i
[
a2

(
B2

i − B2
r

) + 2a1BrBi

]
,

where

a1 = λ1

3�2
o + 16D0 sin4 q

2

, (38)

a2 = wγ1

3�2
o + 16D0 sin4 q

2

. (39)

Using Eqs. (36) and (37), then inserting the expression xi =
εϕi , we obtain

xi = εB0

[
cos(θi − 2αφi)eφi + cos θie

−φi

(cosh 2φi + cos 2αφi)

]
+ εB2

0

[
− λ1

�2
0(cosh 2φi + cos 2αφi)

]

+ε2B2
0

[
(a1 cos 2θi + a2 sin 2θi)

(
2 cos 2αφi + cos 4αφie

2φi + e−2φi

2(cosh 2φi + cos 2αφi)2

)]

+εB2
0

[
(a1 sin 2θi − a2 cos 2θi)

(
2 sin 2αφi + sin 4αφie

2φi

2(cosh 2φi + cos 2αφi)2

)]
. (40)

Figure 4 shows the nerve impulse localized in the neural
network having the form of an asymmetric envelope soliton.

In Fig. 5 we observe how the nerve impulse evolves in
the diffusive network with respect to time. It is clear from
there that as time evolves, the form of the asymmetric envelope
soliton changes; it is structurally unstable. Therefore, the
axonal waves are strongly nonlinear envelope solitons having

an up-and-down asymmetry in amplitude. This phenomenon
has been observed in a modified Toda lattice model [43].
However, the variation of the parameter ε does not affect the
form of the wave but its amplitude. From Fig. 6, we notice
that the terms resulting from the superposition of harmonics
in θ , namely C and D, do affect the wave amplitude. As
the perturbation increases so does the amplitude of the nerve
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FIG. 4. (Color online) The nerve impulse localized in space.
D0 = 0.04, �2

0 = 0.032, λ1 = 0.01, γ1 = 0.001, γ2 = 0.15, b0 =
1.0, r = 0.008, q = 1.5, t = 10, ε = 0.0001.

impulse. Therefore, the more random are the ions shared across
the plasma membrane the narrower is the width of the action
potential and the larger its amplitude is. This phenomenon can
be caused by fluctuations in the sequence of neuronal firing
times [22,23].

We have also performed numerical simulation of the CGL
equation [Eq. (21)] using a Runge-Kutta method with fixed
step size. For the initial condition considered as in Eqs. (34)
and (35), the profile of the analytical envelope solution is
presented in Fig. 7. As expected the solution |B(ξ,t)|2 of the
equation is an asymmetric envelope soliton that keeps its shape.

We now suppose that the dissipation term has both its real
and imaginary parts (Ri �= 0). In order to find the new form of
the solution, we consider the change of variable M = Beiστ ,
where M is a solution of the modified CGL equation. Inserting
it in Eq. (21) yields

σ = −Ri

2
, (41)

thus we obtain

M = Be− iRi
2 τ . (42)

FIG. 5. (Color online) The evolution of the nerve impulse at
different times. D0 = 0.04, �2

0 = 0.032, λ1 = 0.01, γ1 = 0.001,
γ2 = 0.15, b0 = 1.0, r = 0.008, q = 1.5.
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FIG. 6. (Color online) Effects of small perturbations on the nerve
impulse. D0 = 0.04, �2

0 = 0.032, λ1 = 0.01, γ1 = 0.001, γ2 = 0.15,
b0 = 1.0, r = 0.008, q = 1.5, t = 10. (a) ε = 0.001, (b) ε = 0.01,
(c) ε = 0.1.

We observe that the imaginary term of the dissipation acts only
on the wave phase. The amplitude of the nerve impulse is not
altered.

IV. MODULATIONAL INSTABILITY IN THE
NEURAL NETWORK

In the previous section, we saw that the equation of evo-
lution of the membrane potential amplitude admits spatially
localized wave solutions; this was under the constraint of PQr
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FIG. 7. (Color online) Profile of analytical envelope solution
|B(ξ,t)|2 of Eq. (21) with initial conditions Eqs. (34) and (35).

being strictly positive. This situation occurs when the energy
tends to localize itself in the system thanks to modulational
instability.

Although the modified CGL equation has an envelope
soliton as solution, it also admits a plane-wave solution. In
this section, we are looking for conditions under which a plane
wave propagating in the diffusive neural network will become
stable or unstable to a small perturbation. The instability of the
plane wave will generate amplitude modulated waves. Hence,
we are searching for a plane wave in the form

B(ξi,t) = B0e
i(νξi−�t), (43)

where ν is the wave number and � the wave angular frequency.
Reporting Eq. (43) in Eq. (21) gives for the real part

� = P

2
ν2 + Rr

2
− QrB

2
0 , (44)

and the imaginary part

QiB
2
0 + Ri

2
= 0. (45)

Equation (44) is the nonlinear dispersion relation of the plane
wave; it shows that the angular frequency depends on both the
wave number and the wave amplitude.

To examine the linear stability of the plane wave, we look
for a solution in the form

B(ξi,t) = [B0 + b(ξi,t)]e
i[νξi−�t+θ(ξi ,t)], (46)

where the perturbation amplitude b(ξi,t) is supposed to be
small in comparison to the plane wave amplitude.

Inserting Eq. (46) into Eq. (21), neglecting the nonlinear
terms and considering terms that annihilate, yields to the
following equations for real and imaginary parts:

− B0θt + P

2
bξξ − PB0νθξ + 2QrB

2
0b = 0, (47)

bt + P

2
B0θξξ + Pνbξ − Rib = 0. (48)

The above system of equations admits solutions of the form

b = boe
i(δξ−ηt) + c.c., (49)

θ = θoe
(iδξ−ηt) + c.c., (50)

where δ is an arbitrary real wave number of the perturbation
and η is its corresponding propagation frequency that is
generally complex.

Substituting these solutions in the system of equations
that describe the evolution of the perturbation yields to the
following linear homogeneous system for bo and θo:(

2QrB2
0 − P

2
δ2

)
bo + iB0(η − Pνδ)θo = 0, (51)

(−Ri − i(η − Pνδ))bo − P

2
B0δ

2θo = 0, (52)

which can be written in the matrix form as(
2QrB2

0 − P
2 δ2 iB0(η − Pνδ)

−Ri − i(η − Pνδ) −P
2 B0δ

2

) (
bo

θo

)
=

(
0

0

)
.

This system will allow nontrivial solutions if the matrix
determinant is equal to zero. The characteristic equation is
given by

(η − Pνδ)2 = P 2δ2

4

(
δ2 − 4Qr

P
B2

0

)
+ iRi(η − Pνδ).

(53)

In the above dispersion relation of the perturbation, we notice
that the behavior of the angular frequency η depends on the
sign of Qr

P
for a given value of the wave number δ.

Let z = η − Pνδ, then we have

z2 − iRiz − P 2δ2

4

(
δ2 − 4Qr

P
B2

0

)
= 0. (54)

The discriminant of this equation is

� = P 2δ2

(
δ2 − 4Qr

P
B2

0

)
− R2

i . (55)

: − If � > 0, i.e., P 2δ2(δ2 − 4Qr

P
B2

0 ) > R2
i .

z = i
Ri

2
±

√
R2

i − P 2δ2
(
δ2 − 4Qr

P
B2

0

)
2

. (56)

The imaginary part of z which is the imaginary part of η is
given by Ri

2 . In this region, the wave oscillates about its original
value and after a certain period of time the perturbations will
extinguish [this is because Ri < 0 see Fig. 3(b)]. The plane
wave is therefore stable.
: − If � = 0, i.e., P 2δ2(δ2 − 4Qr

P
B2

0 ) = R2
i , z = i Ri

2 .
The imaginary part of η is still given by Ri

2 . Thus, as seen
above, the plane wave remains stable.
: − If � < 0, i.e., P 2δ2(δ2 − 4Qr

P
B2

0 ) < R2
i ,

z = i
Ri

2
± i

√
R2

i − P 2δ2
(
δ2 − 4Qr

P
B2

0

)
2

. (57)
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FIG. 8. (Color online) Instability growth rate according to
Eq. (2.56) for three values of the diffusive coupling strentgh D0 =
0.01 (magenta line), D0 = 0.03 (red line), D0 = 0.06 (black line).
b0 = 0.04.

Let’s discuss the conditions for which the plane wave is stable,
which is the same as discussing the sign of the imaginary part
of z.

: − If Imz < 0, i.e., Ri <

√
R2

i − P 2δ2(δ2 − 4Qr

P
B2

0 )

⇒ P 2δ2
(
δ2 − 4Qr

P
B2

0

)
> 0.

This is true if Qr

P
< 0 (i.e., PQr < 0). The plane wave

solution of the modified CGL equation is therefore stable when
PQr < 0. The perturbations b and θ merely oscillate at a
constant amplitude without damping.

: − If Imz > 0, i.e., Ri >

√
R2

i − P 2δ2(δ2 − 4Qr

P
B2

0 )

⇒ P 2δ2
(
δ2 − 4Qr

P
B2

0

)
< 0.

Here, Qr

P
> 0 (i.e., PQr > 0). The perturbations grow

exponentially with time resulting in the plane wave being
unstable. The local growth rate of the modulational instability
or the gain is then given by

g = |Imη|

= 1

2

[
Ri +

√
R2

i − P 2δ2

(
δ2 − 4Qr

P
B2

0

)]
. (58)

When the gain is maximal, g = 1
2 [Ri +

√
R2

i + 3Q2
rB

2
0 ],

the plane wave tends to modulate itself with the corresponding
wave number δ = B0

√
Qr

P
(see Fig. 8). We observe that the

growth rate of the modulational instability depends on the
amplitude of the plane wave, the nonlinear and dissipative
coefficients of the modified CGL equation. Whereas, in the
case of the nonlinear Schrödinger equation (NLS), the gain
is exclusively dependent of the wave amplitude and the
nonlinear coefficient of the NLS equation [2]. We equally
notice that if Ri = 0, we obtain the same expression for
the gain established by Peyrard and Dauxois for a NLS
equation [2].

In the domain of existence of solitons, the modulated
phase of the wave (as observed during the linear stability
analysis of the small perturbations) precedes a phase where
the wave amplitude will vanish in particular areas of the

network. This is the generation of envelope solitons. This
analysis corroborates the fact that solitons exist unrestrainedly
in nonlinear, dissipative, and dispersive medium.

V. CONCLUSION

The main objective of this work was to study localized
nonlinear excitations in diffusive Hindmarsh-Rose neural
networks. In order to carry out that purpose, we have shared
our work into three sections. In the first section, we reduced
the diffusive coupled Hindmarsh-Rose model system formed
by three nonlinear ordinary differential equations to two
differential equations with the equation governing the motion
of the transmembrane voltage being in a Liénard form. The
second section was dedicated to find envelope solitons in
the diffusive Hindmarsh-Rose neural model. The necessity to
find in our model nonlinear excitations of weak amplitude
led us to the use of the multiple scale expansion in the
semidiscrete approximation. At the first and second order of
approximation, we obtain that both the angular frequency
and the group velocity of the action potential depend on
characteristic features of the neural tissue. At the third order
of approximation, we obtain from the membrane potential
equation of motion, an equation describing the evolution
of modulated waves, a modified complex Ginzburg-Landau
equation. We therefore made numerical simulations of the
envelope solitons solutions of that modified CGL equation
by using the solution form proposed by Nozaki and Bekki. It
is described by asymmetric envelope solitons unstable in their
dynamics down the axon, however, keeping the asymmetric
envelope soliton shape in the presence of disturbances. A study
of the modulational instability of a plane wave propagating in
the network was also made in Sec. IV. Via the linear stability
analysis of the plane wave, we verify as one could expect that
the expression of the growth rate of the modulational instability
of the modified CGL equation reduces to the one of a nonlinear
Schrödinger equation if the dissipation term is neglected. The
Benjamin-Feir instability was checked to be true in our neural
network.

These results have several interesting aspects. In the first
place, they describe the way of obtaining the type of localized
structures that propagate in polynomial form of equation of
neurons using fairly standard perturbation technique. Second,
bursting in a neuronal system is a recurrent alternation between
active phases (large amplitude oscillations) and quiescent
phases (small amplitude oscillations). Studying the properties
of regularly and irregularly oscillating localized structures may
be fruitful for fundamental insights into spatiotemporal dy-
namics and chaos and possible interest for neuronal population
information encoding and transmission where several neurons
fire within a population.
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