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Transmission phase of a quantum dot and statistical fluctuations of partial-width amplitudes
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Experimentally, the phase of the amplitude for electron transmission through a quantum dot (transmission
phase) shows the same pattern between consecutive resonances. Such universal behavior, found for long sequences
of resonances, is caused by correlations of the signs of the partial-width amplitudes of the resonances. We
investigate the stability of these correlations in terms of a statistical model. For a classically chaotic dot, the
resonance eigenfunctions are assumed to be Gaussian distributed. Under this hypothesis, statistical fluctuations
are found to reduce the tendency towards universal phase evolution. Long sequences of resonances with universal
behavior only persist in the semiclassical limit of very large electron numbers in the dot and for specific energy
intervals. Numerical calculations qualitatively agree with the statistical model but quantitatively are closer to
universality.
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I. INTRODUCTION

The phase of the transmission amplitude (in short, the
transmission phase) is a key element in the description of
coherent transport of electrons through a quantum dot (QD).
The phase is not accessible via standard conductance measure-
ments [1–3]. A breakthrough was achieved with the advent
of phase-sensitive experiments on ballistic two-dimensional
QDs in the Coulomb-blockade regime [4]. The QD was
placed in one arm of a phase-coherent ring. The Aharonov-
Bohm conductance oscillations measured as a function of
the magnetic flux piercing the ring in an open (or “leaky”)
interferometer [5] yielded an indirect determination of the
transmission phase of the QD.

Variation of the plunger gate voltage (and, thereby, of
the electrostatic potential) on the QD made it possible to
investigate sequences of resonances. Long sequences of in-
phase resonances were observed [5] in relatively large QDs
(with around 200 electrons on the dot), suggesting universal
behavior. In very small QDs (with up to 14 electrons) the
relative phase of consecutive resonances appeared to be
random [6]. That case was dubbed the “mesoscopic regime”
(even though both cases are in the regime of coherent transport,
which is usually referred to as the mesoscopic regime).

Electron transport through a QD connected to two single-
mode leads as depicted in Fig. 1 can be viewed as a quantum
scattering process. According to the Friedel sum rule, the
scattering phase shift increases by π when the electrochemical
potential μ = EF + Vg is swept through a resonance by
changing the electrostatic potential Vg on the dot. Here, EF is
the Fermi energy in the leads. The transmission phase follows
the scattering phase shift unless the transmission amplitude has
a 0 [7–9]. In that case, the crossing of the origin of the complex
plane produces a phase slip of π . The experimentally observed
phase locking of resonances in large QDs then necessitates
a phase slip of π or, equivalently, a 0 of the transmission
amplitude between every pair of resonances. In the literature
that situation is indistinctly referred to as phase locking, phase
slip, or transmission 0 between consecutive resonances.

The observed phase locking has posed a theoretical puzzle
since it appears to contradict the expectation that eigenstates

of different resonances are uncorrelated. Numerous theoretical
papers have addressed the emergence of universal behavior
in large QDs [1–3,7–17]. Some works have pointed to the
importance of electronic correlations in establishing universal
behavior [15], while detailed many-body numerical calcula-
tions recently disputed such a view [17]. Other works described
the Coulomb blockade on the QD in terms of the constant-
interaction model, reducing the problem to a single-particle
one [9–13,16]. The universality of the transmission phase is
then related to the existence of broad levels generated by
charging effects [12–14] and/or to properties of the single-
particle wave functions representing the resonances [9–11,16].
In particular, it was proposed in Ref. [16] that quantum chaos
on the QD causes spatial correlations of the single-particle
wave functions and, thus, is at the root of the experimentally
observed emergence of universality.

In the present paper we critically examine the proposal in
Ref. [16]. Assuming a Gaussian distribution for the single-
particle eigenfunctions of the QD, we calculate the statistical
fluctuations of the lead-dot coupling amplitudes and determine
the probability of 0s of the transmission amplitude. We show
that the fluctuations weaken the tendency towards universality
found in Ref. [16].

The behavior of the transmission phase is determined by
the partial-width amplitudes (PWAs) of the resonances in the
QD. With consecutive resonances labeled by a running index
n, the left (right) PWA of the nth resonance with eigenfunction
ψn(x,y) reads [18]

γ l(r)
n =

√
�2kFPc

m

∫ W

0
dy ψn(x l(r),y) �l(r)(y). (1)

Within the constant-interaction model and under neglect of
the magnetic field in the QD, ψn(x,y) can be chosen real. The
geometry is sketched in Fig. 1(a). The leads of width W are
connected to the QD by tunnel barriers of transparency Pc.
The distance between entrance and exit leads is L � W . The
first transversal sub-band wave function in the left (right) lead
is written as �l(r), and the integration in Eq. (1) is along the
transverse coordinate y at the entrance (exit) of the QD located
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FIG. 1. (Color online) (a) Sketch of an asymmetric quantum dot
(light gray) connected to leads through tunnel barriers (dark gray).
(b) Cut of the potential landscape in the longitudinal direction. A
nearby plunger gate allows one to change the electrostatic potential
Vg within the dot. The Fermi level [dashed (blue) line] determines
the wave numbers kF in the leads and k in the dot, through EF =
�

2k2
F/2m = �

2k2/2m − Vg.

at x = x l(r). The Fermi wave number in the leads is denoted
kF, and the effective electron mass m.

We consider the generic case (referred to as restricted
off-resonance behavior [17]) where the PWAs do not fluctuate
strongly with n. Then the behavior of the transmission ampli-
tude is determined by the PWAs of the two resonances closest
in energy. The transmission amplitude vanishes between the
nth and the (n + 1)st resonance if and only if [9]

Dn = γ l
nγ

r
nγ

l
n+1γ

r
n+1 > 0. (2)

Then there is an overall phase slip of π between the two
resonances. We mention in passing that there are cases
where the PWAs fluctuate strongly (unrestricted off-resonance
behavior) and where the criterion (2) does not apply [17].

II. GAUSSIAN DISTRIBUTION OF PARTIAL-WIDTH
AMPLITUDES

Actual values of the PWAs depend on the geometry of
the QD. A generic description can only be based upon a
statistical approach. In this framework the probabilityP(Dn <

0) for condition (2) to be violated has been calculated in
various scenarios (i.e., disordered QDs [9] and ballistic chaotic
quantum billiards [16]). We follow that line using a particular
statistical hypothesis related to quantum chaos, and we discuss
various parameter regimes.

We define the parity of the nth resonance as the sign of γ l
nγ

r
n

and the probability of having a positive parity as P(γ l
nγ

r
n > 0).

Under the assumption that the eigenfunctions of the nth and
(n + 1)st resonances are statistically uncorrelated, we have

P(Dn < 0) = P
(
γ l

nγ
r
n > 0

)[
1 − P

(
γ l

n+1γ
r
n+1 > 0

)]
+ P

(
γ l

n+1γ
r
n+1 > 0

)[
1 − P

(
γ l

nγ
r
n > 0

)]
. (3)

We assume that the classical dynamics of electrons moving
independently in the QD is chaotic. In this case, according to
the Voros-Berry conjecture, the Wigner function is ergodically
distributed on the energy manifold of phase space [19–21].
This assumption implies that the eigenfunction ψn belonging

to the eigenvalue εn = �
2k2

n/2m has a Gaussian probability
density p(ψn) [22]. For a two-dimensional billiard with area
A and position vector r = (x,y), the probability density is
given by

p(ψn) = N exp

(
−1

2

∫
A

dr
∫
A

dr′ψn(r)K(r,r′; kn)ψn(r′)
)

,

(4)

where N is the normalization constant. The function K is
defined by

∫
A

drK(r,r′; k) J0(k|r − r′|) = Aδ(r − r′), (5)

where J0 is the zeroth Bessel function of the first kind.
Equation (4) implies 〈ψn〉 = 0 and a correlation of the values
of the eigenfunction ψn at two points, r and r′, given by [20]

〈ψn(r)ψn(r′)〉 = 1

A J0(kn|r − r′|). (6)

The angle brackets denote the average over p(ψn). The eigen-
functions belonging to different resonances are uncorrelated,
so that p(ψ1,ψ2, . . .) = ∏

n p(ψn).
We recall that the spatial correlation of wave functions has

also been derived from information theory [23] or, in the case
of weakly disordered systems, with the aid of supersymmetry
techniques [24,25]. The effects of spectral, position, and
directional averages in expression (6) have been thoroughly
discussed in Refs. [26] and [27]. Furthermore, this important
relation has been experimentally tested in the eigenmodes of
resonant microwave cavities [28] and numerically checked in
different dynamical systems [29–32], especially in the context
of the so-called rate of quantum ergodicity (i.e., the rate in
which the quantum-mechanical expectation value tends to its
mean value upon approaching the semiclassical limit of high
energies). Along these lines, Srednicki and Stiernelof [33]
used the Gaussian hypothesis, Eq. (4), to show that the root-
mean-square amplitude of the statistical fluctuations around
the mean value given by Eq. (6) decrease in the semiclassical
limit as (k2AR)−1/4, where AR is the area of the billiard used
for a spatial average of the autocorrelator (AR � A).

According to Eqs. (1) and (4), each PWA is the sum of
Gaussian-distributed amplitudes and, hence, has a Gaussian
distribution too. From 〈ψn〉 = 0 and 〈ψnψn′ 〉 = 0 for n �= n′,
we have 〈γ l(r)

n 〉 = 0 and 〈γ l(r)
n γ

l(r)
n′ 〉 = 0 for n �= n′. For each

n the distribution of the PWAs is then characterized by the
three second moments 〈γ l

nγ
l
n〉, 〈γ r

nγ
r
n〉, and 〈γ l

nγ
r
n〉. Left-right

symmetry of the couplings between the leads and the QD
implies the equality

σ 2
n = 〈

γ l
nγ

l
n

〉 = 〈
γ r

nγ
r
n

〉
. (7)

With

ρn = 1

σ 2
n

〈
γ l

nγ
r
n

〉
, (8)
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the joint probability density of the left and right PWA is

p
(
γ l

n,γ
r
n

) = 1

2πσ 2
n

√
1 − ρ2

n

× exp

(
−

(
γ l

n

)2 + (
γ r

n

)2 − 2ρnγ
l
nγ

r
n

2σ 2
n

(
1 − ρ2

n

)
)

. (9)

The probability for the product γ l
nγ

r
n to be positive is obtained

from Eq. (9) as

P
(
γ l

nγ
r
n > 0

) = 1

2
+ 1

π
arcsin (ρn). (10)

Completely correlated [anticorrelated] PWAs corresponding
to ρn = 1 [ρn = −1] lead to P(γ l

nγ
r
n > 0) = 1 [P(γ l

nγ
r
n >

0) = 0], while in the uncorrelated case we have ρn = 0 and
P(γ l

nγ
r
n > 0) = 1/2.

For the evaluation of Eq. (3) we have to determine the
dependence of ρn on kn. With the QD being chaotic, the
distribution of spacings εn − εn+1 of nearest eigenvalues is
given by the Wigner surmise. However, ρn is expected to be a
smooth function of kn on the scale of the mean wave-number
difference 
kn = π/knL

2. Therefore,

P(Dn < 0) � 2f (kn) + 
knf
′(kn), (11)

with

f (k) = 1

4
− 1

π2
arcsin2 (ρ(k)). (12)

The extreme values of ρ are ρ = ±1. Therefore, dρ/dk = 0
for |ρ| = 1, and expression (11) is well defined for all values
of ρ.

Equation (11) shows that there are two possible reasons
for violations of the universal behavior P(Dn < 0) = 0.
(i) The condition |ρ| = 1 may be violated so that γ l

n and γ r
n

are not perfectly correlated or anticorrelated, and f (kn) �= 0.
(ii) Even if the previous condition is met, 
kn may not
be negligible. Reason (i) becomes the dominant one in the
semiclassical regime [16], where 
kn ∝ 1/knL

2, or when the
spectral average over the resonances is taken. We return to that
point in Sec. IV.

III. SECOND MOMENTS OF PARTIAL-WIDTH
AMPLITUDES

We use Eqs. (1) and (6) to calculate σ 2
n and ρn as defined

in Eqs. (7) and (8). We assume that QD and leads have hard
walls. The first transversal sub-band wave function for the left
(right) lead then reads

�l(r)(y) =
√

2

W
sin

(
πy

W

)
, (13)

and we have

σ 2
n = α

∫ W

0
dy

∫ W

0
dy ′ 〈ψn(x l,y)ψn(x l,y ′)〉

×
[

cos

(
π

W
(y ′ − y)

)
− cos

(
π

W
(y ′ + y)

)]

= 2αW 2

A

∫ 1

0
dz J0(knWz)

[
(1 − z) cos (πz) + 1

π
sin (πz)

]
,

(14)

where α = �
2kFPc/mW . We have introduced dimensionless

integration variables, changed to their difference z and half
their sum, and integrated over the latter variable. For knW �
1 we approximate the argument of J0 in Eq. (14) by unity,
obtaining

σ 2
n � αW 2

A
8

π2
, (15)

while for knW � 1 the integral over z is strongly suppressed
because of the oscillating character of J0. We show in the
Appendix that

σ 2
n � αW 2

A
2

knW
. (16)

For the correlator 〈γ l
nγ

r
n〉 we obtain analogously

〈
γ l

nγ
r
n

〉 = 2αW 2

A

∫ 1

0
dz J0(knL

√
1 + (W/L)2z2)

×
[

(1 − z) cos (πz) + 1

π
sin (πz)

]
. (17)

Analytical results for 〈γ l
nγ

r
n〉 are obtained in the following

regimes. For knW � L/W we have

〈
γ l

nγ
r
n

〉 � αW 2

A
8

π2
J0(knL), (18)

while for knW � L/W � 1 we show in the Appendix that

〈
γ l

nγ
r
n

〉 � αW 2

A
2

knW
cos (knL). (19)

The corresponding results for the correlator ρ are obtained
by combining results (15) and (16) with Eqs. (18) and (19).
The value of kn defines three regimes, which are depicted in
Fig. 2(a) for the case L/W = 5. These are

(i) the one-mode regime 1 < knL < L/W [dashed (red)
line], where

ρn � J0(knL); (20)

(ii) the intermediate regime L/W < knL < (L/W )2

[dash-dotted (blue) line], where

ρn � 4

π2
knW J0(knL); (21)

(iii) the semiclassical regime knL � (L/W )2 [dotted
(green) line], where

ρn � cos (knL). (22)

In addition, the value of ρn obtained by numerical evaluation
of Eqs. (14) and (17) is shown as the black line in Fig. 2(a).
The oscillation of ρn around 0 is due to the Bessel function
in the integrand of Eq. (17). The amplitude approaches
unity in the semiclassical regime (knL � 1). Figure 2(b)
shows the resulting probability P(Dn < 0) calculated from
ρn using Eqs. (11) and (12). For the parameters chosen,
the contribution of the second term on the right-hand side
of Eq. (11) is significant only for knL � 10. Therefore, the
deviation of P(Dn < 0) from 0 is almost exclusively due to
the lack of perfect correlation between the PWAs belonging to
neighboring resonances.
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FIG. 2. (Color online) (a) The correlator ρn defined in Eq. (8), calculated numerically from the integrals in Eqs. (14) and (17), is plotted as
a function of knL for L/W = 5 (solid black line). The dashed (red) line represents the approximate result of Eq. (20) valid for knL � L/W .
The dash-dotted (blue) line represents the result of Eq. (21) for the intermediate regime, and the dotted (green) line gives the semiclassical
result of Eq. (22). (b) The probability P(Dn < 0) as a function of knL, calculated from Eqs. (11) and (12), and the numerical result for ρn.

We recall that the condition for adjacent resonances to
cause, with probability 1, a lapse in the phase of the trans-
mission amplitude is given by P(Dn < 0) = 0. According
to Eqs. (11) and (22) this condition is met only in the
semiclassical limit for distinct values of k for which

P(Dn < 0) � 1

2
− 2

({
knL

π

}
− 1

2

)2

. (23)

Here {x} denotes the fractional part of x. Extrapolation of the
data shown in Fig. 2(b) to larger values of knL suggests that k

intervals which meet that condition do indeed exist.

IV. ENSEMBLE AVERAGE VERSUS SPECTRAL
AVERAGE: NUMERICAL RESULTS

The results in Sec. III and in Fig. 2 represent averages over
the Gaussian ensemble defined in Sec. II. How are we to relate
these averages to actual data obtained by measurements of
a single QD (and not on an ensemble of QDs)? The answer
would be simple if P(Dn < 0) were independent of k, as we
could then employ the usual ergodicity argument and equate
the ensemble average obtained in the statistical approach with
the running average of data over k. However, the oscillations
of P(Dn < 0) away from the completely uncorrelated value
1/2 towards smaller values shown in Fig. 2(b) increase as
we approach the semiclassical limit knL → ∞. Therefore, the
actual value ofP(Dn < 0) becomes increasingly dependent on
k, and the relation between the two averages acquires crucial
importance.

First, we may think of the correlator in Eq. (6) as being
the result of an averaging process performed on the actual
eigenfunction of the nth resonance for a fixed distance |r − r′|.
Such spatial averaging, when performed over a domain larger

than the de Broglie wavelength, improves the rate of quantum
ergodicity [32,33] by suppressing the fluctuations around the
mean value of the wave-function product under consideration.
The integrals over y and y ′ in the defining Eq. (14) for σ 2

n and
in the corresponding expression for 〈γ l

nγ
r
n〉 partly amount to

such an average.
This argument is purely ad hoc, however. Moreover, it does

not resolve the issue of the dependence of P(Dn < 0) on k.
The actual value of k in the experiments is not known. To
make up for that, an average of P(Dn < 0) over one period
in knL was considered in Ref. [16]. Under that proposal, the
second term on the right-hand side of Eq. (11) yields, in the
semiclassical limit, a negligible contribution since f becomes
a periodic function of k. Using Eq. (23), the first term yields
1/3 on average, rendering the occurrence of long sequences of
in-phase resonances quite unlikely. However, averaging over
an entire period in knL is not necessary. Indeed, equality of the
ensemble average and running average is guaranteed provided
the latter extends over a sufficiently large set of resonances.
The average spacing 
kn = π/knL

2 of resonances becoming
very small in the semiclassical limit, it suffices to consider
an averaging interval much smaller than a full period in knL

to obtain a meaningful average. Since the last term on the
right-hand side of Eq. (11) is semiclassically negligible, long
sequences of in-phase resonances do exist for k values where
|ρ| is close to unity and P(Dn < 0) is close to 0. The length of
such sequences of in-phase resonances decreases as P(Dn <

0) deviates from 0.
In Ref. [16], numerical calculations done for the configu-

ration in Fig. 1 versus the plunger gate voltage yielded, for
large values of kL, long sequences of in-phase resonances.
The difference between the number of resonances and the
number of transmission 0s in a given k interval was found to
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FIG. 3. (Color online) (a) Absolute value of the transmission
amplitude t for the setup in Fig. 1, as a function of kL. (b) The
transmission amplitude presented in the complex plane, for the same
values of kL (which are encoded by the color of the data points).

become progressively small in the semiclassical limit. Here
we report on a more systematic numerical study. We calculate
the distribution of Dn [cf. Eq. (2)] and compare that with the
probability P(Dn < 0) predicted by the Gaussian hypothesis
[Eqs. (11) and (12)].

When the plunger gate voltage Vg is varied over a
sufficiently large interval, the k dependence of the complex
transmission amplitude t displays a sequence of peaks.
Figure 3 shows an example of such a sequence, whose length
corresponds to changing kL by about 3π . Figure 3(a) presents
the peaks of the absolute value of t(k), and Fig. 3(b) shows
that t approximately follows circles in the complex plane,
indicating that most of the peaks have Breit-Wigner form. At
the nth resonance we accordingly use

t(k) =
∑

n

γ l
nγ

r
n

ε(k) − εn + i�n/2
(24)

with �n = |γ l
n|2 + |γ r

n|2 to extract the product γ l
nγ

r
n and to

obtain Dn.
In the complex plane in Fig. 3(b) we can easily recognize

the relatively broad peaks, represented by a dense set of points
along a circle, representing data for increasing values of kL,
while the very sharp ones correspond to only a few points on
the chosen kL grid. When there is a transmission 0 between
two peaks, t continues to turn counterclockwise in the same

half-plane. If there is a finite minimal value of |t | between
two peaks, a switch of half-plane occurs before turning (also
counterclockwise) for the kL values corresponding to the
second peak. The tendency towards universality is already
noticeable in this restricted sequence of peaks for a single
stadium. Peaks of similar color (close in knL) tend to stay
in one of the half-planes, but there are occasional switches
between the two half-planes.

To determine the distribution of Dn with sufficiently good
statistics, we have taken two steps. First, we have combined
a sequence of Dn values within some kn interval much
larger than the level spacing. Second, we have combined data
generated from stadia with different shapes. We describe these
steps in turn. For a fixed stadium shape, the length δ/L of
the sampling interval is bounded from above by the fact that,
according to Fig. 2(b), the distribution of Dn is expected to
be an oscillatory function of k. Values of δ ≈ π would mix
different distribution patterns. On the other hand, values of
δ � π reduce the number of resonances in the interval and
increase the statistical error. We have chosen δ = π/4. We
have improved the local statistics by combining data from six
successive kn intervals given by [kn + jπ/L,kn + jπ/L + δ]
with j = −3,−2,−1,0,1,2. Since the smooth oscillations of
P(Dn < 0) are expected to be quasiperiodic with period π/L,
this procedure should not cause any problems. We have used
this procedure for a total of 15 stadium shapes. Fourteen of
these were generated from Fig. 1(a) by deforming different
quarter-circles of the stadium. Each shape yielded a sequence
of peaks that was uncorrelated with the others [34].

Figure 4 shows P(Dn < 0) obtained numerically as de-
scribed above [thin solid (blue) line], together with the analytic
result of Eqs. (11) and (12), locally averaged over kn intervals
of length δ/L with δ = π/4 [thin-dashed (red) line]. The
thin-dashed (red) line is a smoothed version of the solid line
in Fig. 2(b). The difference between the two curves is very
small. We have assigned statistical error bars to some points
of the numerically generated P(Dn < 0). Consistent with our

0.3

0.4

0.5

40 60 80 100

P
(D

n
<

0)

knL

FIG. 4. (Color online) Solid (blue) lines: Numerically obtained
P(Dn < 0) (see text) using a smoothing kn interval of δ/L with
δ = π/4 and π (thin and thick lines, respectively). The error bars of
some of the data points for the smaller smoothing interval indicate
the statistical error. Dashed (red) lines:P(Dn < 0) from the statistical
model, Eqs. (11) and (12), using smoothing intervals with δ = π/4
and π (thin and thick lines, respectively).
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previous analysis we find, for the lowest part of the interval
shown, that the statistical errors are quite significant, while
for larger values of kn we can be confident that the features
observed in the curve P(Dn < 0) are statistically robust. For
instance, the π/L quasiperiodicity of P(Dn < 0) is clearly
shown by the thin solid (blue) curve in Fig. 4.

Figure 4 shows that for knL � 60 the numerically generated
values of P(Dn < 0) are systematically smaller than those of
the statistical model. This is displayed very clearly by the
thick solid (blue) and thick dashed (red) lines obtained by
averaging the data in kn intervals of length π/L. We recall
that the statistical model yields a saturation value of 1/3 only
in the semiclassical limit, while the numerical results attain
that value already at knL � 120. The early approach of the
numerical results to the universality condition P(Dn < 0) = 0
predicted semiclassically may have important consequences
in the analysis of the experiments and for wavefunction
correlations.

The surprising quantitative discrepancy between our nu-
merical results and the predictions of the statistical model
may be due to several assumptions of the latter model that
may not fully apply. First, there is a correction to Eq. (6)
that is due to classical trajectories [35]. This correction is
significant when the two arguments of the wave-function
correlator are widely separated. In principle, the correction
could be taken into account within a semiclassical numerical
approach. Second, Eq. (6) does not account for boundary
effects. The boundary conditions for the resonance wave
functions are of mixed Dirichlet-Neumann type (vanishing
ψn along the hard walls of the billiard and vanishing normal
derivative at the points connecting the dot to the leads). The
ensuing corrections could, in principle, be calculated following
the prescription in Ref. [36]. Third, the Gaussian hypothesis is
perhaps not appropriate for describing the higher moments of
the wave-function distribution, since it is based on an ergodic
distribution on the energy shell. Such an assumption has its
limitations since it has been shown that, in a two-dimensional
phase space, a δ function on the energy shell cannot represent
a positive operator in the Weyl representation [37]. That is,
a δ function cannot be a true Wigner function. This result
has recently been generalized [38] to any curved surface of
dimension 2d − 1 in a phase space of dimension 2d. We have
not investigated any of these challenging issues yet.

V. CONCLUSIONS

Leaky Aharonov-Bohm interferometers have given access
to the transmission phase of a QD placed in one of the arms
of the interferometer. Long sequences of in-phase resonances
observed experimentally pose a theoretical puzzle. Assuming
that the Coulomb blockade in the dot can be treated within the
constant-interaction model, we have reduced the theoretical
calculation of the transmission phase to a one-body problem.
The phase evolution between neighboring resonances is
determined by their parities. For each resonance the parity is
defined as the sign of the product of the PWAs for the entrance
and exit leads and is determined directly by the resonance
eigenfunction. This chain of thought has led us from a flagship
problem in mesoscopic physics to one of the fundamental

issues of quantum chaos, that is, the statistical properties of
wave functions of a system which is classically chaotic.

Assuming a Gaussian distribution for the eigenfunctions of
a classically chaotic dot, we have calculated the probability
of having in-phase resonances. We have done so for different
regimes defined by the ratio of the de Broglie wavelength 1/k

in the dot and the length scales of the problem (the width W of
the leads and the distance L between the entrance and the exit
leads). We found that the fluctuations of the PWAs are relevant.
Complete in-phase behavior of the resonances is obtained only
in the semiclassical limit of large kL. Even in this regime, in-
phase behavior is not universal but occurs only within certain
energy intervals. Numerical calculations yield qualitatively the
same behavior. However, with increasing kL the numerical
results tend to be systematically smaller than predicted by the
statistical model and, thus, closer to universal behavior.

We stress that the present attempt to explain the experi-
mental results in Refs. [4] and [5] within the statistical model
or our numerical calculations is in line with much work in
mesoscopic physics. The constant-interaction model is used
to reduce the physics to that of a single-particle problem. The
statistical model further assumes that the chaotic nature of the
single-particle classical dynamics in the QD justifies the use
of the Voros-Berry conjecture and random-matrix theory. It is
important to recall that such an approach has led to a successful
description of the statistical distribution of the height of the
Coulomb-blockade peaks [39–41]. Moreover, the long-range
(in energy) modulation of the peak-height distribution found
in some of the experiments (not accounted for in the simplest
random-matrix description) is found [42] to be due to spatial
correlations of the resonance wave functions described by
Eq. (6).

It is tempting to think of improvements in the numerical cal-
culations that might lead to a better agreement with the experi-
mental data. A more realistic model of the QD could be helpful
in yielding information concerning the regime in which the dot
operates (see Sec. III). Such calculations would encounter a
number of difficulties, however. Neither the precise form of the
self-consistent single-particle confinement potential of the dot
nor its modification due to a change in the plunger voltage is
known. It seems likely that the actual situation is quite different
from that sketched in Fig. 1, where a change in Vg merely
shifts the floor of the potential. In fact, a deformation of the
confinement potential caused by changing the plunger voltage
has been held responsible for the phase locking of consecutive
resonances [10] and for the energy modulation of the peak-
height distribution [43]. In work using density-functional
theory to calculate the electronic structure of lithographically
defined QDs [44] it was found that some properties (like the
peak-height distribution) are relatively robust with respect to
details of the confining potential, while others (like the energy
modulation of the peak heights) are not. Still, we believe that
more realistic models for QDs, together with the study of wave-
function fluctuations beyond the Gaussian assumption, appear
to be promising avenues opened by the present investigation.
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APPENDIX: APPROXIMATE INTEGRATIONS IN THE
SEMICLASSICAL LIMIT

We evaluate Eqs. (14) and (17) in the semiclassical limit.
Introducing the variable x = knWz, we write Eq. (14) as

σ 2
n = 2αW 2

A
1

knW

∫ knW

0
dx J0(x)

×
[(

1 − x

knW

)
cos

(
πx

knW

)
+ 1

π
sin

(
πx

knW

)]
.

(A1)

In the first and third terms on the right-hand side of Eq. (A1)
we use knW � 1 to extend the upper integration limits for
these highly oscillating integrands to infinity. We use∫ ∞

0
dx J0(x) cos

(
πx

knW

)
= 1√

1 − (π/knW )2
, (A2)

∫ ∞

0
dx J0(x) sin

(
πx

knW

)
= 0. (A3)

The second term on the right-hand side of Eq. (A1) can be
integrated by parts. Using that∫

dx J0(x) x = J1(x) x, (A4)

with J1 the first Bessel function of the first kind, we get

∫ knW

0
dx J0(x) x cos

(
πx

knW

)
= −J1(knW )

1 − (π/knW )2
. (A5)

Combining Eqs. (A1)–(A3) and (A5), we obtain expres-
sion (16) as the leading-order term in an expansion in powers
of (knW )−1.

In Eq. (17) we use L � W , the semiclassical limit
knW

2/L � 1, and the asymptotic expansion of the Bessel
function to obtain the leading-order term,

〈
γ l

nγ
r
n

〉 = 2αW 2

A

∫ 1

0
dz

√
2

π θ (z)
cos

(
θ (z) − π

4

)

×
[

(1 − z) cos (πz) + 1

π
sin (πz)

]
, (A6)

where θ (z) = knL + (knW
2/2L)z2. Using the same inequali-

ties we evaluate the integral by the stationary-phase method.
The stationary point is at z̄ = 0, and we have

〈
γ l

nγ
r
n

〉 � 2αW 2

A

√
2

πknL

∫ ∞

0
dz cos

(
θ (z) − π

4

)
. (A7)

The evaluation of this Fresnel integral yields Eq. (19).
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