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Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities
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We investigate the dynamical behavior of continuous and discrete Schrödinger systems exhibiting parity-time
(PT) invariant nonlinearities. We show that such equations behave in a fundamentally different fashion than
their nonlinear Schrödinger counterparts. In particular, the PT-symmetric nonlinear Schrödinger equation can
simultaneously support both bright and dark soliton solutions. In addition, we study a discretized version of
this PT-nonlinear Schrödinger equation on a lattice. When only two elements are involved, by obtaining the
underlying invariants, we show that this system is fully integrable and we identify the PT-symmetry-breaking
conditions. This arrangement is unique in the sense that the exceptional points are fully dictated by the nonlinearity
itself.
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I. INTRODUCTION

Interest in non-Hermitian systems has been on the rise since
the pioneering work of Bender and Boettcher which showed
that a wide class of non-Hermitian Hamiltonians can exhibit
entirely real spectra as long as they respect the conditions of
parity and time (PT) symmetry [1]. Since then PT-symmetric
Hamiltonian families have been a subject of intense research
within the context of quantum mechanics [2–6]. In general,
a necessary condition for a Hamiltonian H = − 1

2
d2

dx2 + V (x)
to be PT symmetric is that the complex potential satisfies
V ∗(−x) = V (x). Under this condition, the spectrum of the
Schrödinger equation Hψ = Eψ can be completely real.
This is of course true as long as the system resides in the
exact phase regime. On the other hand, if the imaginary
component of this potential exceeds a certain threshold, the
so-called PT-symmetry-breaking threshold, the PT symmetry
will spontaneously break down and the spectrum will cease to
be entirely real.

Recently, it has been suggested that optics can provide an
ideal test bed for observing and studying the ramifications
of such theories. This is due to the fact that, in optics, the
paraxial equation of diffraction is mathematically isomorphic
to the Schrödinger equation in quantum mechanics [7–9].
This analogy allowed observation of PT symmetry in optical
waveguide structures and lattices [8–10]. In addition, several
studies have showed that PT-symmetric optics can lead to
alternative classes of optical structures and devices with
altogether unique properties and functionalities [7–23]. These
include power unfolding and breaking of the left-right sym-
metry [7], abrupt phase transitions [8], non-Hermitian Bloch
oscillations [12], simultaneous lasing-absorbing [13,16], and
selective lasing [18]. Moreover, unidirectional invisibility [23]
and defect states with unconventional properties [10,23] have
been also demonstrated. Finally PT-symmetric concepts have
also been used in plasmonics [22], optical metamaterials [23],
and coherent atomic medium [24].
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On the other hand, nonlinear Schrödinger systems involv-
ing PT-symmetric linear potentials [iψz + 1

2ψxx + V (x)ψ +
|ψ |2ψ = 0] have been intensely investigated within the last
few years [25–35]. For example, these works include the effect
of nonlinearity on beam dynamics in parity-time symmetric
potentials [25], solitons in dual-core waveguides [26,27],
nonlinear suppression of time reversal [28], dynamics of a
chain of interacting PT-invariant nonlinear dimers [29], Bragg
solitons in nonlinear PT-symmetric periodic potentials [30],
and nonlinear interactions in PT-symmetric oligomers [31,32].

In general, however, the Kerr nonlinearity can dynamically
induce an effective linear potential which may not necessarily
be PT symmetric. As a result, this effective potential can
dynamically break the even symmetry required for the real
part of a PT potential. Once this symmetry is lost, the wave
evolution in such nonlinear system is no longer bounded and
hence a PT-breaking instability can ensue. Lately, Ablowitz
and Musslimani considered the integrability of an alternative
class of nonlinear highly nonlocal Schrödinger-like equations
[36]. In this equation the standard third-order nonlinear-
ity |ψ |2ψ is replaced with its PT-symmetric counterpart
ψ(x,z)ψ∗(−x,z)ψ(x,z). Interestingly, in this study it was
shown that this equation is fully integrable since it possesses
linear Lax pairs and an infinite number of conserved quantities
[36].

In this work we study the PT-symmetric nonlinear
Schrödinger equation (PTNLSE) in continuous media as
well as in discrete systems. Our analysis indicates that the
PTNLSE exhibits unique behavior in terms of solutions and
dynamics. In particular, this equation admits both bright and
dark solitons under the exact same conditions. In addition
we study a discretized version of this equation in an infinite
lattice of coupled elements and then in a two-element coupled
system. We show that such PT coupler is fully integrable. This
article is structured as follows. In Sec. II the PT-symmetric
nonlinear Schrödinger equation is presented. Afterwards, in
Sec. III we present a discretized version of the PT-symmetric
nonlinear Schrödinger equation in an array of coupled ele-
ments. In Sec. IV we consider the two-element PT-symmetric
nonlinear coupled system, followed by a stability analysis
in Sec. V. The integrability of the PT-symmetric nonlinear
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coupler is discussed in Sec. VI followed by conclusions in
Sec. VII.

II. PT-SYMMETRIC NONLINEAR
SCHRÖDINGER EQUATION

The PT-symmetric nonlinear Schrödinger equation
(PTNLSE) can be obtained from the standard nonlinear
Schrödinger equation after replacing ψ∗(x,z) with ψ∗(−x,z).
In other words,

iψz + 1
2ψxx + ψ(x,z)ψ∗(−x,z)ψ(x,z) = 0. (1)

This equation can in principle be viewed as a lin-
ear Schrödinger-like equation iψz + 1

2ψxx + V (x,z)ψ(x,z) =
0 with a self-induced potential of the form V (x,z) =
ψ(x,z)ψ∗(−x,z). Such a dynamic potential is parity-time
symmetric in the sense that V (x,z) = V ∗(−x,z). It should be
noted that Eq. (1) is nonlocal, i.e., the evolution of the field at
the transverse coordinate x always requires information from
the opposite point −x.

These types of nonlinearities may be found in various wave
mixing phenomena under appropriate PT-symmetric settings.
In passing, it should be noted that nonlocal nonlinearities
are ubiquitous in nature; for example, it may arise from the
fluctuation of the external linear potential confining the wave,
as in the case of BECs in spatially and temporally fluctuating
trapping potentials, and diffusion of charge carriers or atoms
or molecules in atomic vapors [37,38]. Nonlinearities are
also nonlocal in case of optical beams in nonlinear dielectric
waveguides or waveguide arrays with random variation of
refractive index, size, or waveguide spacing [39]. In addition,
long-range interactions of molecules in nematic liquid crystals
also result in nonlocal nonlinearities [40]. We emphasize
that Eq. (1) describes a non-Hermitian system. In fact, by
defining the total power P = ∫ +∞

−∞ dx|ψ |2, one can directly
show that power is not conserved during evolution and
dP
dz

= ∫ +∞
−∞ dx|ψ |2[ψψ∗(−x,z) − ψ∗ψ(−x,z)]. Before going

into detail, it is worth noting that, in direct analogy with the
standard Schrödinger equation, one can find an infinite number
of constants of motion for Eq. (1) [36]. Here we mention the
quasipower Q and the Hamiltonian H of this system [36]:

Q =
∫ +∞

−∞
dxψ(x,z)ψ∗(−x,z), (2a)

H = 1

2

∫ +∞

−∞
dx[ψx(x,z)ψ∗

x (−x,z) − ψ2(x,z)ψ∗2(−x,z)],

(2b)

where ψx represents the first derivative of ψ with respect to x.
These quantities can be obtained from their NLSE counterparts
simply by replacing ψ∗(x,z) with ψ∗(−x,z).

It is straightforward to show that the PTNLSE, Eq. (1),
admits a bright soliton solution:

ψ(x,z) = Asech(Ax) exp

(
i
A2

2
z

)
. (3)

Interestingly, unlike the standard NLSE, the PTNLSE of
Eq. (1) admits at the same time a dark soliton solution as

well:

ψ(x,z) = A tanh(Ax) exp(−iA2z), (4)

where A in both cases is a real constant representing the
amplitude of these soliton states. Note that the standard
NLSE can support only one of these two solutions, depending
on the sign of dispersion or that of the nonlinear term.
Furthermore one can show that the PTNLSE admits any
symmetric solution of the NLSE (having positive nonlinearity)
as well as any antisymmetric solution of the NLSE with
negative nonlinearity. This may include higher-order soliton
solutions [41] as well as traveling soliton waves provided they
are taken in symmetrically positioned pairs.

It should be noted, however, that, in stark contrast with the
standard NLSE, the solutions of PTNLSE are not invariant with
respect to shifts in the transverse coordinate x. In fact, the solu-
tions of Eq. (1) retain their shape during evolution in z as long
as it remains centered around the origin of the x coordinate. For
any shift from the center, the self-induced potential V (x,z) =
ψ(x,z)ψ∗(−x,z) nonlinearly breaks its PT symmetry in spite
of the fact that it always respects the necessary condition
of PT symmetry, i.e., V ∗(−x,z) = V (x,z). This spontaneous
breaking of PT symmetry could be explained as follows: At
a reference propagation distance z0, if ψ(x,z0) is symmetric
or antisymmetric in x, i.e., ψ(−x,z0) = ±ψ(x,z0), then the
dynamic potential is completely real, V (x,z0) = ±|ψ(x,z0)|2.
If on the other hand, the field distribution is asymmetric,
the dynamic potential exhibits an imaginary part which is
necessarily antisymmetric. As long as this antisymmetric
imaginary part is below a certain threshold, the system is
stable. However, when the imaginary part increases above
the threshold, this local PT symmetry spontaneously breaks
down and results in exponential growth of the field, triggering
instability.

The evolution dynamics of Eq. (1) when initially excited
with either the bright or dark soliton solutions of Eqs. (3) and
(4) are depicted in Figs. 1(a) and 1(b), respectively. As it was
expected, such solutions retain their shape during propagation
in z. On the other hand, Figs. 1(c) and 1(d) show the evolution
of these same solutions when slightly shifted from the center.
Clearly, such solutions are unstable as a result of spontaneous
PT-symmetry breaking. The possibility of traveling soliton
pairs and higher-order PTNLSE solitons is also depicted in
Figs. 1(e) and 1(f).

It is not clear how this type of nonlinearity could be
realized practically. However, taking cues from various recent
experimental results related to PT symmetry in optics [8,9],
it seems that a coupled waveguide system or an infinite
array of waveguides may finally help us to realize such
nonlinearities. Clearly, it may be worthwhile to study a
discrete version of the PTNLSE, embodying the nonlinearity of
Eq. (1).

III. DISCRETE PT-SYMMETRIC NONLINEAR
SCHRÖDINGER EQUATION

To better understand the PT-symmetric nonlinear term in
continuous systems, perhaps it is beneficial to see how it plays
a role in discrete settings. In this section, we consider a discrete
version of PTNLSE. This can be done by discretizing the
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FIG. 1. (Color online) Numerical simulations of the propagation
of the bright and dark solitons: (a) Bright soliton; (b) dark soliton;
(c), (d) bright and dark soliton solutions becomes unstable when
shifted from the center of PT symmetry; (e) pair of symmetrically
positioned traveling solitons; (f) higher-order soliton.

transverse coordinate x into the discrete lattice sites =0,±1,

±2, . . . . Under these conditions the discrete PTNLSE can be
written as

i
dan(z)

dz
+ κ[an+1(z) + an−1(z)] + ρa∗

−n(z)a2
n(z) = 0, (5)

where an denotes the field amplitude at the discrete lattice
site n, κ represents the linear coupling coefficient between
adjacent sites, and ρ is the coefficient of the PT-symmetric
nonlinearity. According to Eq. (5) the field at location n is
linearly coupled to adjacent sites n − 1 and n + 1 while it
is nonlinearly coupled to the field at mirror site –n. Inspired
by the invariant parameters of the continuous PTNLSE, it is
straightforward to show that the discrete PTNLSE admits the
following constants of motion:

Q =
∑

n

ana
∗
−n, (6)

H = −
∑

n

[
κ(ana

∗
−n+1 + a∗

−nan+1) + ρ

2

(
a2

na
∗2
−n

)]
. (7)

Stationary soliton solutions of Eq. (5) can be found by
assuming an = An exp(iμz) which leads to κ(An+1 + An−1) +
ρA∗

−nA
2
n = μA. Obviously, by assuming even (A−n = An)

and odd (A−n = −An) solutions, this last equation turns into
the discrete NLSE in a standard array of optical waveguide
with focusing and defocusing nonlinearity [42]. As a result,
Eq. (5) admits standard solutions of nonlinear waveguide
arrays with both focusing and defocusing nonlinearity at the
same time. Numerical results (based on the Newton-Raphson
method) show the presence of all such solitary wave solutions.

In general, however, such discrete solitons lack an analytical
expression. On the other hand, as we will show in the
next section, a two-element coupler with a PT-symmetric
nonlinearity is fully integrable.

IV. PT-SYMMETRIC NONLINEAR COUPLER

We next consider the discrete PTNLSE where only two
elements are taken into account. In this regard we study a two-
dimensional system embodying the nonlinearity of Eq. (1).
This is expressed by a system of two coupled differential
equations describing a PT-symmetric nonlinear coupler:

i
da(z)

dz
+ κb(z) + ρb∗(z)a2(z) = 0, (8a)

i
db(z)

dz
+ κa(z) + ρa∗(z)b2(z) = 0. (8b)

This set of coupled equations describes the physical
situation reasonably well when a cw beam is launched into
an array of two waveguides, each waveguide exhibiting a
nonlocal PT-symmetric nonlinearity as described above. Here
a and b represent the modal field amplitudes in the nonlinear
coupler, κ is the coupling constant, and ρ is associated
with the strength of the nonlinearity. As opposed to standard
nonlinear Kerr couplers [43,44], here the nonlinearity obeys
PT symmetry. It is important to note that this arrangement is PT
symmetric in a nonlinear sense as opposed to other systems
where this symmetry is introduced in a linear fashion [35].
As in the continuous case, these coupled equations describe
a nonconservative system. In other words, unlike a Hermitian
system, the total power in the system P = |a|2 + |b|2 is not
conserved. On the other hand, it is straightforward to show that
the discrete counterparts of the quasipower and Hamiltonian
invariants do exist and are given by

Q = a∗b + b∗a, (9)

H = −κ(|a|2 + |b|2) − ρ

2
(a2b∗2 + b2a∗2). (10)

The presence of these two constants of motion implies that
Eqs. (8a) and (8b) are in fact integrable. In direct analogy with
the standard nonlinear coupler [45] one can find the following
two nonlinear supermodes of Eq. (8):

(
a

b

)
=

(+A0

+A0

)
ei(+κ+ρA2

0)z, (11a)

(
a

b

)
=

(+A0

−A0

)
ei(−κ−ρA2

0)z. (11b)

Here the parameter A0 is an arbitrary real constant. It should
be noted that the first and the second solutions represent the
symmetric and antisymmetric nonlinear supermodes of the
standard nonlinear coupler [45] in the presence of focusing
and defocusing nonlinearity, respectively. Quite interestingly,
one can show that in addition to these one-parameter super-
modes, Eq. (8) also admits a pair of fixed point nonlinear
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supermodes:(
a

b

)
=

√
κ/ρ

( +1
+e+iθ

)
e+i2κ cos(θ)z, (12a)

(
a

b

)
=

√
κ/ρ

( +1
−e−iθ

)
e−i2κ cos(θ)z. (12b)

In this case there is a phase difference of θ between the two
channels. Even though the amplitudes are fixed to

√
κ/ρ the

phase difference θ can take any arbitrary values between 0 and
2π . Specifically, for θ = 0 these two solutions reduce to the
symmetric and antisymmetric solutions of Eqs. (8a) and (8b)
with A0 = √

κ/ρ. Again, for θ = π/2 these two solutions
collapse to the stationary solution (a,b) = √

κ/ρ(1,i). It
is worth noting that, in general, the fixed point solutions
appear in dissipative nonlinear systems involved with gain
and loss [46]. As mentioned before, here the nonlinearity
solely plays the role of an effective gain or loss in this
system.

V. STABILITY ANALYSIS OF THE SUPERMODES

The stability of the nonlinear supermodes of Eq. (8) can
be investigated in the same manner as in continuous media.
To investigate the stability of the supermode of Eq. (11a), we
consider the following solution:(

a

b

)
=

(+A0 + ε(z)
+A0 − ε(z)

)
ei(+κ+ρA2

0)z, (13)

where |ε| � A0 is a small perturbation to the supermode.
Using this relation in Eq. (8) and after neglecting higher-order
terms in ε one finds the following evolution equation for the
perturbation ε:

i
dε

dz
− 2κε + ρA2

0[ε(z) − ε∗(z)] = 0. (14)

After using the ansatz ε = εr cos(μz) + iεi sin(μz) in
Eq. (14) and solving the underlying eigenvalue problem
one gets μ2 = 4κ2(1 − ρ

κ
A2

0). Therefore the even supermode
[Eq. (11a)] is stable as long as −√

κ/ρ < A0 < +√
κ/ρ.

Similarly one can study the stability of the antisymmetric
supermode [Eq. (11b)] under the action of perturbations as
follows: (

a

b

)
=

(+A0 + ε(z)
−A0 + ε(z)

)
ei(−κ−ρA2

0)z, (15)

which leads to the exact same stability region, i.e., the odd
supermode is also stable as long as −√

κ/ρ < A0 < +√
κ/ρ.

Finally, one can show that the fixed point solutions are always
unstable.

A numerical study of Eq. (8) justifies these results. Figure 2
depicts the evolution dynamics of a and b for different initial
values a(z = 0) = a0 and b(z = 0) = b0. The evolution of
the symmetric supermode with and without perturbations is
plotted in Figs. 2(a)–2(d) in two different regimes A0 <

√
κ/ρ

and A0 >
√

κ/ρ. On the other hand, Figs. 2(e)–2(h) depict
the evolution dynamics for a single channel excitation where
b0 = 0.

According to this figure, Eq. (8) exhibits a thresholdlike
behavior that resembles the linear PT-symmetric coupler [18].

FIG. 2. (Color online) Evolution dynamics of a (black line) and
b (dashed gray line) for different initial conditions when κ = 4 and
ρ = 1. (a) a0 = b0 = 1.5; (b) a0 = 1.6, b0 = 1.4; (c) a0 = b0 = 2.5;
(d) a0 = 2.50001, b0 = 1.49999; (e) a0 = 0.5, b0 = 0; (f) a0 =
1.8, b0 = 0; (g) a0 = 2, b0 = 0; (h) a0 = 2.000001, b0 = 0.

Indeed, as we will show in the next section,
√

κ/ρ is a critical
value showing the onset of PT-symmetry breaking. If the initial
values of any of these two variables a and b exceed

√
κ/ρ, the

system becomes unstable.

VI. PT-SYMMETRIC NONLINEAR COUPLER:
STOKES PARAMETERS—ANALYSIS

In this section, by using the Stokes parameters of the system
we further investigate the integrability of this PT-symmetric
nonlinear coupler. We define the set of Stokes parameters as
follows:

S0 = aa∗ + bb∗, (16a)

S1 = aa∗ − bb∗, (16b)

S2 = a∗b + b∗a, (16c)

S3 = i(a∗b − b∗a). (16d)
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It should be noted that S2 is a constant of motion [see
Eq. (9)]. By definition all these parameters are real and satisfy
the following condition:

S2
0 = S2

1 + S2
2 + S2

3 . (17)

By using Eqs. (16) and (17) it is straightforward to show
that the evolution of the Stokes parameters is governed by the
following set of nonlinear equations:

dS0

dz
= −ρS1S3, (18a)

dS1

dz
= 2κS3 − ρS0S3, (18b)

dS2

dz
= 0, (18c)

dS3

dz
= −2κS1. (18d)

Equations (18a) and (18d) together lead to dS0
dz

= ρ

4κ

dS2
3

dz

which shows that S0 = ρ

4κ
S2

3 + C where C = S0 − ρ

4κ
S2

3 is
another constant of motion. In addition, Eqs. (18b) and (18d)
lead to d2S3

dz2 = −2κ(2κS3 − ρS0S3). Combining these two
latter relations we reach the following equation:

d2S3

dz2
= ρ2

2
S3

3 + (2κρC − 4κ2)S3. (19)

This is the so-called Duffing equation which can be solved
analytically by using Jacobian elliptic functions [47]. Instead
of solving this equation, however, here we restrict our attention
in finding the PT instability criterion. As we will see this
can also be obtained by simple graphical methods. In order
to find the onset of this PT-symmetry-breaking instability,
we first assume that the coupler is excited with the initial
condition a(z = 0) = a0 and b(z = 0) = b0 which are, in
general, complex. From Eqs. (17) and (18), we have

S0 = ρ

4κ
S2

3 + C, (20a)

S2
0 = S2

1 + S2
3 + D. (20b)

Here the two constants C = S0 − ρ

4κ
S2

3 and D = S2
2 can be

uniquely determined in terms of the initial conditions:

D = a∗2
0 b2

0 + a2
0b

∗2
0 + 2|a0|2|b0|2, (21a)

C = |a0|2 + |b0|2 + ρ

4κ

(
a∗2

0 b2
0 + a2

0b
∗2
0 − 2|a0|2|b0|2

)
.

(21b)

Obviously, the curve obtained from the intersection of
these two surfaces determines the evolution trajectory. If
the trajectory is closed the system will be stable; on the
other hand if the trajectory opens to infinity the system will
be unstable. Figure 3 illustrates these two surfaces in three
different regimes. Figure 3(a) shows the stable case, Fig. 3(b)
shows the threshold of instability, while Fig. 3(c) corresponds
to an unstable case. In each case the right-hand-side panel
shows the cross section in the S0S3 plane.

According to this figure, to have a stable solution, the two
surfaces described in Eq. (21) should intersect in the S0S3

FIG. 3. (Color online) Intersection of the two surfaces described
by S2

0 = S2
1 + S2

3 + D (red) and S0 = ρ

4κ
S2

3 + C (blue). The dashed
white line shows the intersection curves. For all cases ρ

κ
= 1. The

initial conditions used are (a) a0 = 0.8, b0 = 0; (b) a0 = 1, b0 = 0;
and (c) a0 = 1.2, b0 = 0. In each case the right-hand panel shows a
cross section of the left-hand panel in the S0S3 plane.

plane (S1 = 0). In other words, the pair of equations S2
0 =

S2
3 + D and S0 = ρ

4κ
S2

3 + C should have a valid solution. This
means that the combination of the two equations, i.e., S2

0 −
4κ
ρ

S0 + ( 4κ
ρ

C − D) = 0 should have real solutions. Therefore

� = ( 4κ
ρ

)2 − 4( 4κ
ρ

C − D) should be a positive quantity. After
writing C and D in terms of the initial conditions [Eq. (21)]
the latter condition can be simplified as follows:

� =
(

κ

ρ

)2

−
(

κ

ρ

)
(|a0|2 + |b0|2) + |a0|2|b0|2. (22)

According to this relation and based on the initial conditions
three different regimes can be distinguished: (a) If |a0| <√

κ/ρ and |b0| <
√

κ/ρ the discriminant � is positive and
in this case the PT coupler is stable. (b) If |a0| = √

κ/ρ

or |b0| = √
κ/ρ the discriminant � is zero and the PT

coupler lies on the threshold of instability. (c) If |a0| >
√

κ/ρ

or |b0| >
√

κ/ρ then � is negative and the PT coupler is
unstable.

VII. CONCLUSIONS

In conclusion we have studied the Schrödinger equation
in the presence of a nonlocal nonlinearity which respects
PT symmetry. We showed that such equation shows unique
behavior. In particular it admits both bright and dark solitons
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at the same time. The experimental realization of such
nonlinearities in a continuous system may be a huge challenge.
However, discrete systems such as a lattice or a coupled
waveguide may facilitate such realization. Therefore, we also
considered a discretized version of the PT symmetric nonlinear
Schrödinger equation. When only two elements were involved,
we showed that such system is fully integrable in terms
of elliptic functions. Finally, by using Stokes parameters
we obtained an analytical expression for the PT-symmetry-
breaking instability threshold.
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