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Dynamics of reaction-diffusion patterns controlled by asymmetric nonlocal coupling as a limiting
case of differential advection
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A one-component bistable reaction-diffusion system with asymmetric nonlocal coupling is derived as a limiting
case of a two-component activator-inhibitor reaction-diffusion model with differential advection. The effects of
asymmetric nonlocal couplings in such a bistable reaction-diffusion system are then compared to the previously
studied case of a system with symmetric nonlocal coupling. We carry out a linear stability analysis of the spatially
homogeneous steady states of the model and numerical simulations of the model to show how the asymmetric
nonlocal coupling controls and alters the steady states and the front dynamics in the system. In a second step,
a third fast reaction-diffusion equation is included which induces the formation of more complex patterns. A
linear stability analysis predicts traveling waves for asymmetric nonlocal coupling, in contrast to a stationary
Turing patterns for a system with symmetric nonlocal coupling. These findings are verified by direct numerical
integration of the full equations with nonlocal coupling.
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I. INTRODUCTION

Pattern formation arises in various chemical and biological
systems [1–4]. It often appears by the combination of nonlinear
chemical reactions and local diffusion. Both stationary and
oscillatory patterns have been found in chemical reaction-
diffusion systems. Stationary spatially periodic states, i.e.,
Turing patterns, have been observed, for instance, in the
chloride–iodide–malonic acid reaction [3]. Turing patterns
are often related to morphogenesis, e.g., as a cause for the
disposition for stripes in some skin patterns of fish [5].
Spiral waves have been studied in the Belousov-Zhabotinsky
reaction [3]. Moreover, spirals were implicated in dangerous
arrhythmias in the heart (see e.g. [6,7]), as well as in spreading
depression that plays a role in migraine [8,9].

The dynamics of reaction-diffusion systems can be affected
and controlled by spatial interactions. Global feedback (a
closed-loop control, as opposed to open-loop control or
external forcing) has been shown to generate a variety of
patterns, including cluster states in oscillatory active me-
dia [10]. Experimental and theoretical studies in the CO
oxidation on platinum surfaces [11–16] and other catalytic
processes [17,18], as well as in electrochemistry [19] or in
semiconductors [20,21], have shown that global feedback can
be employed to control propagating waves and to generate
spatially periodic patterns such as Turing patterns or traveling
waves (for a review see [22]).

In most of the above cases, the spatial coupling is pro-
vided by diffusion and hence possesses reflection symmetry
in space. Reflection symmetry is broken by the presence
of advective processes. Advection is present in reaction-
diffusion-advection (RDA) systems. RDA systems have been
intensively explored as models for heterogeneous catalysis
with in- and outflow of the chemical species [17,23,24]. Their
generic features have been subject to detailed mathematical
analysis recently [25–27]. Particularly interesting are reaction-
diffusion systems with differential flows of the chemical
species which can cause novel spatial instabilities known
as differential flow-induced chemical instabilities (DIFICIs)

[28–31]. Differential flows can be caused by the interaction
of one chemical species bound to a catalytic surface (and
therefore subject only to diffusion) with another chemical
species in the gas phase above the catalyst. Since the gas
phase is typically also used to provide the reactants that adsorb
on the surface as well as to remove reaction products, most
chemical reactors are operated with a constant flow through
the system. Therefore, differential advection models have been
studied in some detail to model the behavior of flow reactors in
chemical engineering [32,33]. Beyond this initial application,
differential flow appears in a wide variety of systems, e.g.,
in marine biology [34] and in the formation of vegetation
patterns [35–37].

To obtain formation of periodic patterns in simple reaction-
diffusion systems, one requires at least two variables repre-
senting one activator with autocatalytic properties and one
inhibitor providing a feedback on the activator [38]. For fast
inhibitor dynamics, Petrich and Goldstein [38,39] have shown
that the well-known FitzHugh-Nagumo model (as well as any
two-variable model with linear inhibitor dynamics) reduces to
a one-component equation with symmetric nonlocal coupling.
Similarly, three-variable models that include one fast variable
with linear dynamics reduce to two-variable models with one
or more symmetric nonlocal coupling terms; see e.g., [40–42].
Here, we extend this treatment to two- and three-variable
models with differential advection. As a result we obtain
one- and two-variable models with asymmetric nonlocal
coupling.

Systems with nonlocal and global coupling have already
been studied for a number of applications. Global coupling
results when the fast linear variable that is eventually elimi-
nated adiabatically diffuses much faster than the other involved
species. In neuronal systems, especially in the visual cortex,
several experimental studies have focused on the nonlocal
connectivity, and it is still not clear whether it has a symmetric
or asymmetric organization [43–45]. It is often assumed that
interacting cortical neurons are coupled in a Mexican-hat
fashion, where neighboring cells excite each other, while
distant cells have long-range inhibitory interactions [44]. In
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electrochemistry, models with explicit nonlocal coupling have
been derived from more elementary models by applying a
Green’s function formalism; see, e.g., [46].

It has been observed that nonlocal coupling can induce
a variety of spatiotemporal patterns [40,47–50], basically
because it modifies the existence and stability of the ho-
mogeneous steady states of the nonlinear system. Such
effects have been demonstrated in electrochemistry [51],
in the Belousov-Zhabotinsky reaction [52,53] and magnetic
fluids [54], and may induce, for example, fingering [39],
remote wave triggering [55], Turing structures [56], wave
instabilities [53], or spatiotemporal chaos [57] in chemical
systems.

Nonlocal coupling schemes that do not change the homoge-
neous steady states can nevertheless generate patterns [58] or
control propagation of fronts and pulses [59–61]. Nonlocal
coupling also plays an essential role in the formation of
chimera states in discrete arrays of oscillators [62–67]. It is also
known that reaction-diffusion patterns can also be controlled
by time-delayed feedback [68,69].

Here, we consider systematically the effects of asymmet-
ric nonlocal coupling upon front propagation in a bistable
reaction-diffusion system, resulting as a limiting case of a two-
variable reaction-diffusion system with differential advection.
Furthermore, we derive a model with one asymmetric and
one symmetric nonlocal coupling term from a three-variable
reaction-diffusion equation with differential advection and
analyze the resulting spatiotemporal dynamics. It is shown
that asymmetric nonlocal coupling induces a wave instability,
while symmetric nonlocal coupling produces Turing patterns
in a bistable one-component reaction-diffusion equation.

The paper is organized as follows. In Sec. II, a simple
bistable model is introduced. In Sec. III, a nonlocal term is
added to the system by introducing a fast inhibitor subject to
both advection and diffusion. In Sec. IV, a second nonlocal
term (derived from a second fast inhibitor which is only
diffusive) is added in order to obtain, for a certain choice
of parameters, a nonlocal coupling that leaves the steady
states of the model unaffected (“noninvasive coupling”). In
Sec. V, we explore how this noninvasive nonlocal coupling
can generate wave instabilities and lead to new patterns. The
influence of the nonlocal coupling term is explored, for all
cases, through stability analysis of the homogeneous steady
state and numerical simulations.

II. MODEL

A one-variable generic bistable reaction-diffusion
model [70] in one spatial dimension is considered:

∂tu = F (u) + ∂2
xu, (1)

where u(x,t) is the dynamic variable, F (u) is a nonlinear
function, and the diffusion coefficient is set equal to unity. In
particular we use the Schlögl model [71,72] for the function

F (u) = −u(u − α)(u − 1), (2)

with 0 < α < 1. Equation (1) possesses two stable spatially
homogeneous solutions at u∗

0 = 0 and u∗
+ = 1 and an unstable

homogeneous solution at u∗
− = α. It has a traveling-front

solution with a monotonic profile with u(−∞,t) = 1 and

FIG. 1. (Color online) (a) Space-time diagram for the model
without control. Yellow (light) region corresponds to the upper state
u∗

+ = 1. Red (dark) region corresponds to the lower state u∗
0 = 0.

(b) Initial conditions. Note that periodic boundary conditions are
used. Space length L = 200; spatial discretization step �x = 0.2;
maximum simulation time T = 200; time discretization step �t =
0.01. Parameter α = 0.25.

u(+∞,t) = 0:

u(x,t) = 1

2

[
1 − tanh

(
x − ct

2
√

2

)]
, (3)

The propagation velocity of this front is given by

c =
√

1

2
(1 − 2α). (4)

Figure 1 shows the space-time diagram on a finite domain
where a symmetric two-front profile was used as initial
condition. From these initial conditions, two fronts propagate
in opposite directions with the same velocity. For α < 0.5,
the fronts propagate from the domain of the globally stable
state u∗

+ = 1 into the domain of the metastable state u∗
0 = 0,

as shown in the numerical simulation in Fig. 1(a), and for
α > 0.5 (note that the system is invariant with respect to
the transformation α → 1 − α,u → 1 − u), from the globally
stable state u∗

0 = 0 to the metastable state u∗
+ = 1.

III. NONLOCAL COUPLING

A. Reaction-diffusion-advection equations

We now extend Eq. (1) by considering the following
reaction-diffusion-advection system:

∂tu = F (u) − gw + ∂2
xu, (5)

τ∂tw = hu − f w + ξ∂xw + D∂2
xw, (6)

where all the terms are linear except for the function F (u)
that is given by Eq. (2) above. The two concentrations u and
w correspond to the activator and the inhibitor, respectively,
and are linearly coupled by the terms −gw and hu with real
constants g and h. The constant f will be set to be f = 1 in the
following, τ is the inhibitor relaxation time, and D corresponds
to the inhibitor diffusion coefficient (D > 0). The coefficient
ξ corresponds to the advection velocity, and depending on
the direction of the advective flow, can be either positive or
negative.

052909-2



DYNAMICS OF REACTION-DIFFUSION PATTERNS . . . PHYSICAL REVIEW E 89, 052909 (2014)

We assume that τ � 1 is small—which corresponds to the
case of fast inhibitor dynamics w. In the limit τ → 0, we can
eliminate the variable w in Eq. (5) by solving the linear Eq. (6).
First, we apply the Fourier transform to the inhibitor equation
for the case τ = 0:

hû(k) − (f + ikξ + Dk2)ŵ(k) = 0, (7)

where û(k) and ŵ(k) are the Fourier transforms of u and
w, respectively. Solving for ŵ and transforming the resulting
expression back to the original variable x yields

w(x,t) = 1√
2π

∫ ∞

−∞
dk eikx hû(k)

f + ikξ + Dk2
. (8)

The integral over k is the product of two Fourier trans-
forms [73]:

w(x,t) = h√
2π

∫ ∞

−∞
dk eikx

√
2πû(k)Ĝ(k), (9)

and, by definition, can be written as a convolution integral

w(x,t) = h

∫ ∞

−∞
dx ′G(x ′)u(x − x ′,t), (10)

with the nonlocal integration kernel

G(x) ≡ f√
ξ 2 + 4Df

e−(
√

ξ 2+4Df /2D)|x|e(ξ/2D)x. (11)

Hence Eqs. (5) and (6) can be replaced by a reaction-diffusion
equation for u(x,t), for the limit τ = 0:

∂tu = F (u) + ∂2
xu − σ

∫ ∞

−∞
dx ′G(x ′)u(x − x ′), (12)

where the nonlocal coupling strength is defined by σ = gh.
The parameter σ is positive or negative depending on the
particular choice of parameters g and h. Note that Eqs. (5)
and (6) represent an activator-inhibitor model if one chooses
g > 0 and h > 0. As a result, the choice σ > 0 corresponds to
long-range inhibition in Eq. (12).

From Eq. (11), we can recover analytically the limiting
cases of pure diffusion and pure advection in the fast inhibitor
equation. For example, in the limit ξ → 0, one obtains the
kernel for pure diffusion (symmetric kernel):

G(x) = 1

2

√
f

D
exp

(
−

√
f

D
|x|

)
, (13)

which is illustrated in Fig. 2(a). On the other hand, in the limit
D → 0, ξ > 0, and after a Taylor expansion, one recovers the
kernel for pure advection:

G(x) = f

ξ
exp

(
−f

ξ
x

)
	(x), (14)

where 	(x) is the Heaviside function. An example is shown
in Fig. 2(c). The general case (asymmetric kernel) is depicted
in Fig. 2(b). Note that the kernel is normalized:∫ ∞

−∞
dx G(x) = 1. (15)
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FIG. 2. (Color online) Kernel functions for three different cases:
(a) pure diffusion with D = 1 and ξ = 0, (b) diffusion and advection
with D = 1 and ξ = 2, and (c) pure advection with D = 0 and ξ = 2
(c). The other parameter is f = 1.

B. Stability analysis of the homogeneous states

Equation (12) corresponds to a reaction-diffusion equation
with nonlocal coupling. This equation, with the choice F (u) =
−u(u − α)(u − 1) for the nonlinear reaction term, has three
spatially homogeneous steady states: u∗

0 = 0 and u∗
± = [(1 +

α) ±
√

(1 + α)2 − 4(α + σ )]/2, for σ � (1 − α)2/4. The de-
pendence of the solutions on the parameter σ is depicted in
Fig. 3(a). The nonlocal coupling modifies the homogeneous
solution of the system, and two of the solutions even cross over
for σ = −α.

In order to obtain the dispersion relation, we perform a
linear stability analysis around the solution u∗

0 = 0 by setting
u(x,t) = u∗

0 + δu in Eq. (12) with δu = δu0e
ikxeλt and small

δu0. This leads to

λ = F ′(u∗
0) − k2 − σ

(
1

f + iξk + Dk2

)
. (16)

The real and imaginary parts are shown in Figs. 3(b) and 3(c),
respectively, for a range of values of σ . For large negative non-
local coupling strength σ < −α, the solution u∗

0 = 0 becomes
unstable. For large positive coupling strength σ > (1 − α)2/4,
u∗

0 = 0 is the only real solution. The dispersion relation for
large enough positive values of the coupling strength σ shows
a maximum at finite wave number k > 0; see Fig. 3(b). The
conditions to have such a maximum at a finite wave number are√

σD > f and σ > 0 (long-range inhibition). This does not
necessarily lead to a Turing instability, which would require
that f > 2

√
σD + αD. It is easy to see that this condition

and the condition for a maximum of the dispersion curve
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FIG. 3. (Color online) (a) Spatially homogeneous solutions of
Eq. (12) for different values of nonlocal coupling strength σ .
Solid and dashed lines represent stable and unstable solutions,
respectively. (b),(c) Dispersion relations Reλ(k) and Imλ(k) of
the solution u∗

0 for different values of σ . The arrows show the
direction of increasing values of σ (solid blue, σ < 0; dashed
green, σ > 0). Parameters: α = 0.25, D = 1, ξ = 2, f = 1, σ =
−1,−0.5,−0.25,−0.1,0,0.1,0.25,0.5,1.

at k 	= 0 cannot be fulfilled as long as the parameters α

and D are positive. The choice α > 0 is necessary since the
Schlögl model requires 0 < α < 1 (see Sec. II). For ξ 	= 0,
the dispersion relation is complex and exhibits an oscillatory
instability for σ < −α.

C. Velocity of the fronts

The previous linear stability analysis of the homogeneous
steady states shows that the system still exhibits bistability
for σ < (1 − α)2/4. Hence, while the front solution may
disappear for sufficiently large positive values of σ , for
σ < (1 − α)2/4 propagating fronts between the two stable
homogeneous steady states can still be expected, albeit with
a modified propagation velocity. In this section, we derive an
analytical approximation for the velocity of the fronts under
nonlocal coupling.

For |σ | not too large, we may assume that the front still
propagates with a stationary profile which is not essentially
distorted, and with a constant propagation velocity c, and we
can transform Eq. (12) to the comoving frame ζ = x − ct :

0 = F (u) + cu′ + u′′ − σ

∫ ∞

−∞
dζ ′G(ζ ′)u(ζ − ζ ′), (17)

with u′ = ∂ζ u(ζ ). Assuming a monotonic front profile with
u(ζ = −∞) = 1, u(ζ = +∞) = 0, like the right front in
Fig. 1(b), we can determine the front velocity without
explicitly solving Eq. (17) by the following argument (cf. [21],
Chap. 3.1).

Multiplying Eq. (17) by u′(ζ ) and integrating over ζ from
−∞ to +∞ yields

0 =
∫ 0

1
F (u)du + c

∫ +∞

−∞
(u′)2dζ + σG+, (18)

with

G+ = −
∫ +∞

−∞
dζ ′G(ζ ′)

∫ +∞

−∞
dζu(ζ − ζ ′)u′(ζ ), (19)

where the boundary conditions u′(ζ = −∞) = u′(ζ =
+∞) = 0 have been used to eliminate the diffusion term∫ +∞
−∞ dζu′′(ζ )u′(ζ ) = 1

2u′(ζ )2]+∞
−∞.

The nonlocal coupling term can be approximately evaluated
by using the fact that the front profile is close to a Heaviside
function u(ζ ) ≈ u∗

+	(−ζ ), and u′(ζ ) ≈ −δ(ζ ) is close to
Dirac’s delta function:

G+ ≈
∫ +∞

−∞
dζ ′G(ζ ′)u(−ζ ′) ≈ u∗

+

∫ ∞

0
dζ ′G(ζ ′), (20)

which is always positive, and for a symmetric coupling kernel
(pure diffusion) the integral is equal to 1/2, while for the limit
case of pure advection it is equal to 1; see Fig. 2.

The front propagation velocity then follows from Eq. (19):

c =
∫ 1

0 F (u)du − σG+∫ +∞
−∞ (u′)2dζ

. (21)

Since
∫ +∞
−∞ (u′)2dζ > 0 and

∫ 1
0 F (u)du = (1 − 2α)/12 > 0

for α < 0.5, the propagation velocity c is positive for σ = 0
and remains so with nonlocal coupling provided that σ < 0 or
|σ | is not too large in the case of σ > 0.

For σ = 0 we recover the front velocity of the
Schlögl model without feedback [see Eq. (4)) where∫ +∞
−∞ (u′)2dζ = 1/(2

√
2) can be evaluated explicitly using

the front profile given by Eq. (3). The nonlocal coupling
accelerates or decelerates the front for σ < 0 or σ > 0,
respectively. The detailed dependence upon the parameters
σ,D,ξ,f can be explored by substituting the homogeneous
steady state u∗

+ = [(1 + α) +
√

(1 + α)2 − 4(α + σ )]/2, and
evaluating the integral Eq. (20).

Note that the same reasoning can be applied to the left front
profile in Fig. 1(b) with u(−∞,t) = 0, u(+∞,t) = 1. In this
case, the velocity is

c = − ∫ 1
0 F (u)du + σG−∫ +∞

−∞ (u′)2ζ
< 0, (22)

with G− ≈ ∫ +∞
−∞ dζ ′G(ζ ′)u(−ζ ′) ≈ u∗

+
∫ 0
−∞ dζ ′G(ζ ′), which

is always positive, and for a symmetric coupling kernel (pure
diffusion) the integral is equal to 1/2, while for the limit case of
pure advection it is equal to 0; see Fig. 2. It is interesting to note
that the asymmetry of the kernel leads to an asymmetry in the
propagation velocities of fronts to the left and to the right. Only
with pure diffusion do we obtain symmetric modifications of
the propagation velocity by nonlocal coupling. Generally, for
ξ > 0, the modification of the front propagating to the left
is weaker than that of the front propagating to the right and
vanishes in the limit of pure advection.
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FIG. 4. (Color online) Space-time diagram [numerical simula-
tion of Eq. (12) with parameters α = 0.25, f = 1, ξ = 2, D = 1].
Control is applied at time t = 10 (white dashed line). (a) Front
suppression (σ = 0.2). (b) Modification of the front velocity (σ =
−0.5). All other simulation parameters as in Fig. 1.

D. Numerical simulations

We have performed numerical simulations of Eq. (12) for
different values of the parameters of the nonlocal coupling. In
the limit σ = 0 we recover Eq. (1) and the traveling solution
shown in Fig. 1. Note that in Fig. 1 two fronts are generated
by the initial conditions, one front propagating to the left, the
other to the right. For σ < 0 (σ > 0) the velocity of the fronts
increases (decreases).

In Fig. 4 two space-time plots are shown for positive (a)
and negative (b) σ . In Fig. 4(a), the upper homogeneous
steady state u∗

+ does not exist anymore in the controlled
system, and fronts are no longer possible. The only remaining
homogeneous steady state u∗

0 = 0 fills the whole system. In
Fig. 4(b), both fronts are accelerated, but the velocity change
of the right front is larger than that of the left front, as predicted
from our analysis in Sec. III C. Due to the periodic boundary
conditions the right front eventually reenters from the left
boundary, and the whole system is finally swept into the
homogeneous steady state u∗

+. Note that u∗
+ is increased by

the coupling, as shown in the previous section.
The parameter ξ breaks the symmetry of the kernel. It

increases the velocity of one front while decreasing the velocity
of the other. Figure 5(a) shows the velocity of the right
front. The bigger the values of σ and ξ are, the larger is
the front velocity (this effect is symmetric for the other front).
The increase of the parameter D in the asymmetric nonlocal
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FIG. 5. (Color online) Effect of advection parameter ξ and dif-
fusion constant D on the velocity v of the right front for α = 0.25,
f = 1, σ = −0.25 (+),−0.5 (×),−1 (∗),−2 (�), and (a) D = 1; (b)
ξ = 1. Simulation parameters as in Fig. 1.

coupling (ξ > 0) produces faster fronts; see Fig. 5(b). The
same effect is observed for the symmetric nonlocal coupling
(ξ = 0) case.

Only front solutions or the corresponding asymptotic homo-
geneous steady states have been observed in the simulations of
Eq. (12), for the parameters chosen here. We do not observe any
traveling waves or Turing patterns in this case, in agreement
with the predictions of the stability analysis in Sec. III B.

IV. TWO NONLOCAL COUPLINGS

A. Reaction-diffusion-advection equations

In the next step, a third variable v can be added to the
generic reaction-diffusion-advection system considered above
in Eqs. (5) and (6):

∂tu = F (u) − gw − g2v + ∂2
xu, (23)

τ∂tw = hu − f w + ξ∂xw + D∂2
xw, (24)

τ2∂tv = h2u − f2v + D2∂
2
x v, (25)

where the second inhibitor v is linearly coupled with the
activator u by the terms −g2v and h2u. The parameter D2

is the diffusion coefficient of the second inhibitor, τ2 is its
relaxation time, and f2, h2, and g2 are constants.

As in the previous section we assume that τ and τ2 are small.
This corresponds to the case of two fast inhibitors (w,v). Using
the kernels from Eqs. (11) and (13), an extended reaction-
diffusion equation with nonlocal coupling results:

∂tu = F (u) + ∂2
xu − σ1

∫ ∞

−∞
dx ′G(x ′)u(x − x ′)

− σ2

∫ ∞

−∞
dx ′G2(x ′)u(x − x ′), (26)

where we define the strength of the second nonlocal coupling
σ2 = g2h2 and set σ1 ≡ σ .

B. Stability analysis of the homogeneous states

Equation (26) has three homogeneous steady-state solu-
tions: u∗

0 = 0 and

u∗
± = [(1 + α) ±

√
(1 + α)2 − 4(α + σ1 + σ2)]/2,

for σ1 + σ2 � (1 − α)2/4. The stability analysis of the solution
u∗

0 yields the dispersion relation

λ = F ′(u∗
0) − k2 − σ1

(
1

f + iξk + Dk2

)

− σ2

(
1

f2 + D2k2

)
. (27)

For σ2 = 0 we recover the results obtained in Sec. III. The
dependence of the solutions on the parameter σ2 is shown
in Figs. 6(a) and 6(b). For fixed σ1, a maximum appears in
the dispersion relation. Decreasing σ2 < 0 shifts the whole
dispersion relation to higher values [see Fig. 6(c)], and for
sufficiently large negative σ2, unstable complex modes lead to
a wave instability. For the particular condition σ2 = −σ1 the
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FIG. 6. (Color online) Spatially homogeneous solutions of
Eq. (26) for different values of σ2 and (a) σ1 = 2; (b) σ2 = −σ1. Solid
and dashed lines represent stable and unstable solutions, respectively.
(c),(d) Dispersion relation of the solution u∗

0 in Eq. (27) for different
values of σ2 = −2,−1,−0.5,−0.25,0,0.25,0.5,1,2, for (c) σ1 = 2
and (d) σ2 = −σ1. The arrows show the direction of increasing
value of σ2 (solid blue, σ2 < 0; dashed green, σ2 > 0). Parameters:
α = 0.25, f = 1, D = 1, ξ = 2, f2 = 1, D2 = 1.

homogeneous solutions are the same as in the Schlögl model
without coupling (u∗

0 = 0, u∗
+ = 1, and u∗

− = α); see Fig. 6(b).
For this condition the combined effect of the two nonlocal
couplings on the homogeneous states may hence be called
noninvasive. However, the stability of the solutions changes
due to the nonlocal coupling terms and complex modes grow
in time, i.e., a wave instability at finite wave number k 	= 0
occurs; see Fig. 6(d).

We have also performed a stability analysis of the other
spatially homogeneous solutions. The results are plotted in a
phase diagram in Fig. 7(a). For the homogeneous solutions
(u∗

0,u∗
+), three situations are possible: (i) both solutions are

unstable with respect to a wave bifurcation, (ii) one of the
solution is stable, while the other is unstable with respect to a
wave bifurcation, or (iii) both solutions are stable; see Fig. 7(a).

C. Numerical simulations

We have numerically integrated Eq. (26) for different values
of the parameters. We keep the first kernel asymmetric and we
change both amplitudes of the nonlocal couplings σ1 and σ2.
The corresponding phase diagrams in the (σ1,σ2) plane are
shown in Figs. 7(a) and 7(b). Keeping σ2 < 0, we allow both
positive and negative values of σ1. For negative values of σ1

the front is accelerated, while for positive values different
behaviors are obtained. Large positive values of σ1 decelerate
the front, and intermediate values σ1 ≈ −σ2 generate wave
patterns. The regime of wave formation is extended [see
Figs. 7(a) and 7(b)] and depends upon the parameters of the
nonlocal coupling. We have explored the effect of the ratio
D/D2 upon the regime of traveling-wave patterns both by
a stability analysis of the homogeneous solutions (10−8 �
D/D2 � 108) and by simulation (1/50 � D/D2 � 50). For
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FIG. 7. (Color online) (a) Stability diagram of the homogeneous
steady states (HSs) numerically obtained from the dispersion relation
Eq. (27). Single HS (gray shaded): there is only one real spatially
homogeneous solution u∗

0. Bistability (white): two homogeneous
solutions are stable. Wave instability (light red dots): one of the
solutions exhibits a wave instability. Strong wave regime (dark green
dots): both solutions exhibit a wave instability. (b) Patterns obtained
from simulation of Eq. (26). Single HS (gray shaded): the fronts
are suppressed [cf. Fig. 4(a)]. Bistability (white): acceleration or
deceleration of the fronts [cf. Fig. 4(b)]. Wave regime (green circles):
traveling-wave patterns [see Fig. 8(c)]; (red crosses): coexistence of
waves and homogeneous states [see Figs. 8(c) and 8(d). (c) Number
of pulses observed in the simulation (for fixed σ1 = 1.5). Single
HS, bistability and wave region (gray) are shown. Green circles:
Traveling-wave patterns. Red crosses: Coexistence of traveling-wave
patterns and homogeneous steady state. Parameters α = 0.25, f = 1,
ξ = 2, D = 1, f2 = 1, D2 = 0.1. Initial conditions and simulation
parameters as in Fig. 1.

decreasing D/D2 < 10, we have found that traveling waves
still exist. However, this regime tends to be smaller than
in Figs. 7(a) and 7(b), and is also shifted to larger positive
values of σ1 and larger negative values of σ2. For increasing
D/D2, this regime tends to grow until it reaches an asymptotic
limit (the results of the stability analysis of the homogeneous
solutions remain qualitatively similar for D/D2 > 103).

From the simulation of the differential equation [Figs. 7(b)
and 7(c)], we observe that the system can exhibit either
traveling-wave patterns [Fig. 8(a)] or coexistence of traveling
waves and a homogeneous steady state [Figs. 8(c) and 8(d)]
outside the regime of instability of the homogeneous steady
states (u∗

0,u∗
+).

Note that in the limit of ξ = 0 (symmetric kernel G(x)
due to diffusion only) Turing patterns are obtained instead of
traveling waves [Fig. 8(b)].

V. LIMIT CASE D2 = 0

A. Resulting nonlocal coupling equation

In this section, Eq. (26) is considered in the particular limit
of zero diffusion (D2 → 0) of the third variable in Eqs. (23)
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FIG. 8. (Color online) Space-time diagram [numerical simula-
tion of Eq. (26) with parameters α = 0.25, f = 1]. Control is
applied at time t = 10 (white dashed line). (a) Travelling-wave
pattern (ξ = 2, D = 1, D2 = 0.1, σ1 = −2.0, σ2 = 2.0). (b) Turing
pattern (ξ = 0, D = 0.1, D2 = 0.1, σ2 = −σ1 = 5). (c) Coexistence
of traveling-wave patterns and homogeneous steady state u∗

0 (ξ = 2,
D = 1, D2 = 0.1, σ1 = −1, and σ2 = 0.75). (d) Coexistence of
traveling-wave patterns and homogeneous steady state u∗

+ (ξ = 2,
D = 1, D2 = 0.1, σ1 = −1, and σ2 = 1).

and (25). In this case, the third variable v simply follows the
variable u adiabatically and we obtain v = uh2/f2. Defining
σ2 = g2h2/f2 and imposing σ1 = −σ2 ≡ σ , we finally obtain
a nonlocal coupling in a form which vanishes for homogeneous
steady states:

∂tu = F (u) + ∂2
xu

− σ

(∫ ∞

−∞
dx ′G(x ′)u(x − x ′) − u(x)

)
. (28)

Note that this type of distributed nonlocal feedback can be seen
as a generalization of the discrete nonlocal feedback used, for
example, in [59,60].

B. Stability analysis

The homogeneous steady-state solutions of Eq. (28) are the
same as for the reaction-diffusion system without coupling
(u∗

0,u
∗
+ = 1 and u∗

− = α) and they are independent of the
control parameter σ ; see Fig. 9(a). The stability analysis of
the solution u∗

0 gives the dispersion relation for the kernel
defined by Eq. (11):

λ = F ′(u∗
0) − k2 − σ

(
1

f + ikξ + Dk2
− 1

)
. (29)

The stability of the homogeneous solution is not changed
by the coupling, and the value of the dispersion relation in
Eq. (29) is always the same at k = 0, irrespective of σ ; see
Figs. 9(b) and 9(c). The other modes, however, change with
the control parameter σ , and for large positive values of σ the
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FIG. 9. (Color online) (a) Spatially homogeneous solutions for
various values of σ . Solid and dashed lines represent stable and
unstable solutions, respectively. (b),(c) Dispersion relation [Eq. (29)]
Reλ(k) and Imλ(k) of the solution u∗

0 for different values of σ =
−2,−1,−0.5,−0.25,0,0.25,0.5,1,2. The arrows show the direction
of increasing value of σ (solid blue, σ < 0; dashed green, σ > 0).
Parameters α = 0.25, f = 1, D = 1, ξ = 2.

system becomes unstable at a characteristic wave number k,
giving rise to a wave instability; see Figs. 9(b) and 9(c).

In the limit of pure diffusion in the fast inhibitor equation
[symmetric kernel defined by Eq. (13)], we obtain the
following dispersion relation:

λ = F ′(u∗
0) − k2 − σ

f + Dk2 − 1

f + Dk2
, (30)

which is real; hence only static patterns are expected. In
the limit of pure advection in the fast inhibitor equation
[asymmetric kernel defined by Eq. (14)], we obtain the
following dispersion relation:

λ = F ′(u∗
0) − k2 − σ

f + iξk − 1

f + iξk
. (31)

C. Numerical simulations

From the dispersion relation Eq. (29) we numerically com-
pute the phase diagrams in Figs. 10(a) and 10(c) representing
the stability of the homogeneous steady states (u∗

0,u
∗
+). We see

that for positive values of σ both steady states can change their
stability.

We also perform a series of numerical simulations for dif-
ferent parameter values [Eq. (28)] with simulation parameters
as in Fig. 1. The dynamics observed is shown in the phase
diagrams of Fig. 10(b). For negative values of the coupling
strength σ < 0 the front propagates with modified velocity.
However, for sufficiently strong positive coupling σ > 0 waves
are observed [green dots and red crosses in Fig. 10(b)]. The
critical value of σ for the transition to wave patterns depends
on the other parameters.
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FIG. 10. (Color online) (a) Stability diagram of the homoge-
neous steady states in the (α,σ ) plane numerically obtained from the
dispersion relation Eq. (29). Bistability (white): the two homogeneous
steady states are stable. Wave instability (light red dots): one of the
solutions exhibits a wave instability. Strong-wave regime (dark green
dots): both homogeneous solutions exhibit a wave instability. Param-
eters f = 1, D = 1, ξ = 2. (b) Patterns obtained from simulation of
Eq. (28). Bistability (white): acceleration or deceleration of the fronts
[Fig. 4(b)]. Wave instability (green circles): traveling-wave patterns;
(red crosses) coexistence of wave patterns and homogeneous steady
state. (c) Stability diagram of the homogeneous steady states in the
(ξ,D) plane. Parameters σ = 2, α = 0.25, f = 1.

In these simulations we observe that the system can
exhibit coexistence of homogeneous steady-state solutions and
traveling waves such as those observed in Figs. 8(c) and 8(d).
These patterns are denoted by red crosses in Fig. 10(b). Note
that traveling-wave patterns may occur outside the regime
of wave instability of the homogeneous steady states, if
only one homogeneous steady state is unstable but also if
both of them are stable [see Fig. 10(b) with α = 0.5 and
1 > σ > 1.5].

VI. DISCUSSION

We have shown that systems of two or three reaction-
diffusion-advection equations can be reduced to a single
equation with nonlocal feedback coupling provided that two
variables exhibit fast dynamics. Specifically, we consider
FitzHugh-Nagumo-type activator-inhibitor systems with a
bistable activator dynamics affected by one or two fast
inhibitors. We have shown how different coupling kernels
affect the front propagation and generate new spatially periodic
patterns. For the special case of zero diffusion of the second
inhibitor, the steady states remain unchanged by the coupling.

Advection in the original system produces asymmetric
nonlocal coupling in the reduced system. Acceleration, de-
celeration, or suppression of propagating fronts, and wave
instabilities, can be induced by asymmetric nonlocal coupling,
i.e., by advection of a fast inhibitor.

The specific choice of the nonlocal coupling terms, i.e.,
the parameters controlling the fast inhibitor dynamics in the
original system, allows for deliberate control of the space-
time patterns. While for symmetric coupling Turing patterns
appear, for asymmetric coupling waves dominate. The control
parameter is the coupling strength and the instabilities appear
for sufficiently large values.

Here, we have considered only linear inhibitor equations,
in addition to the first nonlinear activator equation with the
nonlinear function F (u). This permits a simple calculation of
the equivalent nonlocal coupling kernel.

In summary, we have found that nonlocal coupling can
accelerate or slow down propagating fronts, and furthermore
symmetric or asymmetric nonlocal coupling can induce the
formation of Turing or wave patterns, respectively. The
exponential kernels employed here can be derived from
extended reaction-diffusion-advection equations in the limit
of fast inhibitor dynamics.
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889 (2010).

[62] Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex
Syst. (Minsk, Belarus) 5, 380 (2002).

[63] D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett. 93, 174102
(2004).

[64] A. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko,
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