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Fast time-series prediction using high-dimensional data: Evaluating confidence interval credibility
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I propose an index for evaluating the credibility of confidence intervals for future observables predicted from
high-dimensional time-series data. The index evaluates the distance from the current state to the data manifold. I
demonstrate the index with artificial datasets generated from the Lorenz’96 II model [Lorenz, in Proceedings of
the Seminar on Predictability, Vol. 1 (ECMWF, Reading, UK, 1996), p. 1], the Lorenz’96 I model [Hansen and
Smith, J. Atmos. Sci. 57, 2859 (2000)], and the coupled map lattice, and a real dataset for the solar irradiation
around Japan.
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I. INTRODUCTION

High-dimensional time-series data are ubiquitous because
of recent developments in measurement techniques. Methods
of extracting valuable information from such data are currently
a key topic. An example in the field of renewable energy is
the prediction of solar irradiation. Because solar irradiation
fluctuates abruptly owing to weather conditions, its predicted
values should be used to plan and control the outputs of other
backup power plants. Such renewable energy outputs should
be predicted online in the time scales from minutes to days
because the weather conditions change the outputs in these
time scales. In addition, such prediction should not consume
much electricity, the production of which is a purpose of
renewable energy. For applications in renewable energy, we
recently proposed a method of time-series prediction that is
online, spans multiple steps ahead [1], and is accompanied
by confidence intervals [2], while conventional time-series
prediction methods [3–8] in the context of nonlinear dynamics
predict the future values but not confidence intervals, and
often assume some family of mathematical models. However, a
problem has arisen: The confidence intervals sometimes could
capture the actual values observed in the future less often than
the intended accuracy of the confidence intervals.

In this paper, I propose an index to distinguish cases where
the credibility of the confidence intervals is high from cases
where the credibility is low. My main idea is to determine how
faithfully points in the database represent the current state.
The remaining sections are organized as follows: In Sec. II,
I review our previous study for predicting high-dimensional
data based on past observations and discuss its problem. In
Sec. III, I formulate the proposed index. In Sec. IV, I show
examples of the proposed index. In Sec. V, I discuss the results
and conclude the paper.

II. FAST TIME-SERIES PREDICTION
FOR HIGH-DIMENSIONAL DATA

I review the method of online time-series prediction
proposed in Refs. [1,2]. This method is an extension of the
method of Kwasniok and Smith [9,10] by piecewise constant
prediction [11]. In particular, Ref. [2] introduces online
multistep time-series prediction accompanied by confidence
intervals. A literature review [2,12,13] shows that more work
is needed in this area.

A. The algorithm

Suppose that I observe a multivariate time series xt ∈ Re,
where e is the dimension of my observations. Let B ∈
(Re)β×(d+q) be a database that is a matrix with β rows and
(d + q) columns, containing e-dimensional row vectors. The
first d columns correspond to the past part of the database, and
the following q columns correspond to the future part of the
database.

During t < β + d + q, I feed the observed point of the
time series to the database by B(i,l) = xt where i + l = t + 1,

1 � i � β, 1 � l � (d + q).
When t � β + d + q, I first predict xt+p (p ∈

{1,2, . . . ,q}): (i) I find the K nearest rows for the current state
(xt−d ,xt−d+1, . . . ,xt−1) in terms of the Euclidean distance from
the past part B(: ,1 : d) of the database, where B(: ,1 : d) is
the first d columns of the matrix B. Let It be the set of indices
for the K nearest rows. (ii) I construct the 100(1 − 1/K)%
confidence interval for the p steps ahead (p ∈ {1,2, . . . ,q}) of
the j th element of the observation by

[
min
i∈It

(B(i,d + p))j , max
i∈It

(B(i,d + p))j
]
,

where (B(i,d + p))j corresponds to the j th element of the
(i,d + p) component of B. I also construct the 100(1 −
1/K)% confidence interval for the sum of all the elements
of the observation p steps ahead by

⎡
⎣min

i∈It

c∑
j=1

(B(i,d + p))j , max
i∈It

c∑
j=1

(B(i,d + p))j

⎤
⎦

for each p ∈ {1,2, . . . ,q}.
Second, I attempt to update the database B: (i) I observe xt .

(ii) I use the K nearest rows for (xt−q−d+1,xt−q−d+2, . . . ,xt−q )
to predict xt−q+p. Letting Jt be the index for the K nearest
rows, I have

x̂t−q+p = 1

K

∑
i∈Jt

B(i,d + p)

for each p ∈ {1,2, . . . ,q}.
(iii) I construct a temporary database B ′ by randomly

choosing a row k and inserting B ′(i,l) = B(i,l) for i �=
k,l = 1,2, . . . ,d + q and B ′(i,l) = xt−q−d+l for i = k,l =
1,2, . . . ,d + q. (iv) I predict B(k,d + p) by finding the K

nearest rows for B(k,1 : d) from B ′(: ,1 : d). Here B(k,1 : d)
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FIG. 1. A part of the time series of the Lorenz’96 II model.

is the kth row of B restricted between the first and dth columns,
and B ′(:,1 : d) is the first d columns of B ′. Letting J ′

t be the set
of indices for the K nearest rows, the prediction for B(k,d + p)
can be obtained by

B̂(k,d + p) = 1

K

∑
i∈J ′

t

B(i,d + p).

(v) I compare the prediction errors of x̂t−q+p and
B̂(k,d + p) for p ∈ {1,2, . . . ,q}. If ‖x̂t−q+p − xt−q+p‖ >

‖B̂(k,d + p) − B(k,d + p)‖ for more than half of p ∈
{1,2, . . . ,q}, I update B by B ′. Otherwise, I do not update B.

B. Example: Lorenz’96 II

I evaluated the performance of the above algorithm using
a time series generated from the Lorenz’96 II model [14,15],
which is a toy model of the atmosphere. This model contains
two types of variables: The first type, vg , corresponds to the
variables representing the upper layer, and the second type,
wg,h, corresponds to those representing the lower layer close
to the surface of the Earth. The index g runs between 1 and
G = 40, and the index h runs between 1 and H = 5. The
model is represented as

dvg

dt
= vg−1(vg+1 − vg−2) − vg + F − avc

b

H∑
h=1

wg,h,

dwg,h

dt
= cbwg,h+1(wa,h−1 − wg,h+2) − cwg,h + awc

b
vg,

where I apply the following boundary conditions:

vG+g = vg,

wg,h+H = wg+1,h,

wg,h−H = wg−1,h.

I used the following parameters: F = 8, b = 10, c = 10,

av = 1, aw = 1. I observed wg,h (g ∈ {1,2,3,4}, h ∈
{1,2,3,4,5}) every 0.01 time units to obtain a 20-dimensional
time series that has 10 000 points. This time series can be
regarded as a regional surface observation of the atmosphere.
A part of the time series is shown in Fig. 1.

I set β = 2000, d = 10, q = 20, and K = 25 to obtain the
100(1 − 1/25) = 96% confidence intervals for the sum of the
20 observables.

The result is presented in Fig. 2. Although I intended to
obtain the 96% confidence intervals, the probabilities that the
96% confidence intervals contain the actual values were less
than 94% throughout the prediction steps I tested, which were
between 1 and 20.

III. PROPOSED METHOD

A possible reason that the 96% predicted confidence
intervals had a lower probability of containing the actual values
in the example of the Lorenz’96 II model could be that the
dimension for the dynamics is too high, and the neighborhood
constructed using the 25 nearest neighbors may sometimes not
represent the current state well. In such a case, the current state
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FIG. 2. Probability that the 96% confidence interval (CI) includes
the actual value given the number of prediction steps, Lorenz’96 II
model.

and the manifold spanned by the data points, which I call the
data manifold, can be separated by a large distance, as shown
in Fig. 3.

Therefore, I evaluate the distance between the current state
and the data manifold. For this purpose, first I approximate
the data manifold locally by a hyperplane (see Fig. 4). Let
It = {It,1,It,2, . . . ,It,K} be a set of indices for the K nearest
neighbors for the current state (xt−d , xt−d+1, . . . , xt−1). I
obtain the hyperplane such that {B(i,1 : d),i ∈ It } are close
to it. Such a hyperplane can be written as

d∑
i=1

e∑
j=1

αi,j yi,j = γt ,

where ((y1,1,y1,2, . . . ,y1,e) (y2,1,y2,2, . . . ,y2,e) · · · (yd,1,yd,2,

. . . ,yd,e)) is in the same space as the current state
(xt−d , xt−d+1, . . . , xt−1). Although αi,j depends on t , I drop
t here for simplicity. In addition, I write

αt = (α1,1α1,2 · · · αd,e)T .

Here T represents the transpose of the matrix. There are
(de + 1) parameters for the hyperplane. The problem of
choosing the parameters can be formulated as the following

FIG. 3. Current state (cross at top) and data manifold (bottom
surface). The quality of the representation of the current state can be
evaluated using the distance between the current state and the data
manifold (thick vertical line).

FIG. 4. Schematic diagram of current state (black cross), neigh-
boring points (gray crosses), and hyperplane (parallelogram). Thick
black line indicates distance between current state and hyperplane.

minimization problem:

min
αt

∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎝

(B(It,1,1))1 (B(It,1,1))2 · · · (B(It,1,d))e
(B(It,2,1))1 (B(It,2,1))2 · · · (B(It,2,d))e

...
...

. . .
...

(B(It,K,1))1 (B(It,K,1))2 · · · (B(It,K,d))e

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

α1,1

α1,2

...

αd,e

⎞
⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎝

γt

γt

...

γt

⎞
⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥

2

. (1)

I rewrite this as

min
αt

‖ �

Btαt − γt
�1‖2.

Namely, �1 is the column vector such that all its elements are 1.
However, the number of parameters is too large compared to
the number K of neighboring points. Therefore, the problem
of choosing the parameters is overdetermined.

To overcome this difficulty, I enforce two constraints. The
first is that αi,j = γt ᾱi,j . Dividing Eq. (1) by γ 2

t , I obtain the
following cost function:

min
ᾱt

‖ �

Bt ᾱt − �1‖2. (2)

The second constraint is the minimization of the norm
for the coefficients. Namely, I simultaneously minimize the
following cost function:

min
ᾱt

d∑
i=1

e∑
j=1

(ᾱi,j )2 = min
ᾱt

‖ᾱt‖2. (3)

Combining Eqs. (2) and (3) with a Lagrangian multiplier
λ, I minimize the following cost function to obtain ᾱi,j :

min
ᾱt

{‖ �

Bt ᾱt − �1‖2 + λ‖ᾱt‖2}. (4)

Solving Eq. (4) is easy. By partially differentiating Eq. (4)
in terms of ᾱt , I have

{
λE + �

Bt
T

�

Bt

}
ᾱt = �

Bt
�1,
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FIG. 5. Examples of predicted 96% confidence intervals for the sums of the observables for the dataset generated from the Lorenz’96 II
model without observational noise. (a)–(e) Dt < D̄; (f)–(j) Dt � D̄. In each panel, solid lines or dashed lines show predicted 96% confidence
intervals, and dotted line represents actual values.

where E is the identity matrix. By multiplying by

{λE + �

Bt
T

�

Bt }−1 from the left-hand side, I obtain

ᾱt = {
λE + �

Bt
T

�

Bt

}−1 �

Bt
�1.

Therefore, I have

αt = γt

{
λE + �

Bt
T

�

Bt

}−1 �

Bt
�1.
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FIG. 6. Comparison of cases where the proposed index was small and large for the Lorenz’96 II model without noise (λ = 1). (a) Solid
and dash-dotted lines correspond to Dt < D̄ and Dt � D̄, respectively; (b) shows the significance of the difference between these two cases.
Solid line shows p-values, and dotted line represents line of p = 0.05.
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FIG. 7. Comparison of cases where the proposed index was small and large in time-series data generated from the Lorenz’96 II model
contaminated by 5% observational noise. I set λ = 1. Lines have the same meaning as in Fig. 6.

For simplicity, I choose γt so that the norm of αt becomes
1. Namely,

γt = 1
∥∥{

λE + �

Bt
T

�

Bt

}−1 �

Bt
�1∥∥ ,

and

αt =
{
λE + �

Bt
T

�

Bt

}−1 �

Bt
�1

∥∥{
λE + �

Bt
T

�

Bt

}−1 �

Bt
�1∥∥ .

Because αt represents the normal vector for the hyperplane
whose norm is 1, the following Dt provides the distance
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FIG. 8. The average significance level for the difference between
Dt < D̄ and Dt � D̄ given a prediction step and the size of
observational noise, in the case of the Lorenz’96 II model.

between the hyperplane and the current state:

Dt = |(xt−q xt−q+1 · · · xt−1)αt − γt |.

I evaluate this distance Dt at the beginning of the predicted
part of the time series and obtain the median value D̄. In
the following part of the time series, I compare the cases of
Dt < D̄ and Dt � D̄. I will examine whether the probability
that the obtained confidence interval contains the actual value
is larger if Dt < D̄.

TABLE I. Dependence of 5% significance on sets of prediction
steps and levels of observational noise, for the example of the
Lorenz’96 II model. In this table, the number of joint sets for
prediction steps and realizations is shown for each condition and
each class of significance levels. I found that the condition that
prediction steps is less than or equal to 10 is not independent of the
5% significance (p-value obtained by the one-sided Fisher’s exact
test using R package: 4.9 × 10−6). I also found that the condition that
the noise level is less than or equal to 0.25 is not independent of 5%
significance (p-value: 5.3 × 10−3).

Condition–significance level

Prediction steps Noise level �0.05 >0.05 Total

�10 �0.25 446(74%) 154(26%) 600
>0.25 393(66%) 207(35%) 600

>10 �0.25 346(69%) 154(31%) 500
>0.25 301(60%) 199(40%) 500

Total 1486(68%) 714(32%) 2200

052916-5



YOSHITO HIRATA PHYSICAL REVIEW E 89, 052916 (2014)

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20
u 1

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

u 2

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

u 3

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

u 4

0 100 200 300 400 500 600 700 800 900 1000
−20

0

20

Time (arb. units)

u 5

FIG. 9. A part of the time series for the Lorenz’96 I model.
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FIG. 10. Comparison between cases where the proposed index is low and high, in the case of the Lorenz’96 I model. See the caption of
Fig. 6 to interpret the results.
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and high Dt given the dimension of model and a prediction step, in
the case of the Lorenz’96 I model.

IV. EXAMPLES

A. Lorenz’96 II without observational noise

First, I applied the method to the Lorenz’96 II model used
in Sec. II. I applied the same conditions as in Sec. II B except
that I used 2000 points starting at the 3001st point to obtain the
median D̄ of the proposed index and evaluated the prediction
using 4000 points starting at the 5001st point.

Examples of the predicted 96% confidence intervals are
shown in Fig. 5, and the results are summarized in Fig. 6. I
found that the predicted confidence intervals tended to contain
the actual values with a higher probability when Dt < D̄ than
when Dt � D̄ if the prediction step was smaller than 14 [see
Fig. 6(a)]. For instance, in the examples of Figs. 5(d), 5(g),
and 5(i), the actual values were out of the ranges specified by
the predicted 96% confidence intervals for at least a prediction
step. The difference in the probabilities between Dt < D̄ and
Dt � D̄ was statistically significant when the prediction step
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FIG. 12. The average significance level for the difference between
cases where the proposed index is low and high given a prediction
step and the size of observational noise, in the case of the Lorenz’96
I model.

TABLE II. Dependence of 5% significance on sets of prediction
steps and levels of observational noise, for the example of the
Lorenz’96 I model. See the caption of Table I to interpret this
table. The condition that prediction steps �10 is not statistically
independent of the 5% significance (p-value < 2.2 × 10−16). In
addition, the condition that noise level �0.25 is neither statistically
independent of the 5% significance (p-value < 2.2 × 10−16).

Condition–significance level

Prediction steps Noise level �0.05 >0.05 Total

�10 �0.25 337(56%) 263(43%) 600
>0.25 181(30%) 419(70%) 600

>10 �0.25 163(33%) 337(67%) 500
>0.25 77(15%) 423(85%) 500

Total 758(34%) 1442(66%) 2200

was smaller than 9, with a significance level of 0.05 [the chi-
square test [16]; see Fig. 6(b)]. It took 65 min to finish the
prediction (2.4 GHz Intel Core 2 Duo CPUs with 4 GB of
memory. I used the same computer for the other computations).

B. Lorenz’96 II with observational noise

I also tested the same dataset with an added 5% Gaussian
observational noise. The other computational conditions were
the same as in the previous subsection.

The results are presented in Fig. 7. Although the differences
became smaller when the prediction steps were medium
(between 4 and 8), the results were similar to those for the
dataset without observational noise in that in short prediction
ranges, the confidence intervals with smaller Dt exhibited a
higher probability of containing the actual values within them.
These results mean that the proposed index is robust against
observational noise.

I also evaluated the influence of observational noise by
varying the size of observational noise from 0% to 50% (see
Fig. 8). I generated ten different realizations of time series
using different initial conditions, added observational noise
for each noise level, and averaged the significance level for the
difference between Dt < D̄ and Dt � D̄ over the ten different
realizations. I found that the p-value for Dt < D̄ was likely
to be smaller than that for Dt � D̄ in the significance level
of 5% if the size of observational noise was less than 30%
or if the prediction step was less than or equal to ten steps
(see Fig. 8 and Table I).

C. Lorenz’96 I without noise

In addition, I evaluated the performance for the proposed
index with the Lorenz’96 I model [14,15]. The model is written
as

dug

dt
= −ug−2ug−1 + ug−1ug+1 − ug + F,

and

ug+G = ug,

where I set F = 8. I sampled ug (g = 1,2, . . . ,5) every 0.05
unit times and generated a time series of length 10 000. A
part of the time series is shown in Fig. 9. I predicted the sum
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FIG. 13. A part of the time series for the coupled map lattice.
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FIG. 14. Comparison for low and high Dt given a prediction step, in the case of the coupled map lattice. See the caption of Fig. 6 to interpret
the results.
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of
∑5

g=1 ug . The rest setting was the same as the case of the
Lorenz’96 II model.

When I used the G = 40-dimensional model, I obtained
the results shown in Fig. 10. The probability that the 96%
confidence interval contains the actual value was higher
when Dt < D̄ in the tested prediction range. Especially, the
difference between Dt < D̄ and Dt � D̄ was significant when
the prediction step was less than 7.

When I changed the dimensions to 5, 10, 20, 50, 100, 200,
500, 1000, 2000, 5000, and 10 000, I obtained the results shown
in Fig. 11. These results mean that the proposed index worked
for discriminating the cases where the prediction method
discussed in Sec. II A was more effective when the prediction
steps were small.

D. Lorenz’96 I with observational noise

I also evaluated the case where the observation of the
Lorenz’96 I model was disturbed by observational noise. I
set G = 40 and I generated ten different time series using
different initial conditions. Moreover, I changed the size of
observational noise from 0% to 50%, taking the average
of significance level over ten different realizations of time
series (see Fig. 12). I found the tendencies that the p-value
for Dt < D̄ was likely to be smaller than the p-value for
Dt � D̄ either if the prediction step was shorter or if the size
of observational noise was smaller (see Fig. 12 and Table II).

E. Coupled map lattice without noise

Moreover, I used the coupled map lattice [17] for evaluating
the proposed index. I used the following model:

un(t + 1) = (1 − 2ε){aun(t)[1 − un(t)]}
+ (ε − η){aun+1(t)[1 − un+1(t)]}
+ (ε + η){aun−1(t)[1 − un−1(t)]},

un+N (t) = un(t),

where I set N = 100, a = 3.8, ε = 0.05, η = 0.01. I gener-
ated a time series with the length of 10 000 by observing
un(n = 1,2, . . . ,20). A part of the time series is shown in
Fig. 13. I predicted their sum. The other conditions are the
same as the case of the Lorenz’96 II model. The results are
shown in Fig. 14. Although I found that the predicted 96%
confidence interval tended to contain the actual value more
frequently for the wide range of prediction steps for Dt < D̄,
this tendency was not statistically significant for most of the
prediction steps.

F. Coupled map lattice with observational noise

I also evaluated the case where there is observational noise. I
took the average over ten time series generated from different
initial conditions. The results are shown in Fig. 15. For the
coupled map lattice, when prediction steps were less than or
equal to 10 and the noise level was less than or equal to 0.05,
the probability that their difference is 5% significant was a
chance level (Table III). In addition, the difference between
Dt < D̄ and Dt � D̄ does not depend on either prediction
steps or the size of observational noise (Table III).
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FIG. 15. The average significance level for the difference between
low and high Dt cases given the size of observational noise and a
prediction step, in the case of the coupled map lattice.

G. Solar irradiation around Japan

I applied the proposed index to solar irradiation data
observed around Japan. The dataset was obtained from 48
weather stations across Japan and covered January 1, 2010
to December 31, 2012. Although the dataset was originally
recorded every 10 min, I took the average over every hour.
Therefore, the dataset used for the prediction was a 48-
dimensional time series with a length of 26 304. A part of
the time series is shown in Fig. 16.

I set β = 9000 to take into account the seasonality. I chose
d = 18 so that the current state can identify the time within a
day. I set q = 36 because this is the maximum target prediction
step in a practical power grid system. In addition, I set K = 25
to obtain the 96% confidence intervals for the sum over the
48 dimensions. I used 4000 points starting at the 9001st point
to obtain D̄, and the following 13 000 points to evaluate the
proposed method.

Examples of the predicted 96% confidence intervals are
shown in Fig. 17. In addition, the results are summarized in
Fig. 18. If Dt < D̄, the confidence intervals tend to contain
the actual values more frequently than if Dt � D̄ when the

TABLE III. Dependence of 5% significance on prediction steps
and levels of observational noise, for the example of coupled map
lattice. See the caption of Table I to interpret this table. In this table,
the condition that prediction steps �10 is statistically independent of
the 5% significance (p-value: 1.00). The condition that noise level
�0.05 is statistically independent of the 5% significance (p-value:
0.78).

Condition–significance level

Prediction steps Noise level �0.05 >0.05 Total

�10 �0.25 42(7%) 558(93%) 600
>0.25 47(8%) 553(92%) 600

>10 �0.25 27(5%) 473(95%) 500
>0.25 55(11%) 445(89%) 500

Total 171(8%) 2029(92%) 2200
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FIG. 16. A part of the time series for solar irradiation.

prediction steps were between 1 and 5 h, between 11 and
22 h, and for 35 and 36 h [chi-square test; see Fig. 18(b)].
For instance, in the examples in Figs. 17(b), 17(f), and 17(h),

the actual value exceeded the confidence interval at the
prediction steps for at least one prediction step. Moreover, if
Dt < D̄, the 96% confidence intervals were likely to contain
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FIG. 17. Examples of predicted 96% confidence intervals for sums of solar irradiation observed at 48 weather stations. (a)–(e) Dt < D̄;
(f)–(j) Dt � D̄. Lines have same meaning as in Fig. 5.
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FIG. 18. Comparison of cases where the proposed index was small and large in real-time-series solar irradiation data. I used λ = 1 in this
example. Lines have the same meaning as in Fig. 6.

the actual values with a probability of about 96% or higher
[see Fig. 18(a)]. It took 1.4 days to finish the above prediction
for the dataset covering 3 years.

V. DISCUSSION

I compared the proposed index with the local maximum
Lyapunov exponent. Abarbanel et al. [18,19] proposed local
Lyapunov exponents. I used the method of Kantz [20] to
evaluate the maximum Lyapunov exponent locally by evaluat-
ing the maximum exponent using nine nearest neighbors and
prediction steps of 2–4. The results for the Lorenz’96 II model,
the Lorenz’96 I model, the coupled map lattice, and the solar
irradiation data are shown in Figs. 19–22, respectively. These
results show that the local maximum Lyapunov exponent
and the proposed index show the different aspects for the
predictability of a given time series. For instance, in the
example of the Lorenz’96 II model, the proposed index
identified the difference for the prediction skill when the
prediction steps were less than 9 (Fig. 6), while the local
maximum Lyapunov exponent identified the difference when
the prediction steps were between 8 and 16 (Fig. 19). In
the example of the Lorenz’96 I model, the difference in the
prediction skill was identified by the proposed index for the
prediction steps less than 7 (Fig. 10), while that by the local
maximum Lyapunov exponent was for the prediction steps of
less than 5 and between 13 and 14 (Fig. 20). Therefore, the

local maximum Lyapunov exponent and the proposed index
can possibly work complementarily. How to combine these
two indices is a topic of future research.

Although the proposed index seems to be robust against the
observational noise, I could not draw a general conclusion on
how small the observational noise should be because the per-
formance was different depending on the tested mathematical
models (see Figs. 8, 12, and 15 and Tables I–III).

I examined the effects of λ. Figures 23 and 24 show the
results for λ = 0.1 and λ = 10, respectively, for Lorenz’96 II
without observational noise. These results are similar to those
in Fig. 6, where λ = 1. Therefore, the proposed algorithm
seems to be robust at least in the range of λ between 0.1
and 10.

As discussed in Ref. [2], the quality of the confidence inter-
vals depends on the size of the database β and the prediction
steps p. The appropriate selection of these parameters for
a given set of experimental data is another topic for future
research.

In the solar irradiation example, the 96% confidence
intervals tended to contain the actual values with a probability
of about 96% or higher when Dt < D̄ [see Fig. 18(a)]. This
information might be useful for planning when and how to
start thermal power plants and hydroelectric power plants
for backups because the proposed index can tell whether the
predicted confidence intervals are reliable. This direction is
also a topic of future research.
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FIG. 19. Comparison of cases where local maximum Lyapunov exponent was small and large for the Lorenz’96 II model. (a) The
probabilities that 96% confidence interval includes the actual value are shown for low (solid line) and high (dashed line) local maximum
Lyapunov exponent, respectively. (b) The p-value for the difference given each prediction step is shown by the solid line. The dotted line shows
the significance level of 5%.

A credibility measure for time-series prediction was previ-
ously proposed in Ref. [21]. The proposed measure is more
appropriate from the viewpoint of nonlinear dynamics because

the proposed index eventually uses the property that if the
current state is far from its neighboring points in the database,
they cannot shadow the current trajectory well (see Fig. 25 for
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FIG. 20. Comparison of cases where the local maximum Lyapunov exponent was small and large for the Lorenz’96 I model. See the caption
of Fig. 19 to interpret the results.
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FIG. 21. Comparison of cases where the local maximum Lyapunov exponent was small and large for the coupled map lattice. See the
caption of Fig. 19 to interpret the results.

a schematic diagram). Therefore, the proposed method can be
applied even if one assumes that the underlying dynamics is
nonlinear.

Although I proposed the index Dt for the prediction
algorithm in Refs. [1,2], this index can be applied with
another prediction algorithm because the index evaluates

the difference between the current state and the known
past data. In addition, the index can be applied to any
time-series data in any field. My finding is consistent with
the observation in Ref. [4] that a transient time series
does not help much to construct a mathematical model for
prediction.
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FIG. 22. Comparison of cases where the local maximum Lyaponov exponent was small and large for solar irradiation data. See the caption
of Fig. 19 to interpret the results.
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FIG. 23. Effect of λ. Results for the Lorenz’96 II model without observational noise when λ = 0.1. Lines have the same meaning as in
Fig. 6.

I noticed the approach of data assimilation in the context
of weather forecasting [22], but because its computational de-
mands are huge, the proposed framework is more appropriate
for predictions for shorter time scales such as minutes and
hours.

After submitting the initial draft, I noticed the similarity
between the current work with the work of Judd et al. [23],
which was proposed in the context of weather forecasting.

However, there is a clear distinction between the current work
and the work of Judd et al. [23] because I evaluated the distance
between the current state and the data manifold directly, while
Judd et al. [23] evaluated the distance between the initial
state and the attractor of the weather model by minimizing the
indeterminism using the model and shadowing. This similarity
also implies that I may be able to do better if I introduce some
metric in the neighborhood of the current state in evaluating the
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FIG. 24. Same as Fig. 23 except for λ = 10.
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current

future

FIG. 25. Schematic diagram of current state (left cross), its
neighbors (circle), future state for current state (right cross), and
future states of neighbors (ellipse). If the current state is far from
its neighbors, its future state will probably be far from those of the
neighbors.

credibility for the predictability. But this direction is beyond
the scope of this paper.

In sum, I proposed an index for evaluating the credibility
of predicted confidence intervals. The index was constructed
on the basis of the distance between the current state and the
data manifold. Using the Lorenz’96 II model, the Lorenz’96
I model, and the coupled map lattice, and a real dataset
for Japanese solar irradiation as examples, I demonstrated
that the confidence intervals are more reliable when the
distance is shorter. This index can provide information that
is complementary to the local maximum Lyapunov exponent.
Thus I hope that the proposed index facilitates the introduction
of more renewable energy resources in power grid systems.
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