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By developing the concepts of strength of incoherence and discontinuity measure, we show that a distinct
quantitative characterization of chimera and multichimera states which occur in networks of coupled nonlinear
dynamical systems admitting nonlocal interactions of finite radius can be made. These measures also clearly
distinguish between chimera or multichimera states (both stable and breathing types) and coherent and incoherent
as well as cluster states. The measures provide a straightforward and precise characterization of the various
dynamical states in coupled chaotic dynamical systems irrespective of the complexity of the underlying attractors.
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I. INTRODUCTION

Chimera states are highly counter intuitive structures coex-
isting with coherent (synchronized) and incoherent (desyn-
chronized) oscillations, originally identified in populations
of nonlocally coupled oscillators such as Ginzburg-Landau
systems, Rössler oscillators, and logistic maps [1–4], and
in recent times in identical phase oscillators [5–9]. They
have been further studied extensively in various generalized
situations, including time delay. These include networks
occurring in neuroscience [10,11], Josephson junction
arrays [12], and electrochemical systems [13]. Real world
examples include unihemispheric sleep in certain animals [14],
where the awake side of the brain shows desynchro-
nized electrical activity, while the sleeping side is highly
synchronized [15].

In recent times several theoretical studies [16–20] and
experimental investigations [21–25] have established chimera
as a robust concept occurring in varied complex networks,
including chaotic dynamical systems [21,26,27]. For example,
networks of chaotic dynamical systems with nonlocal coupling
exhibit coexisting spatial domains of coherence and incoher-
ence [26,27], coherent traveling waves [28], and spiral wave
chimera states [29]. Experimentally they have been observed
in optical [21] and chemical systems [22,23], a mechanical
experiment consisting of two populations of metronomes [24]
and a modified Ikeda time delay circuit system [25]. It
has been recently pointed out [26,27] that transition from
spatially coherent to incoherent state occurs via a chimera
state in models of coupled logistic map and Rössler systems
with nonlocal interaction. A very interesting observation in
this regard is the identification of chimera and multichimera
states (two or more incoherent domains) in Fitzhugh-Nagumo
oscillators, and their characterization by using the value of
mean phase velocity (frequency) [30]. One may note that the
notion of phase velocity essentially requires periodic behavior
of individual oscillators, while this is difficult to extend to
chaotic systems.

Under suitable circumstances it has been shown that
breathing chimera states can also arise, for example, in two
populations of phase oscillators [17,18] and networks of
Lorenz systems, as we point out later in this paper where

cluster states can also arise. Thus there arises an urgent need
to characterize the transition from incoherent to coherent state
via chimera (or breathing chimera) and multichimera states in
terms of definitive quantitative measures. We successfully ad-
dress this problem by developing suitable statistical measures
using the time series of the networks in terms of measures
designated as strength of incoherence (SI) and discontinuity
measure (DM) deducible from a local standard deviation
analysis. A clear quantification of chimera and multichimera
states is given in terms of nonzero (but less than unity) values
of SI and positive integer values of DM. The coherent state is
characterized by zero SI and DM values, while an incoherent
state takes unit SI value and zero DM value. Breathing chimera
and cluster states can also be characterized appropriately.

In this connection we also wish to point out that Ku-
ramoto and his co-workers [1–4] in their early works have
characterized the various spatiotemporal patterns occurring
in nonlocally coupled systems as a function of coupling
strength by a spatial correlation function for the difference
of the field variables. They have shown that the correlation
function exhibits a power law dependence on the distance and
a discontinuous peak at the origin when the coupling constant
is decreased below some critical value, indicating that the
spatial pattern is statistically discontinuous, which was also
explained through a stochastic model and more generalized
multifractal analysis. It was also shown that the correlations
and fluctuations obey a power law similar to the one in the fully
developed Navier- Stokes turbulence except that the exponent
changes continuously with the coupling strength. However, it is
not clear from these studies how quantitative characterization
to distinguish different dynamical states, such as coherent,
chimera, multichimera, including stationary and breathing
type, and cluster and incoherent states, can be identified.
We believe that our present investigation gives suitable clear
quantitative measures to distinguish these various states.

Our characterization works for systems admitting both
phase coherent and nonphase coherent attractors where a
principal frequency cannot be easily identified. Our findings
also show that even without introducing the concepts of phase
and frequency one can succeed in distinguishing different
dynamical states, namely, coherent, incoherent, chimera,
multichimera, and cluster states in coupled dynamical systems.
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This paper is structured as follows. In Sec. II we introduce
the quantitative measures, namely, the strength of incoherence
(SI) and discontinuity measure (DM) as statistical tools to
quantify the different dynamical states. In Sec. III we present
our analysis of various dynamical states, including coherent,
chimera, incoherent, and cluster states in four different
networks of nonlinear dynamical systems, and quantitative
characterization of these states and their transitions in terms
of the new statistical measures. The paper concludes with
a summary in Sec. IV. In Appendix A we describe the
difficulty in characterizing different dynamical states by using
the original state variables and the necessity to introduce
transformed variables. In Appendix B we indicate the method
of identification of cluster states.

II. DEVELOPING QUANTITATIVE MEASURES

In order to develop the quantitative measures, we consider
a network of coupled dynamical systems with nonlocal
interactions of finite radius represented by

ẋi = Fi(xi ,xi,τ ) + ε̄

2P

j=i+P∑
j=i−P

(xj − xi), (1)

where i=1,2, . . . ,N , xi=xi(t) = [x1,i ,x2,i , . . . ,xd,i]T ∈ Rd ,
xi,τ = xi(t − τ ), τ constant, and Fi(xi ,xi,τ ) = [F1(xi ,xi,τ ),
F2(xi ,xi,τ ), . . . ,Fd (xi ,xi,τ )]T . Thus xi(t) represents the state
vector of the ith oscillator. In (1) ε̄ denotes the coupling
matrix, and P specifies the number of neighbors in each
direction on a ring so that the coupling radius r = P/N . In this
paper we consider systems having different kinds of attractors,
namely, (i) nonphase coherent attractors, (a) Mackey-Glass
(delay) system and (b) Lorenz (nondelay) system, and (ii)
phase coherent attractors, (c) Rössler (chaotic) system and (d)
Fitzhugh-Nagumo (periodic) oscillators.

To develop suitable quantitative measures, we note that the
original dynamical variables xi are not the most appropriate
ones (see Appendix A). So we introduce a transformation
of the state variables xi to new variables zi , i = 1,2, . . . ,N ,
where zi = xi − xi+1, zi = (z1,i ,z2,i , . . . ,zd,i) ∈ Rd . Now, the
occurrence of different synchronized states in the coupled
system (1) can be better illustrated using the new state variables
zi . We also note that when the ith and i + 1th oscillators
are oscillating coherently the value of zl,i is minimum (to
be precise, zl,i → 0 as N → ∞).

On the other hand when two neighboring oscillators i

and i + 1 are oscillating incoherently, and zl,i take values
between ±|xl,i,max − xl,i,min| (where xl,i,max (min) are upper
(lower) bounds of the allowed values of xl,i). Thus in the case of
coherent states all the zl,i take a minimum value for all times,
while in the case of an incoherent state zl,i get distributed
between ±|xl,i,max − xl,i,min|. However, in the chimera state
some of the zl,i may take the same value while the others
may be distributed over the above range. In order to quantify
the synchronized states clearly, we introduce the notion of
standard deviation for the asymptotic state as

σl =
〈√√√√ 1

N

N∑
i=1

[zl,i − 〈zl〉]2

〉
t

, (2)

TABLE I. Characterization of dynamical states.

Dynamical state (S, η) Remarks

Coherent (0, 0)
Chimera (c, 1) 0 < c < 1
Multichimera (c, d) 2 � d � M/2
Incoherent (1, 0)

where zl,i = xl,i − xl,i+1, l = 1,2, . . . ,d, i = 1,2 . . . N , and
< zl >= 1

N

∑N
i=1 zl,i(t) and 〈...〉t denotes the average over

time. Consequently σl take a value zero for coherent states and
nonzero values for both incoherent and chimera states. We also
note that one is unable to distinguish between incoherent and
chimera states using σl alone because in both cases σl can take
similar nonzero values. To overcome this difficulty we divide
the oscillators into M (even) bins of equal length n = N/M .
Consequently we introduce the local standard deviation σl(m),
which can be defined as

σl(m) =
〈√√√√1

n

mn∑
j=n(m−1)+1

[zl,j− < zl >]2

〉
t

,

m = 1,2, . . . ,M. (3)

The above quantity σl(m) is calculated for every successive
n number of oscillators. Using (3) we can introduce a SI as

S = 1 −
∑M

m=1 sm

M
, sm = �(δ − σl(m)), (4)

where �(.) is the Heaviside step function, and δ is a predefined
threshold that is reasonably small. Here we take δ as a certain
percentage value of difference between xl,i,max and xl,i,min.
Thus when σl(m) is less than δ, the value of sm = 1; otherwise
it is “0.” Consequently, SI takes the values S = 1 or S = 0
or 0 < S < 1 for incoherent, coherent, and chimera or
multichimera states, respectively.

To gain a better understanding and to distinguish further
between chimera and multichimera states, we also introduce a
DM, based on the distribution of sm in (4). It is defined as

η =
∑M

i=1 |si − si+1|
2

, (sM+1 = s1). (5)

In this case η takes a value “1” for chimera state, and positive
integer value greater than “1” for multichimera states. For
breathing and cluster states see below. The characterization is
summarized in Table I.

III. CHARACTERIZATION OF DIFFERENT DYNAMICAL
STATES AND THEIR TRANSITIONS IN COUPLED

DYNAMICAL SYSTEMS

In this section we will apply the above quantitative
criteria to characterize the different dynamical states and
their transitions in coupled nonlinear dynamical systems with
nonlocal interactions. We consider four specific models in our
study as described below.
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FIG. 1. (Color online) Two-parameter (r,ε) phase diagrams for
N = 100 coupled Mackey-Glass time delay systems. (a) Strength of
incoherence S: This figure indicates regions of coherence (black),
incoherence (yellow/white), and chimera and multichimera states
(red/blue/gray). (b) Discontinuity measure(η): This figure indicates
regions of coherence (black, �), incoherence (blue, �), chimera
(brown, •), and multichimera states (gold, �). The system parameters
are α = 1.00, β = 2.00, τ = 2.00 (individual nodes are evolving
chaotically).

A. Mackey-Glass system

To demonstrate the above characterization, we first consider
the Mackey-Glass (MG) system [31–33] F(x,xτ ) = −αx +

βx(t−τ )
[1+x(t−τ )10] in (1) with parameters chosen as α = 1, β = 2, τ =
2 (so that individual nodes oscillate chaotically in the absence
of coupling). In this case the coupling matrix becomes a scalar,
ε̄ = ε. Let us first discuss the distribution of synchronized
states in the (r,ε) parameter space admitted by the MG equation
with nonlocal coupling. Figure 1(a) shows the two-parameter
phase diagram of MG system when the individual nodes
are oscillating chaotically and incoherently in the absence
of coupling. On introducing the interaction with a coupling
radius r and coupling strength ε the incoherent state persists
up to certain values of coupling strength ε = εi . This is clearly
seen from Fig. 1(a) where S = 1 and is denoted by the yellow
(white) region. When εi < ε < εc, we find that chimera or
multichimera states exist where the value of S varies between
0 and 1 [gray region in Fig. 1(a)]. Upon increasing the value
of ε beyond εc, the chimera or multichimera state loses its
stability and transits into a coherent state. In this state the
value of S is zero and is marked as black in Fig. 1(a).

We further present the two-parameter phase diagram in
terms of η as shown in Fig. 1(b). This figure clearly indicates
regions of coherence (black, �), incoherence (blue, �), chimera
(brown, •), and multichimera states (gold, �). The measure η

takes a value zero for a coherent or incoherent state, “1” for
chimera, and an integer value greater than “1” (2 � η � M/2)
for multichimera states.
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FIG. 2. (Color online) Snapshots of a nonlocally coupled MG
time delay system for different values of coupling strength in terms of
new state variable zi : (i) incoherent state, ε = 0.15, (ii) multichimera
state, ε = 0.50, (iii) chimera state, ε = 0.56, and (iv) coherent state,
ε = 0.75. The coupling radius is fixed at r = 0.3, where N = 100.
Other parameters are as in Fig. 1.

Next, we consider the transition of chimera and multi-
chimera states as well as coherent and incoherent states in
the coupled MG equations. In the set of Fig. 2, we fix the
coupling radius at r = 0.3 and vary the coupling strength
ε. We display the typical scenario of different synchronized
states, namely, incoherent [Fig. 2(i)], multichimera [Fig. 2(ii)],
chimera [Fig. 2(iii)], and coherent states [Fig. 2(iv)], which
are snapshots of the transformed state variables zi (here zi is
a scalar). Corresponding space-time plots are shown in Fig. 3.
Here, during the transition from an incoherent to a coherent
state, we find a multichimera state besides the chimera state.

As may be seen from these figures, initially the system
is in an incoherent state for ε = 0.15 [Figs. 2(i) and 3(i)].
In this state the values of zi are randomly distributed. On
increasing the coupling strength to ε = 0.50 we find the
occurrence of multichimera state [Figs. 2(ii) and 3(ii)]. In this
state two groups of oscillators are evolving in an incoherent
manner (oscillator indices 20–30 and 60–80) between coherent
oscillators. On further increasing the coupling strength to

FIG. 3. (Color online) Space-time plots of a nonlocally coupled
MG time delay system for different values of coupling strength
in terms of a new state variable zi : (i) incoherent state, ε = 0.15,
(ii) multichimera state, ε = 0.50, (iii) chimera state, ε = 0.56, (iv)
coherent state, ε = 0.75. The coupling radius is fixed at r = 0.3,
where N = 100. Other parameters are as in Fig. 1.

052914-3



GOPAL, CHANDRASEKAR, VENKATESAN, AND LAKSHMANAN PHYSICAL REVIEW E 89, 052914 (2014)

2.3

2.5

1 100

ω
i

i

(i)

1.8

2.1

1 100

ω
i

i

(ii)

1.7

2.1

1 100

ω
i

i

(iii)

1.3

2.1

1 100

ω
i

i

(iv)

FIG. 4. (Color online) Mean phase velocities (frequency) ωi of
an MG time delay system corresponding to Fig. 3: (i) incoherent
state, ε = 0.15, (ii) multichimera state, ε = 0.50, (iii) chimera state,
ε = 0.56, (iv) coherent state, ε = 0.75. The coupling radius is fixed
at r = 0.3, where N = 100. Other parameters are as in Fig. 1.

ε = 0.56 [Figs. 2(iii) and 3(iii)], we find a single chimera
state. In this state the oscillators with indices 60 to 80 are in
a desynchronized state while the remaining oscillators are in
a coherent or spatially synchronized state. For ε = 0.75, the
system enters into a single coherent state [Figs. 2(iv) and 3(iv)].
In this state the values of zi approach a minimum for all
times. Figures 4(i)–4(iv) indicate mean phase velocities ωi

(frequency) [30] corresponding to incoherent, multichimera,
chimera, and coherent states, respectively. The values of
ωi for each oscillator is calculated as ωi = 2πMi/�T , i =
1,2,3, . . . ,N , where Mi is the number of maxima of the time
series xi(t) of the ith oscillator during the time interval �T .
Note that the distribution of ωi fails to distinguish different
states (particularly chimera and multichimera states).

In Figs. 5a(i) and 5b(i) we demonstrate the behavior
of standard deviation σ1 (red/gray) and the strength of
incoherence S (black) as a function of the coupling strength
ε for two different values of coupling radius, r = 0.3 and
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FIG. 5. (Color online) (i) Standard deviation σ1 (blue curve),
strength of incoherence S (black curve) and (ii) discontinuity measure
η versus coupling strength ε for nonlocal interaction of a coupled
MG time delay system with parameters α = 1.00, β = 2.00, and
N = 100; coupling radius is taken as (a) r = 0.3 (b) r = 0.4. Black
squares and circles in the S plot indicate multichimera and chimera
states, respectively.

r = 0.4. The distribution of σ1 [Eq. (2)] is shown in Fig. 5a(i),
which indicates that it takes nonzero values for incoherent and
chimera states. As ε increases, the value of σ1 approaches
zero for ε > εc, where the coherent state occurs. The same
behavior is also observed for the coupling radius r = 0.4 as
shown in Fig. 5b(i). Thus by using the standard deviation σ1

we are able to distinguish between the incoherent (chimera)
and coherent states only, while it does not distinguish clearly
the chimera state from incoherent state. In order to distinguish
these two states clearly we plot the strength of incoherence S

in Figs. 5a(i) and 5b(i) corresponding to the above values of
σ1. Here S takes a unit value for the incoherent state, while it
takes a value zero for the coherent state. On the other hand S

oscillates between 0 and 1 for both chimera and multichimera
states. To distinguish the last two states we also plot the DM
(η) in terms of ε in Figs. 5a(ii) and 5b(ii). We find that η takes
a value unity for chimera states and a higher integer value for
multichimera states.

B. Lorenz system

To test the universality of characterization by S and η,
we next investigate a system of nonlocally coupled Lorenz
oscillators with F(x) = [σ (x2 − x1),x1(ρ − x3) − x2,x1x2 −
βx3]T , where the diagonal elements of ε̄ are nonzero (ε) in
Eq. (1). Here, the node parameters are fixed at the values
σ = 10, ρ = 28, β = 8/3, and τ = 0. We fix r = 0.3 and vary
the value of ε. Identification of chimera or multichimera states
along with incoherent, coherent, and cluster states in terms
of S plots is made in Fig. 6. In this case, initially the system
is in an incoherent state (A) up to ε ≈ 5.10, and increasing
the value of it the system exhibits chimera or multichimera
(B) states. On further increasing the value of ε, the system
transits into a coherent state (D). During this transition one
can also observe cluster states (see Appendix B), which are
two (or more) independent groups of coherent states, marked
C in Fig. 6. The cluster states correspond to a finite number
of distinct coherent profiles, having finite discontinuity in the
xi variables. In the transformed zi variables the profile will be
essentially a continuous curve with 2q distinct deviating points
corresponding to the q discontinuous cluster profiles in the xi

variables. These discrete points are removed by the method

 0

 0.5

 1

 0  5  10
ε
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S, So
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DSo

S

FIG. 6. (Color online) Strength of incoherence S and its modified
form So (after removal of deviated points) as a function of coupling
strength (ε) for nonlocally coupled Lorenz systems with coupling
radius r = 0.3 and N = 500. Here incoherent (A), chimera or
multichimera states (B), cluster states (C), and coherent state (D)
are identified.
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FIG. 7. (Color online) Characterization of breathing chimera
state: (a) Snapshots of the coupled Lorenz system illustrates breathing
chimera state (ε = 5.60) at (i) t = 2800, (ii) t = 2900, and (iii)
t = 2990. (b) Strength of incoherence S as a function of n for the
values of ε in the MG equation for ε = 0.5 (dots) and Lorenz systems
[open circles (ε = 5.60) and black squares (ε = 6.20)].

of removable discontinuity [34]. In Fig. 6 we have plotted S

(before removing deviated points of zi) and So (after removing
deviated points of zi) as a function of ε. It indicates that the
values of S and So remain the same in the case of coherent,
incoherent, and chimera or multichimera states. In the case of
cluster states S takes a nonzero value, but So takes a zero value
(which is marked as C in Fig. 6).

Interestingly, the occurrence of chimera and multichimera
states in the coupled Lorenz systems are of the breathing type
compared to the stable chimera states identified in the case
of coupled MG equations (over a time T ). The occurrence of
breathing chimera state is demonstrated in Fig. 7(a), where we
present snapshots of the variables z1,i for three different times
(i) t = 2800 (ii) t = 2900 (iii) t = 2990 for ε = 5.60 showing
the breathing nature of the chimera (which gets repeated in t).

In order to distinguish such breathing chimera states
compared to stable chimera states, we carried out the following
analysis instead of characterization through DM. The total
time t ∈ (0,T ) of spatiotemporal evolution is also divided into
k bins (tn,n = 1,2, . . . ,k). Now, each bin has ts time units
(ts = T/k). The calculation of S using Eq. (4) for each bin
can be performed as before, and it gives rise to k number of S

values. The S values for stable chimera state of MG equations
for ε = 0.50 and breathing chimera states of a Lorenz system
for ε = 5.60 and ε = 6.20 are shown in Fig. 7(b). The figure
clearly indicates that the value of S remains constant for the
stable chimera state (MG system) and varies for breathing
chimera states (Lorenz system) as a function of n.

C. Rössler system

Next we consider the incoherent-coherent transition via
chimera state, in a system of nonlocally coupled Rössler
systems. Here we choose F (x) = [−x2 − x3,x1 + ax2,b +
x3(x1 − c)]T where the diagonal elements of ε̄ are nonzero
(ε) in Eq. (1). The system parameters are chosen as a = 0.42,
b = 2, and c = 4 showing chaotic dynamics in the uncoupled
case. The present study clearly distinguishes the various
dynamical states namely incoherent, chimera, and coherent
states, through the quantities S and η. Figure 8 presents the
values of σ1, S, and η for the coupled Rössler system as a
function of ε.
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FIG. 8. (Color online) (a) Standard deviation σ1 (red) and
strength of incoherence S (black) and (b) discontinuity measure (η)
versus coupling strength ε for nonlocal interaction of Rössler systems
with N = 100, r = 0.35.

D. FitzHugh-Nagumo (FHN) oscillator

Now we consider a ring of N nonlocally coupled FHN
oscillators given by

b
dxi

dt
=xi − x3

i

3
− yi + ε

2P

j=i+P∑
j=i−P

[bxx(xj − xi) + bxy(yj − yi)],

dyi

dt
= xi + a + ε

2P

j=i+P∑
j=i−P

[byx(xj − xi) + byy(yj − yi)],

where xi and yi are the activator and inhibitor variables, a is a
threshold parameter, and b is a small parameter characterizing
the time scale of separation. Then the form of the rotational
coupling matrix is

B =
(

bxx bxy

byx byy

)
=

(
cos φ sin φ

− sin φ cos φ

)

depending on a single parameter φ ∈ [−π,π ]. For the inves-
tigation of different states, we fix the parameters as b = 0.05,
a = 0.5, φ = π/2 − 0.1 and coupling radius as r = 0.33 and
vary the value of ε. In Ref. [30] the transition from chimera
states to multichimera states is studied by using mean phase
velocities by varying the values of ε and r (Fig. 9). In the
present study chimera and multichimera states are classified
by using the values of SI and DM, which clearly identify all
the collective states distinctly (see Fig. 10).

The snapshots of both xi and zi and their corresponding
mean phase velocities (ωi) are shown in Fig. 9. Here Figs. 9(a)
and 9(b) illustrate chimera states (which consist of one incoher-
ent and one coherent structures), while Fig. 9(c) demonstrates
multichimera states (which consist of two incoherent and two
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FIG. 9. (Color online) (i) Snapshots of variables xi , (ii) snapshots of variables zi , and (iii) mean phase velocities ωi (frequency).
(a) cChimera state with one incoherent domain, ε = 0.20, (b) chimera state with one incoherent domain, ε = 0.28, (c) multichimera state with
two incoherent domains, ε = 0.32 for nonlocal interaction of coupled FHN oscillators with N = 500 and coupling radius r = 0.33.
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FIG. 10. (Color online) (a) Standard deviation σ1 (red/gray) and
strength of incoherence S (black), and (b) discontinuity measure
η versus coupling strength ε. Black squares and circles in the S

plot indicate multichimera and chimera states, respectively. The
parameters chosen are as in Fig. 9. Points a, b, and c correspond
to the three cases of Fig. 9.

coherent structures) for a ring of N = 500 nonlocally coupled
FHN oscillators. A detailed characterization of these states,
using the measures σ1, S, and η, is presented in Fig. 10.

From Figs. 9 and 10, we note that for the cases of chimera
states for ε = 0.20 and ε = 0.28 the mean phase velocity
consists of one incoherent domain [Figs. 9a(iii), b(iii)]. For
these two cases, the values of S lie between 0 and 1 while η

takes a value 1 [marked a and b in Fig. 10(a) and 10(b)]. In
the multichimera state for ε = 0.32, the mean phase velocity
consists of two incoherent domain [Fig. 9c(iii)]. Here again
0 < S < 1, but η takes a value 2 [marked c in Fig. 10(a)
and (b)]. Therefore, our studies agree with the existing
identification of chimera or multichimera states as a function
of mean phase velocities for an FHN oscillator system.

IV. CONCLUSION

In summary, we have presented a distinct set of quantitative
criteria for chimera and multichimera states in coupled
dynamical systems with nonlocal coupling. We have also
studied the transition from incoherent to coherent states
via chimera or multichimera states by using strength of
incoherence and discontinuity measure. By developing a
two-parameter phase diagram in terms of these quantifiers
we have identified different synchronized states in coupled
Mackey-Glass systems and then extended the study to coupled
Lorenz systems, coupled Fitzhugh-Nagumo oscillators and
coupled Rössler systems with nonlocal interaction. These
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FIG. 11. (Color online) Snapshots of the variables xi for coupled
Mackey-Glass time delay system for a fixed coupling radius r = 0.3.
Occurrence of (a) incoherent state for ε = 0.15, (b) multichimera
state for ε = 0.50, (c) chimera state for ε = 0.56, and (d) coherent
state for ε = 0.75.

results confirm that the proposed measures are universally
applicable to networks of coupled dynamical systems.
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APPENDIX A: DIFFICULTY IN CHARACTERIZING
DIFFERENT DYNAMICAL STATES BY USING

ORIGINAL STATE VARIABLES: MACKEY-GLASS
TIME DELAY SYSTEM

In this Appendix, we first display the typical scenario of
transition from incoherent to coherent states in terms of the
original state variables xi and point out that a direct statistical
analysis of the corresponding data fails to clearly distinguish
chimeras from incoherent states. The corresponding snapshots
and space-time plots are shown in Figs. 11 and 12, respectively.

FIG. 12. (Color online) Space-time plots of xi for coupled MG
time delay system for fixed coupling radius r = 0.3. Occurrence of
(a) incoherent state for ε = 0.15, (b) multichimera state for ε = 0.50,
(c) chimera state for ε = 0.56, and (d) coherent state for ε = 0.75.
The other parameters are fixed as α = 1.00 β = 2, τ = 2.00, and
N = 100 in the MG equation.
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FIG. 13. Standard deviation σx of the state variables xi versus
ε for the coupled MG time delay system. The other parameters are
fixed as α = 1.00, β = 2, τ = 2, and N = 100.

In Fig. 11(a) the values of xi as a function of the oscillator index
“i” are shown for ε = 0.15 corresponding to an incoherent
state. On increasing the value to ε = 0.50 [Fig. 11(b)] a
multichimera state is obtained. Then at the value ε = 0.56
[Fig. 11(c)] a chimera state results. At ε = 0.75, the chimera
state loses its stability and transits to a coherent state
[Fig. 11(d)].

The above snapshots of xi and corresponding space-time
plots reveal the following: (1) A random distribution of dy-
namical variables for incoherent state [Figs. 11(a) and 12(a)].
(2) A random distribution of two or more groups of oscillators
interspersed by groups of coherent oscillators [Figs. 11(b)
and 12(b)]. (3) A single group of randomly distributed
oscillators and the remaining oscillators in a coherent state
[Figs. 11(c) and 12(c)]. (4) A coherently evolving network
[Figs. 11(d) and 12(d)]. Then a study of different dynamical

FIG. 14. (Color online) Snapshots of variables (a) x1,i (c) z1,i ,
(e) z1,i (after removing deviated points by the concept removable
discontinuity), space-time plots (b) x1,i (d) z1,i , (f) z1,i (after removing
deviated points) in the coupled Lorenz system with N = 500, r = 0.3,
and ε = 8.50.

052914-7



GOPAL, CHANDRASEKAR, VENKATESAN, AND LAKSHMANAN PHYSICAL REVIEW E 89, 052914 (2014)

states can be carried out by defining the standard deviation

σx =
〈√√√√ 1

N

N∑
i=1

[xi− < x >]2

〉
t

, < x >= 1

N

N∑
i=1

xi(t).

Figure 13 presents σx as a function of ε. It is apparent that from
this plot one cannot make a very clear distinction between
different states (incoherent, coherent, and chimera) of coupled
systems connected by nonlocal coupling. A comparison of
Fig. 13 with Figs. 2 and 3 clearly reveals the significance of
the transformed variables zi .

APPENDIX B: IDENTIFICATION OF CLUSTER STATES

In the study of coupled systems with nonlocal interaction,
at the transition towards a coherent state, we also obtain cluster
states for certain values of ε. When this state occurs, the smooth
profile of the coherent state breaks up into two or three parts.

As an example, we consider a system of nonlocally coupled
Lorenz systems with N = 500 and ε = 8.50. The snapshots

and space-time plots of x1,i and z1,i are shown in Fig. 14.
Figure 14(a) indicates that the smooth profile structure breaks
and a few xi values deviate from the profile. This indicates
that a cluster state exists in the coupled system, and the
corresponding space-time plots of xi [Fig. 14(b)] also confirms
the existence of a cluster state.

In our present study we identify the existence of a cluster
state irrespective of the ε value, if the following condition is
satisfied:

· · · ≈ zi−2 ≈ zi−1 ≈ zi, zi 	= zi+1,

zi+1 	= zi+2, zi+2 ≈ zi+3 ≈ zi+4 ≈ · · · ∀ t.

The above definition corresponds to a discontinuity in the
values of the variable z at the point i.

Figures 14(c) and 14(d) show the existence of clusters
which satisfy the above condition. In Figs. 14(c) and 14(d)
the deviated values of z1,i are removed by the concept of
removable discontinuity [34] for the calculation of σl and S.
Figures 14(e) and 14(f) depict the snapshot (space-time) plots
of z1,i (after removing the deviated values of z1,i).
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032907 (2013).

[29] C. Gu, G. S. Yves, and J. Davidson, Phys. Rev. Lett. 111, 134101
(2013).

[30] I. Omelchenko, O. E. Omel’chenko, P. Hövel, and E. Schöll,
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