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Synchronization transition in networked chaotic oscillators:
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Synchronization transition in networks of nonlocally coupled chaotic oscillators is investigated. It is found that
in reaching the state of global synchronization the networks can stay in various states of partial synchronization.
The stability of the partial synchronization states is analyzed by the method of eigenvalue analysis, in which the
important roles of the network topological symmetry on synchronization transition are identified. Moreover,
for networks possessing multiple topological symmetries, it is found that the synchronization transition
can be divided into different stages, with each stage characterized by a unique synchronous pattern of the
oscillators. Synchronization transitions in networks of nonsymmetric topology and nonidentical oscillators are
also investigated, where the partial synchronization states, although unstable, are found to be still playing
important roles in the transitions.
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I. INTRODUCTION

As a universal concept in nonlinear science, the syn-
chronization of coupled nonlinear oscillators has attracted
broad interest and has been extensively studied in fields
such as physics, optics, chemistry, and biology [1–3]. In
synchronization studies, a fundamental question is how
the system dynamics is transited from the nonsynchronous to
the synchronous states as a function of the system parameters,
e.g., the coupling strength [4–9]. This question is not only
crucial to the understanding of the synchronization mecha-
nisms, but also has important implications to the operating
and functioning of many realistic systems [2,3]. Previously, the
studies of synchronization transition has been mainly focused
on systems of small size and regular structures, where a number
of interesting phenomena have been revealed. For two coupled
chaotic oscillators, it has been shown that as the coupling
strength increases, the oscillators could be first entrained in
phase, i.e., the phase synchronization, and then entrained in
amplitude, i.e., the complete synchronization [10]. For an
ensemble of oscillators coupled through a regular structure,
e.g., the coupled lattices or the globally coupled systems, it has
been shown that in reaching the state of global synchronization,
the oscillators could be synchronized into clusters, i.e., the
partial (group) synchronization states [11–13]. In partial
synchronization, oscillators inside a synchronous cluster are
highly correlated, while they are loosely or not correlated if the
oscillators belong to different clusters [14–23]. The specific
form of the synchronous clusters, namely the synchronous
pattern, depends not only on the dynamics of the oscillators, but
also on the coupling function and coupling strength [24,25].

In the past decade, stimulated by the discoveries of the
small-world and scale-free features in many natural and
man-made systems [26,27], a new surge of research interest
has been appeared in the study of oscillator synchronization,
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where the important roles of the network structure have been
revealed and addressed [28–31]. It has been shown that, due to
the reduced network average diameter, the synchronizability
of small-world networks could be much higher than that of
regular networks of the similar network parameters (e.g., the
same network size and the same number of network links)
[28,29], and, by adopting the weighted coupling schemes, the
synchronizability of sale-free networks can be significantly im-
proved and be higher than that of small-world or homogeneous
random networks [30,31]. The existing studies, however, focus
mainly on the two extreme cases of the network dynamics,
namely the onset of synchronization and the state of global
synchronization [32], while little attention has been paid to
the intermediate states between the two extreme cases, i.e., the
transition process of network synchronization. Different from
the regular networks, where the synchronization transition
is more dependent on the oscillator parameters (e.g., the
parameter configuration) [33,34], in complex networks the
transition is crucially dependent on the network topologi-
cal structures, as has been well recognized in the recent
studies [35–38]. In Ref. [35], the authors have studied the
synchronization transition in heterogeneous networks and
found that the transition process is largely affected by the
degree distribution of the network nodes. In Ref. [36], the
authors have compared the paths to global synchronization
between the homogeneous and heterogeneous networks, where
it is found that the transition scenario relies on the network
heterogeneity. In Ref. [37], based on the dynamical properties
of the synchronization transition, the authors have proposed a
new method capable of identifying the topological scales and
hierarchical structures in some realistic complex networks.
Despite the progress made, the picture of synchronization
transition in complex networks is still not very clear, and many
questions remain open, say, for instance, how to characterize
precisely the nonsynchronous states [38].

In the present work, from the viewpoint of partial synchro-
nization, we revisit the problem of synchronization transition
by network models beyond the regular structures. More
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specifically, we adopt networks possessing both the features of
topological symmetry (like the regular networks) and nonlocal
connections (like the complex networks) and investigate how
the system is transited from the nonsynchronous to syn-
chronous states as a function of the coupling strength. Different
from the previous studies of synchronization transition, here
more attention is paid to the identification of some special
states in the nonsynchronous regime, and their roles in the
synchronization transition are explored. Interestingly, we find
that for the employed network models, the synchronization
transition can be clearly divided into different stages, with
each stage characterized by a specific pattern of synchronized
oscillators, i.e., a partial synchronization state [16–19,21–23].
The form of the synchronous pattern is found to be closely
dependent on the network topological symmetries, and, as
the coupling strength increases, it could transit from one
form to other forms in an intermittent fashion. The present
work is stimulated by the study in Ref. [21], in which partial
synchronization in networks of nonlocally coupled oscillators
has been investigated, and a criterion has been given for the
stability of the partial synchronization states.

The rest of the paper is organized as follows. In Sec. II,
we present our model of networked oscillators and describe
the phenomena obtained in numerical simulations, including
the transition process and the partial synchronization states. In
Sec. III, by a generalized method of eigenvalue analysis, we
give an analysis on the stability of the partial synchronization
states, where the crucial roles of the network topological
symmetries on partial synchronization are addressed. In
Sec. IV, we investigate the transition between different partial
synchronous states, in which the phenomenon of on-off pattern
intermittency are reported and studied. In Sec. V, we extend
our study to the cases of asymmetric networks and nonidentical
oscillators. In Sec. VI, we give our discussions and conclusion.

II. MODEL AND PHENOMENA

We consider the following model of networked chaotic
oscillators [30,31],

ẋi = F(xi) − ε

N∑
j=1

cij [H(xj ) − H(xi)], (1)

with i,j = 1, . . . ,N the oscillator (node) indices and x the state
variables. In the isolated form, the dynamics of each oscillator
is governed by the equation ẋi = F(xi), which, for the sake of
simplicity, is set to be identical for the oscillators. The coupling
relationship of the oscillators is described by the matrix C, with
cij = −wij/

∑
j wij . Here wij represents the weight of the link

Lij that connects nodes i and j in the network. By a uniform
coupling strength ε, the connected oscillators influence each
other through the function H(x). This model of linearly
coupled oscillators has been widely adopted in the literature for
synchronization studies, and many of its dynamical properties
have been well explored [3]. In particular, the stability of
the global synchronization state can be conveniently analyzed
by the method of master stability function (MSF) [39–41],
which shows that for the typical nonlinear oscillators, the
synchronizability of a network is generally determined by
the extreme eigenvalues of the network coupling matrix C.
The MSF method, however, applies only to the state of global

network synchronization, which is not suitable for analyzing
the nonsynchronous states [42].

We start by investigating the synchronization transition
of a simple network possessing topological symmetries and
containing nonlocal connections. The structure of the network
model is presented in Fig. 1(a), which is constructed by a six-
node ring lattice and three nonlocal connections (shortcuts).
To capture the feature of weighted links widely observed in
realistic networks [43], we set w1,4 = 0.8 for the link L1,4 and
w = 1 for the other links. This network model combines the
features of both regular (the symmetric topology) and complex
(the nonlocal connections) networks and is expected to present
a hybrid synchronization behavior. Specifically, because of
the symmetric topology (i.e., the reflection symmetries, S1

and S2, and the rotation symmetry, S3), the network is
expected to generate the partial synchronization state, just
like the case of regular networks [17,19]. In the meantime,
due to the nonlocal connections, the network structure is
heterogeneous; i.e., some nodes have more connections than
others. As has been revealed in previous studies of complex
network synchronization [35,36], this heterogeneity will make
the network nodes behave very differently in the transition to
synchronization, resulting in the complicated synchronization
behaviors in the nonsynchronous regime.

In simulating, we adopt the chaotic Lorenz oscillator as
the node dynamics, which in its isolated form is described
by equations (dx/dt,dy/dt,dz/dt)T = [α(y − x),rx − y −
xz,xy − bz]T . By the parameters α = 10, r = 35, and b =
8/3, the isolated oscillator is chaotic, with the largest Lyapunov
exponent about 1.05 [44]. The coupling function is chosen
as H([x,y,z]T) = [0,x,0]T ; i.e., the x variable is coupled to
the y variable [41]. In Fig. 1(b), we plot the variation of
the system synchronization error, δ = 〈∑i |xi − x̄|/N〉, as a
function of the coupling strength, ε. Here x̄(t) = ∑

i xi(t)/N
is the averaged x variable of the oscillators at the moment
t , and 〈· · · 〉 represents the time average over a period of
T = 1 × 103. It is seen in this figure that, as ε increases
from 0, the value of δ is gradually decreased, finally reaching
0 at εc ≈ 13.1 (the state of global synchronization). This
scenario of monotonic decrease of δ has been typically
observed in the synchronization transition of coupled chaotic
oscillators, including both the regular and the complex network
structures [4,9]. However, in reaching to the state of global
synchronization, we notice in Fig. 1(b) that in some regions of
the parameter space the value of δ is quickly decreased, i.e.,
ε ∈ (0,6.5) and ε ∈ (10,εc), while in the region ε ∈ [6.5,10]
the decrease of δ is quite slow, exhibiting a remarkable flat.
This leads to question in which we are interested and want to
explore: Why does the system synchronization error behave in
such a manner?

To explore the transition behaviors observed in Fig. 1(b),
we go on to investigate the synchronization relationship among
the individual nodes during the transition process. In doing
this, we calculate the difference between xi and x2 (i.e.,
using the second node as the reference) and check how
this difference varies with the coupling strength. Defining
the difference as δxi = 〈|xi − x2|〉, in Fig. 1(c) we plot the
variation of δxi as a function of ε. Interestingly, it is found
that before the state of global synchronization, some of the
oscillators have been already synchronized. More specifically,
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FIG. 1. (Color online) The synchronization transition of a six-node network model, with the dynamics of the isolated oscillator (node)
being governed by the chaotic Lorenz oscillator. (a) The network structure. The weight of the link L1,4 is 0.8, and it is 1 for the other links. The
network structure possesses two reflection symmetries, S1 and S2, and one rotation symmetry, S3 (180◦ rotation). (b) The variation of the system
synchronization error, δ = 〈∑i |xi − x̄|/N〉, as a function of the coupling strength, ε. Global synchronization is achieved at about εc = 13.1.
(c) The variation of the synchronization relationship of the oscillators, characterized by the node synchronization error δxi = 〈|xi − x2|〉, as
a function of ε. Partial synchronization represented by the symbol sequence PS1 = (a,b,c,d,c,b) is observed in the range ε ∈ (ε1,εc), with
ε1 ≈ 8.1. (d) With ε = 8.4 and random initial conditions, the time evolution of the normalized synchronization errors �xi . It is seen that, after
a transient time of about t = 29, the system reaches the partial synchronization state characterized by PS1.

in the region of ε1 = 8.1 < ε < εc, the second oscillator is
synchronized with the sixth oscillator, while the third oscillator
is synchronized with the fifth oscillator. That is, in this region
the system stays in a partial synchronization state. To have
more details on the generation of this partial synchronization
state, by ε = 8.4 and the random initial conditions, we plot in
Fig. 1(d) the time evolution of the normalized synchronization
errors of the oscillators, �xi = (xi − x̄)/�xave, with �xave =∑

i |xi − x̄|/N the scaling factor. It is seen that, after a
short transient period about t = 29, we have �x2 = �x6 and
�x3 = �x5, indicating that the system has reached the above
mentioned partial synchronization state. Here, to facilitate
the analysis of partial synchronization, we characterize each
partial synchronization state by a symbol sequence P [23].
Each symbol in the sequence represents a unique oscillator
trajectory, and the symbols are ordered by the node indices. For
instance, the state of partial synchronization shown in Fig. 1(d)
is characterized by the sequence PS1 = (a,b,c,d,c,b). The
subscript describes the symmetry that the symbol satisfies,
which is explained in detail later. By the symbol sequence, we
can readily figure out the number of synchronous clusters in the
network (as the number of different symbols in the sequence),
as well as the contents of each synchronous cluster (the nodes
of the same symbol in the sequence).

By the critical couplings ε1 and εc, the parameter space
of ε can be divided into three regimes: nonsynchronization
(ε < ε1), partial synchronization (ε1 < ε < εc), and global
synchronization (ε > εc). With this division of the parameter
space, the underlying mechanisms of the transition behavior
shown in Fig. 1(b) can be understood: The fast decrease of
the system synchronization error in the region of ε ∈ (0,6.5)
[ε ∈ (10,εc)] is due to the reaching of the partial (global)

synchronization state. As depicted in Fig. 1(c), as ε approaches
ε1, the sixth oscillator is quickly synchronized to the second
oscillator, while in this process the system synchronization
error is also found to be quickly decreased [Fig. 1(b)]. This
is also the case nearby the point of global synchronization.
As shown in Fig. 1(c), as ε reaches εc, oscillators 3, 4, and 5
(the upper three curves) are quickly synchronized to the other
three oscillators (the lower three curves), which in Fig. 1(b)
corresponds to a fast decrease of the system synchronization
error. Interestingly, in Fig. 1(c) it is also seen that in the region
of 6.5 < ε < 10, the synchronization errors of oscillators 3, 4,
and 5 are not decreased with ε. This is solely a phenomenon
induced by partial synchronization, as the increase of ε will
also enhance the partial synchronization, which hinders the
achievement of global synchronization [8]. As a result, the
system synchronization error remains almost unchanged in
this region.

Regarding the significant roles of partial synchronization
played in the synchronization transition, a detailed analysis of
the properties of the partial synchronization states therefore
becomes necessary. For systems of networked oscillators, a
question naturally arises: For the given network dynamics, can
we figure out the partial synchronization states and estimate
their stabilities, based only on the information of the network
topology? In the following section, we address this question
by the method of eigenvalue analysis.

III. STABILITY ANALYSIS OF PARTIAL
SYNCHRONIZATION STATES

Whether or not a partial synchronization state can be
generated in a network is closely related to the network
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topological symmetries [45]. Take the network of Fig. 1(a)
as an example. The network possesses three symmetries: two
reflection symmetries, S1 and S2, and one rotation symmetry,
S3 (which is a combination of S1 and S2). For each topological
symmetry, if we set artificially the initial states of the
oscillators to be satisfying the same symmetry as the network
topology, i.e., the system is started from a specific pattern of
initial conditions, then during the process of system evolution
this pattern is maintained. For instance, if we set the initial
conditions of the paired nodes, (2,6) and (3,5), to be identical
(according to the reflection symmetry S1), then as time
increases the system will stay in the partial synchronization
state characterized by the sequence PS1 = (a,b,c,d,c,b). This
is simply because the paired nodes are surrounded by the
same set of neighbors and are influenced by the same signal
sequence.

While each topological symmetry is supportive to a specific
state of partial synchronization, not all these states are
observable in the synchronization transition. That is, some
of the states are unstable. This is evidenced in Fig. 1(c),
where during the process of synchronization transition only
the state supported by the symmetry S1 is observed, while
the other two states, supported by symmetries S2 and S3, do
not appear. The stability of the partial synchronization states
can be analyzed by the method of eigenvalue analysis, with
the details as follows. (This method is originated from the
method of eigenvalue analysis proposed in Ref. [21], but
is generalized to any network symmetry here.) Let xs be
the synchronous manifold of the system (the manifold for
global synchronization) and δxi = xi − xs be the infinitesimal
perturbations added to the oscillator trajectories; then in the
linearized form the perturbations will evolve according to

δẋi = DF(xs) − ε

N∑
j=1

cij DH(xs)(δxj − δxi), (2)

where DF and DH are the Jacobian matrices of the correspond-
ing vector functions evaluated on xs . Projecting {δxi} into
the eigenspace spanned by the eigenvectors of the Laplacian
coupling matrix G = C + I (where I is the identity matrix of
the same dimension as C), then the set of equations described
by Eq. (2) can be transformed into N decoupled variational
equations of the form

δẏi = [DF(xs) − ελiDH(xs)]δyi , (3)

where 0 = λ1 < λ2 < · · · < λN are the eigenvalues of G, and
δyi is the ith mode of the perturbations. Let �i be the largest
Lyapunov exponent calculated from Eq. (3) for the ith mode;
then the stability of this mode is determined by the sign of �i :
The model is stable if �i � 0 and is unstable if �i > 0. The
first mode (associated with λ1) represents the motion parallel
to the synchronous manifold, i.e., the trajectory of a single
oscillator, which is always unstable due to the chaotic nature
of the isolated-node dynamics.

Network symmetry, as well as partial synchronization, sets
in when dividing the eigenvalues (modes) into groups. For a
given topological symmetry, S, of the network structure, we
can always construct its corresponding permutation matrix,
RN×N , as follows. If the exchange of the pair of nodes i and j in
the network (according to the topological symmetry) does not

change the network structure, we set rij = rji = 1; otherwise,
we set rij = rji = 0. For the permutation matrix, we have
RR−1 = R2 = I, with IN×N the identity matrix. Let M be
the transformation matrix of R, i.e., M−1RM = R′ (with R′
the diagonal matrix); then the Laplacian coupling matrix can
be transformed into the blocked form

G′ = M−1GM =
(

B 0

0 D

)
, (4)

where B and D are, respectively, n1 and n2 dimensional
submatrices, with n1 + n2 = N . Because G′ and G are similar
matrices, they have the same set of eigenvalues. However, for
the blocked matrix G′, the eigenvalues are divided into two
groups: n1 eigenvalues from B and n2 eigenvalues from D. It
is just the distribution of the two groups of eigenvalues that
governs the stability of the partial synchronization state, as
shown in the following.

It is worth noting that by the transformation matrix,
M, the state vector, X = [x1, . . . ,xN ]T , is transformed into
the form Y = [y1, . . . ,yn1,y′

1, . . . ,y
′
n2]T , where ym = xi − xj

and y′
m = xi + xj (m = 1,2, . . . ,n1) are, respectively, the

state difference and summation of the paired nodes, (i,j ),
under the symmetry S. Therefore, by the transformation
of Eq. (4) the phase space is actually separated into two
orthogonal subspaces: one is spanned by the eigenvectors of
B, which characterizes the synchronization error of the paired
nodes, i.e., Ytr = [y1, . . . ,yn1]T ; the other one is spanned
by the eigenvectors of D, which characterizes the manifold
of partial synchronization, i.e., Ysyn = [y′

1, . . . ,y
′
n2]T . This

technique of phase space separation is essentially the same as
those employed in previous studies of partial synchronization
[16–22].

As the manifold of partial synchronization is embedded in
the n2 dimensional subspace spanned by the eigenvectors of
D, we know from the function of the transformation matrix
that the null eigenvalue λ1 = 0 is contained in this submatrix.
Here we reorder the eigenvalues of D as 0 = λ

syn
1 < λ

syn
2 �

· · · � λ
syn
n2 and call the spanned subspace the synchronous

subspace. In a similar way, we reorder the eigenvalues of B
as λtr

1 � λtr
2 � · · · � λtr

n1. Since the subspace spanned by the
eigenvectors of B characterizes the perturbations transverse
to the synchronous manifold for partial synchronization, we
thus give it the name transverse subspace. To make the
partial synchronization state stable, it is necessary that all
the transverse modes of the perturbations are damping with
time. More specifically, we should have �(ελtr

l ) < 0 for
l = 1, . . . ,n1. Meanwhile, to avoid the trivial state of global
synchronization, it is also necessary that as least one of
the nontrivial modes in the synchronous subspace remains
unstable; i.e., �(ελsyn) > 0 for some mode (modes) of D.
These are the two necessary conditions for having a stable
partial synchronization state. (Exceptions may arise when the
oscillators are globally coupled, or when there are periodic
windows in the synchronization transition. These exceptional
cases are discussed in Sec. V.)

By the above eigenvalue method, we now give an analysis
on the stability of the state PS1 = (a,b,c,d,c,b) shown in
Fig. 1(d). First, from the reflection symmetry, S1, we can
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construct the permutation matrix, which reads

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

Second, by calculating the eigenvectors of R, we can construct
the following transform matrix:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0

0 1/
√

2 0 0 1/
√

2 0
−1/

√
2 0 0 0 0 1/

√
2

0 0 0 1 0 0
1/

√
2 0 0 0 0 1/

√
2

0 −1/
√

2 0 0 1/
√

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Finally, by the transform matrix M, we can transform the
coupling matrix, G, into the blocked matrix, G′, with the two
submatrices reading

B =
(−4/3 −1/3

−1/3 −4/3

)
, (7)

and

D =

⎛
⎜⎜⎜⎜⎝

−1 2/7 5/7
√

2 0

2/7 −1 0 5/7
√

2√
2/3 0 −2/3 1/3

0
√

2/3 1/3 −2/3

⎞
⎟⎟⎟⎟⎠ . (8)

For the submatrix B, we have (λtr
1 ,λtr

2 ) = (1,1.67); for the sub-
matrix D, we have (λsyn

1 ,λ
syn
2 ,λ

syn
3 ,λ

syn
4 ) = (0,0.63,1.05,1.65).

Since the null eigenvalue belongs to D, according to
our definition, the synchronous and transverse subspaces
thus are spanned by the eigenvectors of D and B,
respectively.

For the chaotic Lorenz oscillator and the coupling function
we have employed, the value of �(ελ), as calculated from
Eq. (3), is negative only when ελ = σ > σc ≈ 8.3 [Fig. 2(a)]
[40,41]. For ε = 8.4 [the coupling strength used in Fig. 1(d)],
the values of σ for the two transverse modes are σ tr

1 = ελtr
1 =

8.4 and σ tr
2 = ελtr

2 = 13.9. As σ tr
1,2 > σc, both transverse

modes are stable. The first condition for partial synchroniza-
tion thus is satisfied. For the synchronous modes, the values
of σ are (σ syn

1 ,σ
syn
2 ,σ

syn
3 ,σ

syn
4 ) = (0,5.23,8.72,13.7). Since

σ
syn
2 < σc, the second nontrivial mode of the synchronous

subspace is unstable. Therefore, the second condition for
partial synchronization is also satisfied. To better describe the
stabilities of the synchronous and transverse modes, we plot
Fig. 2(a). Since λtr

1 > λ
syn
2 , by the requirements �(ελtr

1 ) > 0
and �(ελsyn

2 ) < 0, we can also obtain analytically the region
in the parameter space for generating the stable partial syn-
chronization state, which is ε ∈ (ε′

1,13.1), with ε′
1 = σc/λ

syn
2

the critical coupling strength for partial synchronization
predicted by the method of eigenvalue analysis. This prediction
is in a good agreement with the numerical results shown
in Fig.1.

FIG. 2. (Color online) (a) With ε = 9.0, the eigenvalue anal-
ysis of the stability of the partial synchronization state PS1 =
(a,b,c,d,c,b). The MSF curve (�) is calculated according to Eq. (3),
where �(σ ) is negative when σ = ελ > σc ≈ 8.3. The modes in the
transverse and synchronous subspaces are denoted by triangles and
circles, respectively, where λsyn is calculated from the submatrix D
and λsyn is calculated from the submatrix B. (b) The variations of
the four largest Lyapunov exponents as a function of the coupling
strength. The solid lines are obtained by direct simulations, and the
dashed lines are derived from the MSF curve. The slight difference of
the critical coupling strengths for partial synchronization is due to the
simplified reference manifold adopted in the method of eigenvalue
analysis.

The above method of eigenvalue analysis explains also why
the other two symmetries of the network, S2 and S3, do not give
rise to stable partial synchronization states. For the reflection
symmetry S2, we have (λtr

1 ,λtr
2 ,λtr

3 ) = (0.63,1.65,1.67) and
(λsyn

1 ,λ
syn
2 ,λ

syn
3 ) = (0,1,1.05). As λtr

1 < λ
syn
2 , when the two

transverse modes are in the stable regime (i.e., satisfying
the first condition), all the nontrivial synchronous modes are
already in the stable regime, which breaks the the second
condition. As such, although it is potentially supported by
the symmetry S2, the pattern PS2 = (a,b,b,a,c,c) cannot be
observed in the synchronization transition. This is also the
case for the rotation symmetry S3. The rotation symmetry is
supportive to the pattern PS3 = (a,b,c,a,b,c), but, because
λtr

1 < λ
syn
2 , this pattern is also not observable in the process of

synchronization transition.
It is noticed that, although in good agreement, the critical

coupling strength predicted by the method of eigenvalue anal-
ysis is slightly different from that of numerical simulations.
More specifically, from the numerical results we have ε1 ≈ 8.1
[Fig. 1(c)], while the eigenvalue analysis gives ε′

1 ≈ 8.3. That
is, the system reaches the partial synchronization state at a
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smaller coupling strength than predicted. This discrepancy
could be attributed to the simplified reference manifold
we have adopted in the stability analysis. In the partial
synchronization state, the synchronous manifold is embedded
in the synchronous subspace, which is of the dimension 3 × n2.
In general, the stability analysis of the partial synchronization
state should refer to a manifold with the similar dimension.
However, for the sake of simplicity, in our method of
eigenvalue analysis we have used the global synchronization
manifold as the reference, which is three dimensional and is
actually unstable in the synchronous subspace. To suppress
this instability, a larger coupling strength therefore is needed,
i.e., ε′

1 > ε1. This reasoning is supported by the numerical sim-
ulations of Lyapunov exponents. In Fig. 2(b), we plot two sets
of Lyapunov exponents obtained by different approaches, one
by direct simulation and the other one derived from the MSF
curve. In the MSF approach, the Lyapunov exponents are just
�(σi) for the modes, which can be readily read from the MSF
curve. It is seen that for the global synchronization transition,
the two approaches give the same critical coupling strength
(the point where the second largest Lyapunov exponent crosses
0), but for the partial synchronization transition, there is a
small difference between the two critical coupling strengths
(the point where the second largest Lyapunov exponent
crosses 0).

IV. TRANSITION BETWEEN DIFFERENT PARTIAL
SYNCHRONIZATION STATES

What happens to the synchronization transition if the
network has more than one stable partial synchronization
state? To check this out, we adjust slightly the network of
Fig. 1(a) by increasing w1,4 to 3. Like the original network, the
modified network also possess three topological symmetries,
S1,2,3, which are supportive to three different synchronous
patterns. By the method of eigenvalue analysis presented in
Sec. III, the stabilities of the patterns can be well analyzed,
with the details as follows. For the reflection symmetry S1, the
eigenvalues for the synchronous and transverse submatrices
are (λsyn

1 ,λ
syn
2 ,λ

syn
3 ,λ

syn
4 ) = (0,0.73,0.83,1.77) and (λtr

1 ,λtr
2 ) =

(1,1.67), respectively. As λtr
1 > λ

syn
2,3 , the synchronous pat-

tern PS1 = (a,b,c,d,c,b) supported by S1 is stable when
ε > ε1 = σc/λ

tr
1 ≈ 8.3. For the reflection symmetry S2, the

eigenvalues for the synchronous and transverse submatri-
ces are (λsyn

1 ,λ
syn
2 ,λ

syn
3 ) = (0,0.73,1.77) and (λtr

1 ,λtr
2 ,λtr

3 ) =
(0.83,1,1.67), respectively. We have λtr

1 = 0.83 > λ
syn
2 =

0.73. As such, the synchronous pattern PS2 = (a,b,b,a,c,c)
supported by S2 will be also stable if ε > ε2 = σc/λ

tr
1 = 10.12.

As the rotation symmetry S3 is a combination of S1 and S2,
i.e., S3 = S1 ⊗ S2, the system actually presents the pattern
PS3 = (a,b,b,a,b,b) when ε > ε2. In the meantime, by the
method of eigenvalue analysis, we can also obtain the critical
coupling strength for global synchronization, εc = σc/λ

syn
2 ≈

11.3. The eigenvalue analysis therefore predicts the follow-
ing: For ε ∈ (ε1,ε2), only the pattern PS1 = (a,b,c,d,c,b) is
stable; for ε ∈ [ε2,εc], two stable patterns, PS1 and PS2 =
(a,b,b,a,c,c), coexist and the system presents the pattern
PS3 = (a,b,b,a,b,b); for ε > εc, the system reaches the global
synchronization.

FIG. 3. (Color online) The network structure is the same as
Fig. 1(a), but with w1,4 = 3. (a) The variation of the synchronization
relationship of the oscillators, as described by the synchronization
error δxi = 〈|xi − x2|〉, as a function of the coupling strength.
The patterns PS1 = (a,b,c,d,c,b) and PS3 = (a,b,b,a,b,b) appear
at ε1 and ε2, respectively. (b) With ε = 10.8, the time evolution of
the normalized synchronization errors, �xi = (xi − x̄)/�xave. The
pattern PS1 is realized in an earlier time than the pattern PS3.

The above predications are well verified by numerical
simulations. In Fig. 3(a), we plot the variation of the syn-
chronization relationship among the oscillators as a function
of the coupling strength. It is seen that, as the coupling
strength increases, the oscillators are first synchronized to
the pattern PS1 = (a,b,c,d,c,b) (at about ε = 8.1 ≈ ε1), then
to the pattern PS3 = (a,b,b,a,b,b) (at about ε = 10.1 ≈ ε2),
and finally to the state of global synchronization (at about
ε = 11.3 ≈ εc). To get more details on the generation of the
pattern PS3, we take ε = 10.8 and plot the time evolution of the
normalized synchronization errors in Fig. 3(b). Interestingly,
it is found that in generating the pattern PS3, the two stable
patterns, PS1 and PS2, are realized at different time instants.
Specifically, the pattern PS1 is realized at about t1 = 6, while
the pattern PS2 is realized at about t2 = 25. The different
synchronization times of the patterns can be attributed to their
different stabilities, with the following reasoning. For each
pattern, the most unstable transverse mode is always associated
with the eigenvalue λtr

1 (for the adopted node dynamics), which
is about 1 and 0.83 for the patterns PS1 and PS2, respectively.
According to the MSF curve shown in Fig. 2(b), when ε = 10.8
[Fig. 3(b)], we have �S1(ελtr

1 ) ≈ −1.04 for the pattern PS1,
and �S2(ελtr

1 ) ≈ −0.88 for the pattern PS2. As �S1 < �S2,
the pattern PS1 thus has a higher stability than PS2, resulting
in the different synchronization times.

In studying synchronization transition, an important issue
is about the system dynamics at the neighborhood of the

052908-6



SYNCHRONIZATION TRANSITION IN NETWORKED . . . PHYSICAL REVIEW E 89, 052908 (2014)

critical coupling strengths [9,32]. In previous studies of chaos
synchronization in regular networks, a general finding is that,
in the neighborhood of εc, i.e., the critical coupling strength
for global synchronization, the system dynamics undergoes
the process of on-off intermittency [46–50]. More specifically,
during the process of system evolution, most of the time the
trajectories of the oscillators stay close to the synchronous
manifold, i.e., the “off” states, while occasionally the tra-
jectories could depart away from the synchronous manifold,
resulting in short-period bursts of large synchronization errors,
i.e., the “on” states. Regarding the synchronous manifold as
an invariant set in the phase space, the phenomenon of on-off
intermittency can be analyzed by the chaos theory, where
some important features of on-off intermittency have been
revealed, e.g., the power-law distribution of the laminar phase
[46,48,49].

In addition to the transition to global synchronization, in
our case of nonlocally coupled oscillators, there are also
transitions from nonsynchronization to partial synchronization
state (at the critical coupling strength ε1) and from one partial
synchronization state to another partial synchronization state
(at the critical coupling strength ε2). As we have mentioned
earlier, different from global synchronization, in partial syn-
chronization the invariant set in the phase space, i.e., the
synchronous manifold, is high-dimensional and hyperchaotic.
For instance, the synchronous manifold for the pattern PS1 =
(a,b,c,d,c,b) in Fig. 1(d) is 12 dimensional and has two
positive Lyapunov exponents [Fig. 2(a)]. As the intermittent
process is largely dependent on the dynamics of the invariant
set, it is intriguing to see whether the traditional phenomenon
of on-off intermittency (as observed in the transition to global
synchronization) can still be observed in the transition from
nonsynchronization to partial synchronization or between two
different partial synchronization states.

To investigate, we adopt the coupling strength ε = 10,
which is slightly below the critical coupling strength ε2, and
monitor the evolution of the system dynamics. As under this
coupling strength the pattern PS1 is already stably generated
[Fig. 3(a)], we therefore focus on only the stability of the
pattern PS2. In Fig. 4(a), we plot the time evolution of the
synchronization errors for the paired oscillators (according
to pattern PS2), DS2 = |x1 − x4| + |x2 − x3| + |x5 − x6|. For
those moments where the system dynamics is staying close
to the pattern, we have DS2 ≈ 0; otherwise the value of DS2

will be large. The results in Fig. 4(a) show that, during the
process of system evolution, most of the time the value of DS2

is close to 0 (the “off” state), but occasionally it could grow to
larger values (the “on” state). Clearly, similar to the transition
to global synchronization, the transition to the pattern PS2 is
also accompanied by the phenomenon of on-off intermittency.

To investigate the process of on-off intermittency further,
we go on to analyze the probability distribution of the length of
the laminar phase. Here, the laminar length, τ , refers to the time
interval between two adjacent bursts of DS2 > 5. For the on-off
intermittency observed in global synchronization transition, a
distinct feature is that the laminar phase follows a power-law
scaling, with the scaling exponent γ = −3/2 [48]. In the inset
plot of Fig. 4(a), we plot the laminar-phase distribution of the
on-off intermittency obtained with ε = 10. It is seen that, just
like the global synchronization transition, the laminar-phase

FIG. 4. (Color online) The network is the same as Fig. 3(a)
With ε = 10, the process of on-off intermittency. DS2 is the pattern
synchronization error which measures the closeness of the system
dynamics to the partial synchronization state PS2 = (a,b,b,a,c,c).
(Inset) The laminar-phase distribution calculated for a time sequence
of T = 1 × 106, which follows the power-law scaling of the fitted
exponent γ ≈ −3/2. (b) The progressive transitions around the
critical coupling strengths ε1, ε2, and εc. ρ is the fraction of time that
the system state satisfies D < 1 × 10−6 during the system evolution.
Each datum is averaged over 100 realizations.

distribution also follows a power-law scaling, with the fitted
exponent γ ≈ −3/2. For on-off intermittency in the transition
to global synchronization, another feature typically observed
in literature is that, with the increase of the coupling strength,
the time intervals of the “off” state will be gradually stretched;
i.e., the transition is progressive [47,49,50]. To test whether this
feature also exists in the transition to partial synchronization,
we vary the coupling strength near ε2 and check whether the
frequency of the system dynamics is close to the pattern PS2.
In simulation, for each coupling strength we record 1 × 103

instants of the system evolution (after a transient period of
T = 1 × 103) and count the number of times it satisfies DS2 <

1 × 10−6. The results are plotted in Fig. 4(b). It is seen that, as
the coupling strength increases around ε2, the frequency with
which the system stays in the pattern PS2 is gradually increased
from 0 to 1. That is, the transition to partial synchronization
also proceeds in a progressive fashion.

The above features of on-off intermittency, including
the power-law distribution of the laminar phase and the
progressive transition in the neighboring region of the critical
point, are also observed for the other two transitions, i.e.,
at ε1 [the transition from nonsynchronization to the pattern
PS1 = (a,b,c,d,c,b)] and εc [the transition from the pattern
PS3 = (a,b,b,a,b,b) to the global synchronization] [Fig. 4(b)].
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The numerical results in Fig. 4 thus suggest that, despite the
high-dimensional synchronous manifold, the transition behav-
iors of the partial synchronization states are still governed by
the traditional mechanism of on-off intermittency.

V. DISCUSSIONS AND CONCLUSION

Besides the model of networked chaotic Lorenz oscillators,
we have also studied other models, including changing the
network structure and the node dynamics, where the similar
phenomena of synchronization transition have been found. For
instance, by a five-node unweighted network [Fig. 5(a)] and
adopting the chaotic Rössler oscillator as the node dynamics

FIG. 5. (Color online) Synchronization transition in networked
chaotic Rössler oscillators. The isolated chaotic Rössler oscillator is
described by the equations (dx/dt,dy/dt,dz/dt)T = [−y − z,x +
0.2y,z(x − 8.5) + 0.2]T [51], and the coupling function is adopted
as H[x,y,z]T = [x,y,0]T . (a) The network structure, which possesses
the reflection symmetry S1. (b) The variation of the synchronization
relationship of the oscillators, δxi = 〈|xi − x2|〉, as a function of the
coupling strength, ε. The system reaches the partial synchronization
state (a,b,c,c,b) at ε1 ≈ 0.1 and the global synchronization at εc =
0.16. (c) With ε = 8.5 × 10−2, the intermittent process of the system
evolution described by the synchronization error, D, associated with
the pattern (a,b,c,c,b).

[51], we have investigated the transition of the system
dynamics from nonsynchronization to global synchronization
as a function of the coupling strength. In Fig. 5(b), we
plot the variation of the synchronization relationship of the
oscillators as a function of ε. It is seen that, before the state of
global synchronization (at εc ≈ 0.16), the oscillators reach the
partial synchronization state (a,b,c,c,b) (at ε1 ≈ 0.1). Still,
the stability of this partial synchronization state, as well as
the value of ε1, can be analyzed by the method of eigenvalue
analysis. For the synchronous pattern (a,b,c,c,b) [as supported
by the reflection symmetry S1 indicated in Fig. 5(a)], the
eigenvalues of the synchronous and transverse subspaces are,
respectively, (λsyn

1 ,λ
syn
2 ,λ

syn
3 ) = (0,0.67,1.5) and (λtr

1 ,λt r
tr ) =

(1,1.83). As λtr
1 > λ

syn
2 , the pattern thus is able to be generated.

In the meantime, for the Rössler oscillator the critical point of
the MSF curve is σc = 0.1 [41]. As such, the pattern is stable
when ε > ε1 = σc/λ

tr
1 ≈ 0.1. This estimation agrees with the

numerical result very well [Fig. 5(b)]. By ε = 8.5 × 10−2,
we plot in Fig. 5(c) the evolution of the synchronization error
associated with the pattern (a,b,c,c,b), D = |x2 − x5| + |x3 −
x4|, where the phenomenon of on-off intermittency is also
presented.

While our studies are based on ideal network models of
symmetric topology and identical oscillators, the phenomena
we have revealed might be observable in the general networks.
In particular, given that the network topology satisfies certain
degree of symmetries (not strictly) or that the dynamics of the
oscillators are slightly mismatched, the partial synchronization
states, although unstable, could be still play important roles in
the synchronization transition. For instance, for the network
used in Fig. 2 and with ε = 9, the pattern PS1 = (a,b,c,d,c,b)
is stable. Now we add a link between nodes 2 and 5 so as
to break the reflection symmetry S1 supporting this pattern.
Clearly, with the increase of the weight of the new link, the
degree of the reflection symmetry S1 will gradually deteriorate.
However, we find that when the weight of the new link, w2,5,
is not too large (w2,5 < 0.25), the system dynamics is still
governed by the pattern PS1 [Fig. 6(a)]. A similar phenomenon
is also found for the case of nonidentical oscillators. For
instance, for the network used in Fig. 2 and with ε = 9, we
change gradually the bifurcation parameter, r , of the Lorenz
oscillator for node 2 from 35 to 30 and plot the variation of the
synchronization relationship of the oscillators. As shown in
Fig. 6(b), for a small mismatch of the parameter, �r < 2, the
paired oscillators (according to the network symmetry S1) are
still well synchronized. It is worthwhile to note that, due to the
symmetry of the network topology, in certain circumstances
the change of the system parameters has no impact to the
stability of the partial synchronization state, e.g., changing
the parameter for node 1 or 4 or changing the parameters of
the paired nodes (2,6) or (3,6) simultaneously.

The partial synchronization phenomena we have revealed
might shed new light on the synchronization behaviors
observed in large-scale complex networks. One example
is the influence of the network structure on the onset of
network synchronization. In network synchronization, a gen-
eral finding is that, compared to the homogeneous network,
the heterogeneous network (of the same network size and
connectivity) requires a smaller coupling strength in reaching
the onset of synchronization (usually defined as the point
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FIG. 6. (Color online) For the network model used in Fig. 2 and
with ε = 9, the stability of synchronous pattern PS1 = (a,b,c,d,c,b)
under (a) the topological perturbation and (b) the mismatched
oscillator parameters. The node synchronization error is defined as
δxi = 〈|xi − x1|〉. For the topological perturbation, a new link is
added between nodes 2 and 5, with the weight of the new link,
w2,5, varying from 0 to 0.6. For the parameter mismatch, the system
parameter, r , of node 2 varies from 35 to 30.

where the systems order parameter starts to increase from 0)
[36]. Previously, this phenomenon has been explained by the
property of the extreme eigenvalues of the network coupling
matrix, based on the central manifold theory [32]. Our study of
partial synchronization might explain this phenomenon from
another viewpoint, with the help of a proper characterization of
the network symmetry. Unlike the network models employed
in the present work, in a large-scale complex network the
network topology does not possess any (strict) symmetry,
which means that partial synchronization, in principle, cannot
be generated. However, as has been discussed in the recent
studies, while being short of topological symmetry at the
global level, there do exist certain (loosely defined) topological
symmetries at the local level for the general complex networks,
i.e., a permutation of a few of the network nodes does
not affect the network structure [52,53]. With this regard,
partial synchronization could still be generated, but in a
different manner; e.g., only a few of the network nodes are
synchronized.

Comparing to the homogeneous networks (e.g., the random
networks), the heterogenous networks (e.g., the scale-free
networks) own more local symmetries and thus have a
higher propensity for generating partial synchronization of

smaller clusters (such as the synchronous motifs), making
the onset of synchronization occur at a smaller coupling
strength. On the other hand, at the meso- or macroscale,
the homogeneous networks present a higher-level symmetry
than the heterogenous networks, which is favorable for
generating partial synchronization of larger clusters (such as
the synchronous communities). This provides an explanation
for the sharp synchronization transition of the homogeneous
networks under large coupling strength (close to the state of
global synchronization) [36]. Therefore, from the viewpoint of
partial synchronization, the different paths to synchronization
in homogeneous and heterogeneous networks can be simply
attributed to their different topological symmetries. It should
be pointed out that the above analysis of complex network
synchronization is speculative and conjectural, which should
be verified carefully by further studies.

A few remarks should be made on the conditions for
generating partial synchronization states. First, in studying the
partial synchronization, we have employed two typical chaotic
models as the local dynamics, namely, the chaotic Lorenz and
Rössler oscillators. For these oscillators, during the process
of synchronization transition the network dynamics is always
chaotic [i.e., with at least one positive Lyapunov exponent, as
shown in Fig. 2(b)] and the synchronous manifolds (for both
partial or global synchronization) seem to be globally attractive
(independent of the initial conditions). However, for other
local dynamics, e.g., the chaotic logistic map, the transition
process may contain various periodic windows, making the
analysis of partial synchronization much more complicated
[54]. For instance, in Ref. [11] it has been shown that for
globally coupled chaotic logistic maps, global synchronization
(of chaotic synchronous manifold) and partial synchronization
(of periodic synchronous manifold) could coexist, showing
the feature of a riddled basin [13]. Our analysis of partial
synchronization cannot be applied to the case of periodic
windows. Second, even if a periodic window is avoided in
the synchronization transition, the global and partial synchro-
nization may still coexist under certain circumstances. This
has been demonstrated in Ref. [18] with three (symmetrically
or asymmetrically) coupled chaotic tent maps, where it is
shown that in the regime between the riddling and blow-out
bifurcations the system may develop to either (strong) partial
synchronization or (weak) global synchronization, depending
on the initial conditions. In this case, the emergence and
stability of global and partial synchronization are two different
processes which may occur independently of each other.
Apparently, our analysis of partial synchronization cannot
be applied to such a case either. Finally, our estimation on
the critical coupling strength of partial synchronization is
based on the global synchronization manifold, which is a
rough approximation of the partial synchronization manifold.
When the coupling strength is smaller than εc (the critical
coupling for global synchronization), a few of the transverse
directions (with the number equals the size of synchronous
cluster) of the global synchronization manifold will lose their
stabilities and span the synchronous subspace [18]. As the
coupling strength decreases further, the synchronous subspace
will be gradually enlarged and, as a consequence, the partial
synchronization manifold will be gradually diverged from the
global synchronization manifold. This should be the under-
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lying reason for the mismatched critical coupling strength
(for generating stable partial synchronization) between the
numerical and the theoretical results. The divergence of the
partial synchronization manifold from the global synchroniza-
tion manifold is more evident in the case of multiple partial
synchronization; for example, in Fig. 3(a) we have ε1 ≈ 8
numerically for the first bifurcation, while the theoretical
analysis gives ε′

1 ≈ 8.3. Clearly, this mismatch is much larger
than that of the second bifurcation at ε2 (where the mismatch
is about 0.1). To improve the theory, an in-depth analysis on
the system dynamics near the bifurcation points should be
necessary [11–13,17–19].

In summary, from the viewpoint of partial synchronization,
we have revisited the problem of synchronization transition
in networks of coupled nonlinear oscillators. An interesting
finding is that the transition can be clearly divided into different
stages, with each stage characterized by a unique state of partial
synchronization. With the method of eigenvalue analysis, we
have analyzed the stability of the partial synchronization states,
in which the crucial dependence of the partial synchronization

states on the network symmetries has been revealed. In
the neighboring regions of the transition points, we have
observed the phenomenon of on-off intermittency, which has
the same characterisitcs as that of global synchronization tran-
sition. Synchronization transition in networks of asymmetric
structure and nonidentical oscillators has been also investi-
gated, and it is found that the partial synchronization states,
although unstable, still play important roles in the transition.
Our studies shed light on the synchronization transition of
networked oscillators and could be a step forward in the ex-
ploration of synchronization transition in large-scale complex
networks.
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