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Controlling rogue waves in inhomogeneous Bose-Einstein condensates
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We present the exact rogue wave solutions of the quasi-one-dimensional inhomogeneous Gross-Pitaevskii
equation by using similarity transformation. Then, by employing the exact analytical solutions we have studied
the controllable behavior of rogue waves in the Bose-Einstein condensates context for the experimentally relevant
systems. Additionally, we have also investigated the nonlinear tunneling of rogue waves through a conventional
hyperbolic barrier and periodic barrier. We have found that, for the conventional nonlinearity barrier case, rogue
waves are localized in space and time and get amplified near the barrier, while for the dispersion barrier case
rogue waves are localized in space and propagating in time and their amplitude is reduced at the barrier location.
In the case of the periodic barrier, the interesting dynamical features of rogue waves are obtained and analyzed
analytically.
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I. INTRODUCTION

Rogue waves, often described as freak waves, giant waves,
abnormal waves, or monster waves, defied all attempts at their
understanding until they were finally observed scientifically at
the Draupner oil platform in the North sea [1]. They appear
with an amplitude significantly larger than the amplitude of the
surrounding wave crests [2] and disappear without the slightest
trace [3]. The conditions that cause the enormous growth of
rogue waves are not fully known but ongoing efforts are taking
place in this regard [4,5]. They have become a subject of
intense scientific research after the experimental realization
of rogue waves in various nonlinear physical systems like
nonlinear optical fibers [6,7], plasma [8], water wave tanks
[9], etc. As a result, a vast amount of theoretical work
took place to understand the dynamics of rogue waves in
various fields involving nonlinear fiber optics [10–14], Bose-
Einstein condensates (BECs) [15,16], atmospheric dynamics
[17], plasma [18], laser-plasma interactions [19], and even
econophysics [20].

In many of the above contexts, the model equations which
are used to study the dynamics of rogue waves are the variants
of the nonlinear Schrödinger equation (NLSE) as they can
be stimulated by modulation instability which is present in
NLSE [21]. It is quite fascinating to study rogue waves in
BECs as the feasibility of tuning interatomic interactions
through the Feshbach resonance technique [22] allows us to
control the dynamics of matter rogue waves. In the context of
BECs NLSE with trapping potential is also referred to as the
quasi-one-dimensional (1D) Gross-Pitaevskii (GP) equation.
Although it is in general difficult to obtain the exact localized
solutions for the GP equation due to the nonlinear nature
of the system, a great deal of attention has been paid to
obtain the exact analytical solutions for the GP equation with
variable coefficients due to its potential applications in BECs
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[23–26]. Several works are reported that involve the exact
solution of the GP equation with space and/or time modulated
potentials like periodic potential [27], Van der Waals potential
[28], harmonic potential in one-dimensional space [29–31],
and harmonic potential in three-dimensional (3D) space [32].
Being motivated by the ongoing research in this regard, it is
quite interesting to obtain the rogue wave solutions for the GP
equation and discuss their controllable dynamical behavior.

Here, we have employed direct ansatz and self-similarity
transformation methods [33] to obtain the rogue wave solutions
for the system under study. In doing so we have introduced
free parameters to the system and by suitably choosing these
parameters we can study the propagation of rogue waves
through the systems of physical interest. In addition, we
have also investigated the nonlinear tunneling of rogue waves
through a conventional nonlinear and dispersion barrier and
the periodic dispersion barrier.

Historically, the phenomenon of nonlinear tunneling was
introduced by Newell in 1978 [34]. The investigation of
nonlinear tunneling of solitons was started with the pio-
neering work of Serkin and Belyaeva [35]. To study the
nonlinear tunneling effects for solitons they have made use
of the variable-coefficient NLSE (vc-NLSE). Subsequently,
nonlinear tunneling effects, governed by vc-NLSE, have been
meticulously investigated. Yang et al. described the pulse
compression through a nonlinear barrier [36]. The tunneling
effects of spatial similaritons have been discussed in [37].
Dai et al. studied the nonlinear tunneling of bright and dark
similaritons as they propagate in a birefringent fiber [38].
These days there is a renewed interest to study the nonlinear
tunneling of rogue waves. In [39] nonlinear tunneling of
self-similar rogue waves has been investigated and it has
been revealed that the rogue waves can travel with increasing,
unchanged, or decreasing amplitude depending on the ratio of
the amplitude of the rogue waves and the barrier height. The
tunneling effects of optical rogue waves in the femtosecond
regime has also been discussed through the dispersion barrier
with exponential background [40]. Zhu discussed the nonlinear
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tunneling of rogue waves in a graded-index waveguide [41].
To the best of our knowledge, very less attention has been paid
to the study of nonlinear tunneling of rogue waves in the BEC
framework.

The paper is organized as follows: In Sec. II, we present
the model equation and obtain the rogue wave solutions by
employing direct ansatz and similarity transformations. In
Sec. III, we exemplify the controllable behavior of rogue
waves. In Sec. IV, we investigate the nonlinear tunneling
effect of rogue waves. Finally, concluding remarks are given
in Sec. V.

II. MODEL EQUATION AND GENERAL ANALYTICAL
SOLUTIONS

Here, we are focusing on the cigar shaped BEC of relatively
low density, which corresponds to the case when the kinetic
energy in the transverse direction is much greater than the
energy of the two body interactions, i.e., N |as | � a⊥ with N

represents the total number of atoms, as is the time dependent

s-wave scattering length, and a⊥ =
√

�

mω⊥
[24]. The evolution

of the condensate is governed by the quasi-1D GP equation
[24,42]

i�ψt + β1(t)�2

2m
ψxx + g1(t)|ψ |2ψ + V (x,t)ψ = 0, (1)

where ψ represents the macroscopic condensate density, m is
the atomic mass, β1 denotes the dispersion coefficient, g1 is a
measure of nonlinear two body interactions and is associated
with the scattering length as which can be modulated by
Feshbach resonance [22,25,43], and V (x,t) is the space and
time dependent potential.

Normalizing the density |ψ |2, length, time, and energy in

Eq. (1) in units of 2as , a⊥ =
√

�

mω⊥
, ω−1

⊥ , and �ω⊥ where ω⊥
is the transverse trapping frequency. We get the following
effective 1D GP equation with time dependent dispersion
[β(t)] and nonlinearity [g(t)] and time and space dependent
potential (v(x,t)):

iψt + β(t)

2
ψxx + g(t)|ψ |2ψ + v(x,t)ψ = 0. (2)

This model equation has been used to describe the BECs in
different experimental setups [44]. Belyaeva and Serkin have
thoroughly explored this model equation to investigate the
nonautonomous matter wave solitons in BECs [45]. The exact
solitary wave solution of Eq. (2) (on replacing z with t) has
been predicted in [46] for the case of Bessel nonlinearity.
The corresponding two-dimensional GP equation has been
exploited to study the 2D superfluid flows in inhomogeneous
BECs [47]. By including the gain term Eq. (2) has been
implemented to obtain the soliton and periodic solutions [48]
and to define the snakelike traces of nonautonomous rogons
[49]. Variants of Eq. (2) have been studied in the context of
optical fibers as well [33,50].

Here, we are employing ansatz and similarity transfor-
mations to obtain the exact solutions for Eq. (2). After
obtaining the exact rogue wave solutions we study their
propagation through different systems of physical interest.

Finally, we discuss the nonlinear tunneling of rogue waves
through different barriers.

To begin with, substituting the ansatz

ψ(x,t) = [S(x,t) + iG(x,t)] exp iφ(x,t) (3)

into Eq. (2) and on separating real and imaginary parts we get
the set of coupled equations with variable coefficients:

−Gt − Sφt + β(t)

2

[
Sxx − 2φxGx − φxxG − φ2

xS
]

+ g(t)(S2 + G2)S + vS = 0, (4)

St − Gφt + β(t)

2

[
Gxx + 2φxSx + Sφxx − φx

2G
]

+g(t)(S2 + G2)G + vG = 0. (5)

Here, functions S(x,t), G(x,t), and φ(x,t) are real.
Introducing new variables η(x,t), χ (x,t), and τ (t) and

employing the similarity transformation for the real functions
S, G, and φ, we have

S(x,t) = M(t)[1 + nP (η,τ )], (6)

G(x,t) = lM(t)Q(η,τ ), (7)

φ(x,t) = χ (x,t) + μ(τ ). (8)

Here, n and l are constants. Substituting these transformations
in Eqs. (4) and (5), we deduce the following conditions:

ηxx = 0, (9)

ηt + βχxηx = 0, (10)

−χt − χx
2

2
β + v = 0, (11)

2Mt + βχxxM = 0, (12)

−lMQττt − M(1 + nP )μττt + n
β

2
ηx

2MPηη

+ g(t)[(1 + nP )2 + l2Q2]M3(1 + nP ) = 0, (13)

nMPττt − lMQμττt + l
β

2
ηx

2MQηη

+ g(t)[(1 + nP )2 + l2Q2]lM3Q = 0, (14)

where the functions η(x,t), χ (x,t), M(t), P (η,τ ), and Q(η,τ )
need to be determined. Solving Eqs. (9)–(12) we obtain

η = k1(t)x + k2(t), (15)

χ = − k1t

2βk1
x2 − k2t

βk1
x + χ0(t), (16)

v = χt + χx
2

2
β, (17)

M(t) = k10

√
k1, (18)
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where k10 is a constant, k1(t) can be associated with the inverse
of pulse width, k2(t) represents the position of its center of
mass, and χ0(t) is a free function of t .

Equation (17) in the explicit form can be written as

v = v2(t)x2 + v1(t)x + v0(t), (19)

where v2, v1, and v0 are real functions of time and are given as

v2 = − k1t t

2βk1
+ k2

1t

βk2
1

+ k1tβt

2β2k1
,

(20)

v1 = − k2t t

βk1
+ 2

k2t k1t

βk2
1

+ k2tβt

β2k1
, v0 = k2

2t

2βk2
1

.

Equations (13) and (14) reduce to a set of constant coefficient
coupled partial differential equations, which are given as

nPτ − lQμ0 + lQηη + GlQ[l2Q2 + (1 + nP )2] = 0, (21)

−lQτ + nPηη − (1 + nP )μ0 + G(1 + nP )[l2Q2

+ (1 + nP )2] = 0, (22)

under the following constraints on τ (t), g(t), and μ:

τ (t) =
∫

β

2
k2

1dt, g(t) = g0k1β

2k10
2 , (23)

μ = μ0

∫
β

2
k2

1dt, (24)

where μ0 and g0 are constants.
Following the approach given in [28,29] we obtain the

simultaneous rational solution of Eqs. (21) and (22) for g0 = 1
and μ0 = 1:

P (η,τ ) = − 4

n(1 + 2η2 + 4τ 2)
,

(25)

Q(η,τ ) = − 8τ

l(1 + 2η2 + 4τ 2)
.

Using Eq. (25) in Eqs. (6)–(8) the exact rogue wave solution
of Eq. (2), following Eq. (3), can be given as

ψ1 = k10

√
k1

[
1 − 4 + 8iτ

1 + 2η2 + 4τ 2

]
exp[i(χ + μ)], (26)

where η, χ , τ , and μ are given by Eqs. (15), (16), (23), and
(24), respectively. In particular, for k1 = 1, β = g = 1, and
k2 = χ0 = 0, Eq. (2) reduces to the standard NLSE and the
matter rogue wave solution reduces to the known rogue wave
solution as given in [51].

III. EXAMPLES

The dynamics of rogue waves can be controlled by suitably
managing the parameters k1 and k2, and we are explaining it
by considering the following two cases.

A. Case 1

To study the propagation of rogue waves on a constant
background we are choosing k1 = 1.1, k2 = sin2 t , and β =

FIG. 1. (Color online) (a) Profile of potential for Eq. (28). (b)
Intensity profile of rogue wave for the parameters β = 3 cos t , k1 =
1.1, k2 = sin2 t , μ0 = k10 = 1, χ0 = 0.

3 cos t . The periodic choice of dispersion parameter β results
in periodic nonlinearity g and is given as

g(t) = 3
g0k1 cos t

2k2
10

. (27)

The corresponding potential can be worked out by using
Eq. (17):

v(x,t) = −2x cos t

3k1
+ 2 cos t sin2 t

3k1
. (28)

The profile of potential is shown in Fig. 1(a), which reveals
the quasiperiodic nature of the potential. Figure 1(b) shows
that the rogue waves evolve periodically, in the presence of
the linear (in space) potential whose amplitude is sinusoidally
modulated in time. Clearly, rogue waves reoccur periodically
and propagate without changing their width. The recurrence
of rogue waves is due to the periodic functional form of
the parameters g,β, and k2. The rogue wave maintains the
constant width and amplitude during propagation because
of the absence of atomic feeding from the thermal cloud.
It is evident that the nonlinearity g(t) is periodic in nature,
and this variation can be achieved experimentally by using
a periodic magnetic or optical field near Feshbach resonance
[52,53]. To be specific, nonlinearity can be positive or negative
corresponding to attractive interactions (as in Li7 [54] and
Rb85 [55] in the BECs) or repulsive interactions (as in Rb87

and Na23 in the BECs) [23,24,56] between the atoms. As
mentioned, the potential is modulated with space and time
and such a potential was realized by a gravitational one
[57] in earlier BEC experiments. Recently, laser beams have
been used to implement linear potentials which are modulated
periodically in time [58]. Moreover, in theoretical studies on
nonautonomous BECs, a linear potential with an arbitrary time
dependence has been reported in [59].

B. Case 2

To study the propagation of rogue waves on a periodic
background we are choosing k1 to be periodic and both the
parameters k2 and β as constants. For k1 = 1.1 + cos t , k2 =
β = 1. The nonlinearity parameter g(t) and potential v read

g(t) = g0(1.1 + cos t)

2k2
10

, (29)

v(x,t) = v2(t)x2, (30)
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FIG. 2. (Color online) Intensity profile of rogue waves with a
periodic background. (a) Periodic background and rogue wave. (b)
Detailed local profile of rogue wave. The other parameters are
k1 = 1.1 + cos t , k2 = 1, β = 1 μ0 = k10 = 1, χ0 = 0.

with

v2(t) = 0.5(1.1 cos t + cos2 t + 2 sin2 t)

(1.1 + cos t)2
.

For the chosen parameters the intensity profile of the rogue
wave is plotted in Fig. 2. Here, like the previous case the
nonlinearity parameter g(t) is periodic in nature and possesses
only the positive value which leads to the attractive interactions
as in the Li7 or Rb85 case. The potential given by Eq. (30) is also
time periodic and can either be confining (v2 < 0) or expulsive
(v2 > 0). This kind of expulsive potential has been used in the
experiment of [22]. Moreover, Yan et al. have reported such
potentials in the BEC context [60] and in the optical fiber
context [61].

From Figs. 1 and 2 we infer that by managing the parameters
k1 and k2 we can control the dynamics of rogue waves. It must
be noticed that the parameters k1 and k2 have to be chosen in
such a way that the potential is well defined. For a constant
dispersion parameter the desired form of nonlinearity can be
obtained just by setting the value of k1. Thus, by changing k1

or indirectly g(t) we can change the binary interactions and
can study the dynamics of rogue waves for various choices of
g(t) through k1. In the next section we investigate the nonlinear
tunneling of rogue waves through different barriers.

IV. NONLINEAR TUNNELING OF ROGUE WAVES

To investigate the nonlinear tunneling of rogue waves, we
are considering their propagation behavior for the two cases:
(i) through hyperbolic nonlinearity and the dispersion barrier
and (ii) through the periodic dispersion barrier.

FIG. 3. Profile of quadratic potential for the (a) nonlinearity
barrier case and (b) dispersion barrier case. The barrier is located
at t0 = 2 and the other parameters are depicted in the text for the two
cases.

FIG. 4. (Color online) Profiles of the (a) potential given by
Eq. (32) and (b) rogue wave intensity for β = 1, k2 = 1, μ0 = k10 =
1, χ0 = 0, h = t0 = 2, ε = 1.

A. Case 1: Rogue waves tunneling through hyperbolic
nonlinearity and the dispersion barrier

Here, we have chosen k1 = 1 + hsech2[ε(t − t0)], β =
k2 = 1. These choices lead to the following form of nonlinear-
ity:

g(t) = g0{1 + hsech2[ε(t − t0)]}, (31)

where g0 = 1
2k2

10
. This represents the case of nonlinear tun-

neling through the nonlinearity barrier where h is the height
(h > 0), ε is the barrier width, and t0 is the location of the
barrier [37]. For these parametric choices the form of the
potential comes out to be

v(x,t) = v2(t)x2, (32)

where v2 = p2

{0.5+h+0.5 cosh2[2ε(t−t0)]} with p2 = ε2h{0.75 +
(0.5 + h) cosh[2ε(t − t0)] − 0.25 cosh[4ε(t −t0)]}sech2[ε(t−
t0)]. It is clear that Eq. (32) consists of the quadratic external
potential term, which modulates its magnitude as well as
its sign and changes its nature with time from attractive to
repulsive to attractive [Fig. 3(a)].

The 3D profile of the potential and the intensity of rogue
waves are plotted in Fig. 4 with the nonlinearity barrier located
at t0 = 2. For these specific choices of parameters the linear
potential term is absent and the rogue waves are localized in
space and time. To study the role of the nonlinearity barrier
on rogue waves we have plotted the sectional plots in Fig. 5.
Figure 5(a) shows that the presence of the barrier causes an
increase in the amplitude of the rogue wave, and Fig. 5(b)
shows that the amplification takes place only at the barrier
location. This happens because the condensate is subjected

FIG. 5. Sectional plots of intensity profiles. (a) Rogue wave at
t = 2. The solid line represents the case when the barrier is absent, and
the dashed line represents the case for the barrier. (b) Intensity of rogue
waves before crossing the barrier (dashed at t = 1), at the barrier
(solid at t = 2), and after crossing the barrier (dotted at t = 2.5).
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FIG. 6. (Color online) (a) Profile of potential. (b) Intensity plot
for the rogue wave. The parameters are depicted in the text.

to external forcing which is varying in time and shows the
maximum amplitude at the barrier location [Fig. 3(a)]. Thus,
the external forcing imparts the maximum energy to the system
at the barrier location. When the rogue wave is at the barrier
location it exchanges the energy with the barrier and gets
amplified.

To describe the effect of the dispersion barrier on nonlinear
tunneling of rogue waves we are choosing [35]

β(t) = {1 + hsech2[ε(t − t0)]}, g(t) = g0, (33)

where g0 = 1
4k2

10
and the other parameters are k2 = sin2 t ,

k1 = 1
2β

, μ0 = k10 = 1, χ0 = 0, h = t0 = 2, and ε = 1.
The corresponding potential is given by Eq. (19),
where the coefficients v0,v1, and v2 can be obtained by
substituting the values of k1 and k2 in Eq. (20). The
explicit expressions of these can be written as v2(t) =
4hε2{−3−(2+4h) cosh[2ε(t−t0)]+cosh[4ε(t−t0)]}

{1+2h+cosh[2ε(t−t0)]}3 , v1(t) = 2(cos2[t] −
sin2[t]) + β 4hε sinh[2ε(t−t0)]

{1+2h+cosh[2ε(t−t0)]}2 , and v0(t) = −2β cos[t] sin[t].
Here, the v2(t) term represents the quadratic external

potential, which is responsible for trapping the BEC. The v1(t)
term contributes both the frequency shift and central position
term and v0(t) contributes only to the frequency shift, which
can be removed by a time dependent phase part of the wave
function.

The potential profile and the intensity of rogue waves are
shown in Fig. 6. Here, unlike the nonlinearity barrier case we
are getting the periodic potential and propagating rogue waves;
this is due to the fact that both the parameters k1 and k2 are
time dependent and, specifically, k2 is periodic in nature. In
this case, the condensate is subjected to the quadratic potential,

FIG. 7. Sectional plot of the intensity of rogue waves before
crossing the barrier at t = 0 (dashed), at dispersion barrier (t = 2,
dotted), and after crossing the barrier at t = 4 (line).

which is depicted in Fig. 3(b). With these modulations, the
obtained rogue waves are spatially localized and propagating
in time due to the parameter v1 and the periodic nature of
v(x,t), which are absent in the previous case. To find the effect
of the dispersion barrier on the intensity profile of rogue waves,
Fig. 7 is plotted, which reveals that at the dispersion barrier the
amplitude of the rogue wave is diminished and it regains its
original shape after crossing the dispersion barrier. To compare
with the previous case, the amplitude of the rogue wave has
decreased at the dispersion barrier location, while the opposite
has happened at the nonlinearity barrier location. The reason
for this is that the quadratic potential term not only changes the
magnitude with time but also the sign from positive to negative
to positive, which means the quadratic potential is changing
from repulsive to attractive and then repulsive [Fig. 3 (b)]. It
should be noted that at the barrier location the v2 amplitude
is minimum (opposite to the previous case). The appearance
of minimum external forcing magnitude at the barrier location
causes the rogue wave to lose its energy at the barrier location.
To conclude, rogue waves propagate in accordance with the
parameter v1 and when they encounter a dispersion barrier they
exchange their energy with the barrier, resulting in reduction
in their amplitude, and after crossing the barrier they regain
their energy and start propagating as governed by v1. It is
quite interesting to control the dynamics of propagating rogue
waves. We have revealed that the amplitude of the rogue waves
can be decreased by making them pass through a hyperbolic
dispersion barrier. Now we investigate if there is any way to
increase the amplitude of the propagating rogue waves in the
next case.

B. Case 2: Rogue waves tunneling through a periodic barrier

To investigate the behavior of propagating rogue waves, we
are considering the parameter k1 = 0.5

2+h sin2[ε(t−t0)] . This choice
of parameter k1 leads to the following form of dispersion and
nonlinearity parameters:

β = 2 + h sin2[ε(t − t0)], g = g0, (34)

where g0 = 0.25
k2

10
.

This specific choice of dispersion and nonlinearity rep-
resents the case of nonlinear tunneling through a periodic
dispersion barrier where h is the barrier height (h > −2) and
ε is the barrier width. The corresponding potential can be
worked out by using Eq. (19), and its profile is plotted in
Fig. 8(a). For these choices of parameters, g, β, and k1, the

FIG. 8. (Color online) (a) Profile of periodic potential. (b) Inten-
sity plot of rogue wave for the parameters k2 = sin t , μ0 = k10 = 1,
χ0 = 0.
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FIG. 9. The profile of quadratic potential for the parameters k2 =
sin t , μ0 = k10 = 1, χ0 = 0.

condensate is subjected to the external quadratic potential,
which is periodic in nature and gains maximum amplitude
whenever it encounters the barrier location (Fig. 9). With these
modulations, the system acquires maximum energy at all the
barrier locations and the rogue wave exchanges the energy with
the barriers and gets amplified whenever it passes through the
barrier. This behavior is depicted in Fig. 8(b). As mentioned
earlier, the propagation of rogue waves, in the presence of the
quadratic potential, is governed by the parameter v1, which
contributes to the effect of the frequency shift and central
positioning term, i.e., through k1 and k2. The choice of k1 is
fixed in order to get the specific dispersion barrier, while the
rogue wave behavior will be different for different choices of
k2, resulting in a different functional form of v1. To exemplify
this we have plotted the profiles of rogue waves for different
values of k2 (Fig. 10) where the condensate is subjected to
the same quadratic potential and the same dispersion barrier.
Thus, by appropriately managing the location and the height
of the barrier we can get the desired amplitude of the rogue
waves at the desired location. Moreover, their propagation can
be controlled by suitably choosing the parameter k2.

V. CONCLUSION

We have presented the exact rogue wave solution for the
quasi-1D GP equation, which describes the evolution of cigar
shaped BECs. The solution has been obtained by using a direct
ansatz and similarity transformation and is valid in general for
any form of the functional parameters, provided they obey
certain conditions. We have also exemplified the controllable
behavior of rogue waves, with periodic nonlinearity for the
two cases. For the first case BECs have been studied in the
presence of the linear in space potential whose amplitude is

FIG. 10. (Color online) The intensity plot of rogue waves (a) for
k2 = sech[t] and (b) for k2 = 1 The other parameters are the same as
depicted in Fig. 8.

modulated in time, while for the second case the potential is
quadratic in space and can either be confining or expulsive.
These potentials are experimentally realizable. In addition, we
have investigated the nonlinear tunneling of rogue waves. In
the case of the nonlinearity barrier, we have found that the
amplitude of the localized rogue waves can be increased by
arranging a barrier at their location. On the other hand, in
the case of the dispersion barrier we get propagating rogue
waves and their amplitude is decreased at the barrier location.
The change in the amplitude of rogue waves at the barrier
location is due to the exchange of their energy with the
barrier and its increase or decrease is governed by the nature
of the external modulations the condensate is subjected to.
Interesting features are observed when the rogue waves are
made to pass through the periodic dispersion barrier. Whenever
the rogue waves cross the periodic barrier, their amplitude
increases at the barrier location and regains its original shape
after crossing the barrier. In this manner, we can get the desired
amplitude of rogue waves at the desired location by adjusting
the barrier height and location. Moreover, we have revealed
that for a given barrier the propagation of rogue waves can
be controlled by suitably choosing just the parameter k2. The
results obtained here will be useful to study rogue waves in
BECs experimentally because of the space-time modulated
parameters.
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