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Transition from amplitude to oscillation death under mean-field diffusive coupling
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We study the transition from the amplitude death (AD) to the oscillation death (OD) state in limit-cycle
oscillators coupled through mean-field diffusion. We show that this coupling scheme can induce an important
transition from AD to OD even in identical limit cycle oscillators. We identify a parameter region where OD and
a nontrivial AD (NTAD) state coexist. This NTAD state is unique in comparison with AD owing to the fact that it
is created by a subcritical pitchfork bifurcation and parameter mismatch does not support this state, but destroys
it. We extend our study to a network of mean-field coupled oscillators to show that the transition scenario is
preserved and the oscillators form a two-cluster state.
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I. INTRODUCTION

Oscillation quenching is an emergent and intriguing phe-
nomenon that has been the topic of extensive research in
diverse fields such as physics, biology, and engineering
[1]. There are two distinct types of oscillation quenching
processes: amplitude death (AD) and oscillation death (OD).
In AD coupled oscillators arrive at a common stable steady
state that was unstable otherwise and thus form a stable
homogeneous steady state (HSS) [2,3]. However, in the case of
OD, oscillators populate different coupling-dependent steady
states and thus give rise to stable inhomogeneous steady
states (IHSSs); in the phase space OD may coexist with
limit cycle oscillations. Amplitude death is important in the
case of control applications where suppression of unwanted
oscillations is necessary, e.g., in laser application [4] and
neuronal systems [5]. On the other hand, OD is a much more
complex phenomenon because it induces inhomogeneity in
a rather homogeneous system of oscillators that has strong
connections and importance in the field of biology (e.g., a
synthetic genetic oscillator [6] and cellular differentiation [7]),
physics [8], etc.

Although AD and OD are two structurally different phe-
nomena (their genesis and manifestations are different), for
many years they were (erroneously) treated on the same
footing. Only recently have pioneering works in Refs. [1,9,10]
established the much needed distinctions between AD and
OD (see Ref. [1] for an extensive review on OD). Although
extensive research has been reported on AD (see [2] and refer-
ences therein), the phenomenon of OD is a less explored topic.
Koseska et al. [9] show that AD and OD can simultaneously
occur in diffusively coupled Stuart-Landau oscillators; they
show also an important transition phenomenon, namely, the
transition from AD to OD in Stuart-Landau oscillators with
parameter mismatch. Their work established that the transition
occurs due to the interplay between the heterogeneity and
the coupling parameter that is analogous to the Turing-type
bifurcation [11] in spatially extended systems. In [10] it was
shown that the presence of time delay enhances the effect of
the AD-OD transition as well as that the AD-OD transition can
be induced even in the identical Stuart-Landau oscillators by
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using dynamic [12] and conjugate [13] coupling. Reference
[14] shows the transition between AD and OD in identical
nonlinear oscillators that are coupled diffusively and perturbed
by a symmetry-breaking repulsive coupling link.

In the above-mentioned studies the role of mean-field
diffusive coupling in the occurrence of OD and the AD-OD
transition are not considered; mean-field coupling is one of
the most widely studied topics because of its presence in
many natural phenomena in the fields of biology, physics,
and engineering [15–18]. All of the previous studies show
that the mean-field coupling in oscillators can induce AD
only [15–17]. Only in Refs. [19,20], in the context of genetic
oscillators interacting through a quorum-sensing mechanism,
the occurrence of OD is shown where the concentration
of the autoinducer molecule that can diffuse through the
cell membrane contains a mean-field term, but no AD-OD
transition is reported there. In this paper we systematically
explore that the mean-field coupling can induce a Turing-type
transition from AD (stable HSS) to OD (stable IHSS) even
in identical limit cycle oscillators. Further, we identify an
important parameter regime where OD coexists with a different
nontrivial AD (NTAD) state. This NTAD state is unique
in comparison with its conventional counterpart in at least
two ways. First, unlike AD, which has two possible routes,
i.e., Hopf and saddle-node bifurcation, the NTAD state is
born via a subcritical pitchfork bifurcation. Second, in sharp
contrast to the AD, which is supported or enhanced by
parameter mismatch, the NTAD state is completely destroyed
by parameter mismatch. In this paper we consider a single
paradigmatic oscillator, namely, the Stuart-Landau oscillator,
which is widely used in the literature on the studies of OD and
AD and their transitions [1,9,10]. We also extend our study to
a network of oscillators and show that the occurrence of OD
and the AD-OD transition are preserved for more than two
oscillators.

II. STUART-LANDAU OSCILLATORS
WITH MEAN-FIELD COUPLING

We consider a number N of Stuart-Landau oscillators inter-
acting through mean-field diffusive coupling; a mathematical
model of the coupled system is given by

Żi = (1 + iωi − |Zi |2)Zi + ε[QZ − Re(Zi)], (1)
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with i = 1, . . . ,N ; Z = 1
N

∑N
i=1 Re(Zi) is the mean field of

the coupled system Zi = xi + jyi . The individual Stuart-
Landau oscillators are of unit amplitude and having eigen-
frequency ωi . The coupling strength is given by ε and Q is a
control parameter that determines the density of the mean field
[16,17,20] (0 ≤ Q ≤ 1); Q → 0 indicates the self-feedback
case, whereas Q → 1 represents the maximum mean-field
density. As the limiting case we take N = 2 and write (1)
in Cartesian coordinates

ẋ1,2 = P1,2x1,2 − ω1,2y1,2 + ε[QX − x1,2], (2a)

ẏ1,2 = ω1,2x1,2 + P1,2y1,2. (2b)

Here Pi = 1 − x2
i − y2

i (i = 1,2) and X = x1+x2
2 . At first

we consider the case of two identical oscillators, i.e., ω1,2 = ω.
From Eq. (2) it is clear that the system has the trivial fixed point,
which is the origin (0,0,0,0), and additionally two coupling-
dependent nontrivial fixed points (x∗

1 ,y∗
1 , − x∗

1 , − y∗
1 ), where

x1
∗ = − ωy∗

1

ω2+εy∗
1

2 and

y1
∗ =

√
(ε − 2ω2) + √

ε2 − 4ω2

2ε
,

and (x†
1,y

†
1,x

†
1,y

†
1), where

x
†
1 = − ωy

†
1

ε(1 − Q)y†
1

2 + ω2

and

y
†
1 =

√
ε(1 − Q) − 2ω2 +

√
(ε − εQ)2 − 4ω2

2ε(1 − Q)
.

Note that the existence of these nontrivial fixed points
was not explored in the earlier study of mean-field coupled
Stuart-Landau oscillators [16]. In the following sections we
will examine different dynamical regions and their transitions
based on the eigenvalue analysis; subsequently, we carry out
bifurcation analysis using the package XPPAUT [21].

III. THE AD-OD TRANSITION AND EMERGENCE
OF NONTRIVIAL AD

The four eigenvalues of the system at the trivial fixed point
(0,0,0,0) are

λ1,2 = 1 −
[

ε(1 − Q) ±
√

ε2(1 − Q)2 − 4ω2

2

]
, (3a)

λ3,4 = 1 −
[

ε ± √
ε2 − 4ω2

2

]
. (3b)

Eigenvalue analysis and also a close inspection of the
nontrivial fixed points reveal that the system has two pitchfork
bifurcations given by PB1 and PB2 occurring at the following

values of the coupling parameters, respectively:

εPB1 = 1 + ω2, (4a)

εPB2 = 1 + ω2

1 − Q
. (4b)

Here εPB1 is that value where a symmetry breaking pitchfork
bifurcation gives birth to the nontrivial fixed point (x∗

1 ,y∗
1 ,

− x∗
1 , − y∗

1 ), i.e., the IHSS emerges at this value of coupling
parameter. It is noteworthy that the occurrence of PB1 does
not depend upon the density parameter Q (but later we will see
that stability of the IHSS depends on Q). The second nontrivial
fixed point (x†

1,y
†
1,x

†
1,y

†
1) arises at PB2; PB2 gives rise to a

unique nontrivial HSS. Later we will see that stabilization of
this state leads to a different NTAD state that coexists with OD.

Next we search for the Hopf bifurcation point at which the
stable oscillation dies to give birth to the AD state. From (3)
it is clear that for ω � 1 no Hopf bifurcations (of trivial fixed
point) occur; only pitchfork bifurcations govern the dynamics
in that case. For any ω > 1, equating the real part of λ3,4 and
λ1,2 to zero we get

εHB1 = 2, (5a)

εHB2 = 2

1 − Q
, (5b)

respectively; here εHB1 and εHB2 are the values of coupling
parameters where the first (HB1) and the second (HB2) Hopf
bifurcation occur, respectively. From (5) it is clear that εHB1

is constant, but εHB2 depends only upon the value of Q

(and independent of ω, where ω > 1). Now, when Q → 0,
εHB1 ≈ εHB2. Figure 1(a) shows the bifurcation diagram of
x1,2 for Q = 0.3 and ω = 2 (without any loss of generality,
unless stated otherwise, we take ω = 2). It is observed that at
HB2 an inverse Hopf bifurcation occurs and the stable limit
cycle is suppressed to give birth to AD (i.e., a stable HSS),
whereas at HB1 an unstable limit cycle is born. This stable
HSS (AD) becomes unstable through a supercritical pitchfork
bifurcation (PB1) at εPB1 = 1 + ω2 = 5. Here the trivial fixed
point becomes unstable and two new stable IHSSs are created,
giving birth to OD. Thus, we get a transition between AD and
OD in identical mean-field coupled oscillators. With a further
increase in coupling strength ε, PB2 occurs at εPB2 = 7.142
[which agrees with (4b)], which gives birth to a nontrivial HSS
(i.e., x†

1 = x
†
2). This nontrivial HSS is stabilized via subcritical

pitchfork bifurcation (PBS) at εPBS ≈ 8.05 and gives rise to a
different NTAD state. We attach the attribute nontrivial to this
AD state because it emerges from the nontrivial HSSs (x†,y†),
which are nonzero and subsequently placed symmetrically
around zero. We also verify the occurrence of this pitchfork
bifurcation directly from the eigenvalues corresponding to
(x†

1,y
†
1, x

†
1, y

†
1), which are given by

λ
†
1,2 = 1 − b

†
1

2
±

√
b
†
1

2 − 4c
†
1

2
, (6a)

λ
†
3,4 = 1 − b

†
2

2
±

√
b
†
2

2 − 4c
†
2

2
, (6b)
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FIG. 1. (Color online) (a) Bifurcation diagram (using XPPAUT) of
two mean-field coupled identical Stuart-Landau oscillators (Q = 0.3,
ω = 2): gray (red) lines, stable fixed points; black lines, unstable
fixed points; closed (green) circles, stable limit cycle; and open (blue)
circles, unstable limit cycle. HB1,2 and PB1,2 are Hopf and pitchfork
bifurcation points, respectively. PBS denotes the subcritical pitchfork
bifurcation point; the inset shows the zoomed-in view of the region
of occurrence of PBS. AD is created at HB2 and PB1 gives the
AD-OD transition point. The coexistence of OD (x1 = −x2) and
NTAD (x1 = x2) is shown in the shaded (yellow) region. Time traces
are shown for (b) AD (x1,2 = 0) at ε = 4, (c) OD (x1 = −x2) at
ε = 7, and (d) NTAD and OD at ε = 10.92; here dashed and dotted
lines represent two initial condition-dependent NTAD states x1,2 and
−x1,2, respectively.

where b
†
1 = (ε − εQ + 4x

†
1

2 + 4y
†
1

2
), c

†
1 = (x†

1

2 + 3y
†
1

2
)(ε −

εQ + 3x
†
1

2 + y
†
1

2
) + ω2 − 4x

†
1

2
y
†
1

2
, b

†
2 = (ε + 4x

†
1

2 + 4y
†
1

2
),

and c
†
2 = (x†

1

2 + 3y
†
1

2
)(ε + 3x

†
1

2 + y
†
1

2
) + ω2 − 4x

†
1

2
y
†
1

2
.

Since stable IHSS (OD) solutions [corresponding to the first
nontrivial fixed points (x∗,y∗)] still exist beyond this coupling
value OD and NTAD coexist for ε � εPBS [shaded (yellow)
region in Fig. 1(a)]. The coexistence of OD and another kind
of nontrivial AD was found earlier in conjugate coupled
Stuart-Landau oscillators in [10], but here the genesis of
NTAD and the origin of coexistence is different from that;
in our case subcritical pitchfork bifurcation is responsible
for the NTAD state. Further, in the NTAD state we have two
different solutions x1 = x2 and −x1 = −x2; the occurrence of
one of these two states is determined by the initial conditions.
This has a striking resemblance to bistability, but here the
bistability is much more subtle owing to the fact that, unlike
its classical counterpart, it coexists with OD and it emerges
via a subcritical pitchfork bifurcation. Later we will see that
any parameter mismatch destroys this NTAD state. This initial
condition-dependent amplitude death state was not observed
earlier. To confirm the coexistence of OD and NTAD we
integrate the system equation with suitably chosen initial
conditions (using the fourth-order Runge-Kutta method, with
step size equal to 0.005); Fig. 1(d) shows this for ε = 10.92,
where we can see that the OD state and NTAD states coexist.

FIG. 2. (Color online) The AD state vanishes when HB2 is equal
to PB1 at (a) Q = Q∗ (= 0.6) and (b) and (c) Q > Q∗ (= 0.7): HB2
moves to the right side of PB1 and the nontrivial fixed point gains
stability by subcritical Hopf bifurcation (HBS). Between HBS and
pitchfork bifurcation of the limit cycle, the coexistence of a stable
limit cycle, an unstable limit cycle, and OD is observed. The other
parameter is ω = 2.

Figures 1(b) and 1(c) show the AD (ε = 4) and OD (ε = 7)
states, respectively.

Now, with an increasing Q value, εHB2 will move towards
εPB1 and the zone of stable HSS (AD) decreases. For a given
ω (where ω > 1) at a particular Q value (say, Q∗), εHB2 will
collide with εPB1. So at Q = Q∗, εHB2 = εPB1, i.e., Q∗ = ω2−1

ω2+1 .
At this point, the ε region where AD occurs vanishes and thus
the AD to OD transition does not occur. Figure 2(a) shows this
scenario for ω = 2 and Q = 0.6. Now, for Q > Q∗, εHB2 >

εPB1, i.e., the HB2 point moves towards the right-hand side
of PB1; subsequently, the IHSS now gains stability at εHBS

through a subcritical Hopf bifurcation; in Figs. 2(b) and 2(c) for
Q = 0.7 we get εHBS ≈ 5.341. This can be predicted from the
eigenvalues of the nontrivial fixed point (x∗

1 ,y∗
1 , − x∗

1 , − y∗
1 ),

which are the same as in (6) but with the daggers replaced by
asterisks. From the eigenvalue equations we find εHBS, where
the IHSS regains stability:

εHBS = −2(Q + 1) + 4
√

1 + ω2(1 − Q)(3 + Q)

(1 − Q)(3 + Q)
. (7)

The value of εHBS agrees with Figs. 2(b) and 2(c). The HB2
point gives birth to an unstable limit cycle that becomes stable
through a pitchfork bifurcation of the limit cycle (PBC).
Between HBS and PBC, stable and unstable limit cycles
coexist with OD. In this region we identify (not shown here)
three distinct dynamical behaviors: a homogeneous limit cycle,
an inhomogeneous limit cycle, and OD. We capture the whole
bifurcation scenario in the Q-ε parameter space (Fig. 3). We
can see that, with increasing Q, at Q = 0.6, HB2 collides
with PB1, thus destroying the AD-OD transition. Also shown
is the coexisting region of NTAD and OD that is determined
by the PBS curve. In the previous studies on the mean-field
coupled Stuart-Landau oscillators only the transition from
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FIG. 3. (Color online) Phase diagram in Q-ε space (ω = 2). With
increasing Q, the collision of HB2 and PB1 destroys the AD-OD
transition scenario.

the limit cycle to AD was shown [16]; here we identify
additional bifurcation scenarios and dynamical regions. Before
we proceed further let us summarize our results of the AD-OD
transition: (i) For Q < Q∗ and εHB2 < εPB1, the AD-OD
transition occurs. (ii) For Q = Q∗ and εHB2 = εPB1, there is
no AD, only a stable IHSS (OD), and the AD-OD transition
vanishes. (iii) For Q > Q∗ and εHB2 > εPB1, the IHSS gains
stability at εHBS and the OD moves to the right-hand side with
increasing Q.

IV. PARAMETER MISMATCH AND CLUSTER
FORMATION

We examine the effect of parameter mismatch on the
coupled dynamics. We introduce a mismatch parameter �

in Eq. (2) defined by � = ω2/ω1. Here � = 1 represents the
case of no mismatch. For � �= 1, nontrivial fixed points of
(2) cannot be derived in a closed form, thus we use XPPAUT

to locate them and subsequently test their stability. To get a
detailed scenario of the dynamical behaviors we compute the
two-parameter bifurcation diagram in �-ε space for a given Q

and ω1. Figure 4(a) shows this for Q = 0.3 and ω1 = 2. It can
be observed that for the mismatched case AD occurs at a lower
value of ε. It is noteworthy that the HB2 curve is symmetrical
around the � = 1 line; this is expected as HB2 does not depend
upon ω (as long as ω > 1). The OD is governed by the PB1
curve, which depends upon the frequency of oscillators and
thus on the value of �. For � < 1, PB1 comes closer to HB2,
thus reducing the zone of AD and broadening the zone of OD.
At � ≈ 0.54, PB1 and HB2 collide to eliminate the zone of
AD and thus destroy the AD-OD transition. For � > 1, PB1
moves far from HB2, enhancing the zone of AD and also
supporting the AD-OD transition. Thus, we see that besides
Q, the AD-OD transition is determined by the parameter
mismatch also. We have made another important observation in
the mismatched case: The nontrivial HSS created at PB2 does
not become stable for any � �= 1. Thus, for the parameter
mismatched case no NTAD state occurs. As an illustrative
example, Fig. 4(b) shows that no NTAD occurs, making OD
the only possible solution beyond PB1 (� = 1.1, Q = 0.3, and
ω1 = 2). Nevertheless, the nontrivial HSS (although unstable)
still exists, even in the parameter mismatched case.

Next we investigate the more general case of N > 2. At
first let us take N = 3 and � = 1; now the coupled equation is

FIG. 4. (Color online) (a) Phase diagram in �-ε space for Q =
0.3 and ω1 = 2. The NTAD state vanishes for any � �= 1; this is
shown in (b) for � = 1.1.

given by Eq. (1) with i = 1,2,3. Besides the trivial fixed point,
there exist other nontrivial solutions with combinations such
as (α,α,α), (α,β,α), and (α,α,β) and their cyclic permutations
[10]. The (α,α,α) set gives the nontrivial HSS and the
remaining sets give IHSS solutions. Figure 5(a) shows this
scenario for ω = 2 and Q = 0.5. Here also we can observe
the occurrence of the AD-OD transition and the coexistence
of OD and NTAD. Next we consider the network of N = 256
mean-field coupled oscillators; Fig. 5(b) shows the space-time
plot of stable IHSS (OD) solutions for � = 1, ε = 16, ω = 3,
and Q = 0.5 (for clarity the first 150 elements are shown). The
figure clearly shows the formation of a two-cluster solution.
Further, we observe that (not shown here) in the space-time plot
the size and position of the domains change with the number
of elements N and initial conditions; clearly this fact has a

FIG. 5. (Color online) (a) Bifurcation for N = 3 (ω = 2): The
AD-OD transition is preserved and the NTAD state (α,α,α) coexists
with OD. (b) Two-cluster pattern formation: space-time plot of a
network of 256 (150 are shown for clarity) mean-field coupled Stuart-
Landau oscillators at ε = 16 and ω = 3. The other parameters are
Q = 0.5 and � = 1.
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striking resemblance to the frozen random pattern solution of
a coupled map lattice system [22].

V. CONCLUSION

We have explored the phenomena of AD and OD and
their transitions in the paradigmatic Stuart-Landau oscillators
under mean-field diffusive coupling. Using detailed eigenvalue
analyses supported by bifurcation analyses, we have shown
that the mean-field diffusive coupling can induce OD and
also a transition between AD and OD even in identical
Stuart-Landau oscillators. It has been shown that while the
presence of a mean-field density parameter is not essential for
inducing OD, the AD-OD transition is absolutely governed
by the mean-field density parameter; the relevance of this
parameter was discussed earlier in the context of genetic
oscillators interacting through a quorum-sensing mechanism

[20]. We have identified a dynamical state that is created by
subcritical pitchfork bifurcation, namely, nontrivial AD, which
coexists with the OD region. Unlike (conventional) AD, this
state is destroyed by the presence of parameter mismatch.
Further, in the NTAD state the occurrence of one of the two
states is determined by the initial conditions. However, the
observation of NTAD is subtle in natural and experimental
systems as parameter mismatch is inevitable in practical
coupled oscillators [23]. We have also extended our findings
to a network of identical mean-field coupled Stuart-Landau
oscillators where it has been shown that the AD to OD
transition scenario is preserved; in this case we have shown that
the coupled oscillators form a two-cluster state, the population
of which depends upon the initial conditions. This study can
be extended to other limit cycle and chaotic oscillators and
we believe that this will improve our understanding of various
mean-field coupled biological and engineering systems.
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