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We study tolerance of dynamic behavior in networks of coupled heterogeneous oscillators to deterioration
of the individual oscillator components. As the deterioration proceeds with reduction in dynamic behavior of
the oscillators, an order parameter evaluating the level of global oscillation decreases and then vanishes at a
certain critical point. We present a method to analytically derive a general formula for this critical point and
an approximate formula for the order parameter in the vicinity of the critical point in networks of coupled
Stuart-Landau oscillators. Using the critical point as a measure for dynamical robustness of oscillator networks,
we show that the more heterogeneous the oscillator components are, the more robust the oscillatory behavior of
the network is to the component deterioration. This property is confirmed also in networks of Morris-Lecar neuron
models coupled through electrical synapses. Our approach could provide a useful framework for theoretically
understanding the role of population heterogeneity in robustness of biological networks.
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I. INTRODUCTION

Living systems are able to maintain their regular functions
despite external and internal perturbations. In this sense, ro-
bustness is one of the fundamental characteristics of biological
systems [1,2]. On the other hand, biological systems that have
evolved to be tolerant to specific perturbations are often ex-
tremely fragile to other types of perturbations [3]. Exploration
of the trade-off between robustness and fragility in complex
biological systems is essential for understanding diseases and
considering effective treatments from the viewpoint of systems
biology. However, a mathematical framework for analyzing
biological robustness has yet to be fully established [4].

Inspired by oscillation phenomena widely observed in
biological systems [5,6], Daido and Nakanishi [7] presented
a mathematical framework to examine robustness of coupled
oscillator networks. Suppose that initially all the oscillator
components are active, or showing self-sustained oscillation.
When a fraction p of the oscillators are inactivated, or changed
to damped oscillators, due to aging or damage, the average
oscillatory activity over the whole network is decreased. At a
critical fraction p = pc, the global oscillatory state turns to a
nonoscillatory quiescent state. This phenomenon is called an
aging transition [7]. The critical fraction pc has been examined
for various types of networks, including globally coupled
networks [7–10], locally coupled networks [11], multilayered
networks [12], and complex networks [13,14]. Since a larger
value of pc implies that the global oscillation is more tolerant
to inactivation of the oscillators, pc can be used as a measure
for evaluating dynamical robustness of oscillator networks [7].
Based on this measure of dynamical robustness, it has been
demonstrated that the property of dynamical robustness can
be different from that of structural robustness in complex
networks [13]. The dynamical robustness measure has also
been used to argue an efficient recovery of oscillation in dam-
aged oscillator networks [15]. In almost all the above studies,
the coupled oscillator systems consist of two subpopulations:

the group of identical active oscillators and that of identical
inactive oscillators.

In actual biological networks, however, biological compo-
nents are not identical but heterogeneous in their activities
and responses. There is significant variability in oscillation
frequencies and amplitudes among individual biological oscil-
lators: neurons in the suprachiasmatic nucleus, which produce
synchronized oscillation relevant to circadian rhythms, display
cell-to-cell variability in their oscillatory behavior [16,17];
protein regulatory circuits show wide fluctuations in oscillation
amplitudes among individual cells [18]; neuronal oscillators
in cortical networks exhibit diverse rhythmic patterns [19].

Here, we study the effect of population heterogeneity on
the dynamical robustness of oscillator networks. Population
heterogeneity is represented by a distribution of the control
parameter, corresponding to the potential ability to oscillate,
in the individual oscillator model. In this context, there have
been a few studies on globally coupled networks [20,21]. We
deal with more general networks of coupled heterogeneous
oscillators and examine how tolerant the global oscillatory
behavior is to continuous reduction in the control parameters,
representing deterioration of the individual oscillators. As
the average of the control parameters decreases, an order
parameter evaluating the level of global oscillation diminishes.
When the average of the control parameters falls below a
critical value, the global oscillation vanishes. We analytically
derive a general formula for this critical point and obtain
an approximate formula for the order parameter near the
critical point in networks of coupled Stuart-Landau oscillators.
Our theoretical analysis can be applied to oscillator networks
with various network topologies and parameter distributions
representing component heterogeneity. Using the critical point
as a measure for dynamical robustness of oscillator networks,
we show that heterogeneity of oscillator components enhances
the network’s tolerance to the component deterioration. Fur-
thermore, we demonstrate that this property is observed in
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networks of Morris-Lecar neuron models coupled through
electrical synapses.

II. ANALYSIS AND RESULTS

A. Coupled oscillator models

A network of N diffusively coupled heterogeneous oscilla-
tors is described as follows [13]:

dzj

dt
= (αj + i� − |zj |2)zj + K

N

N∑
l=1

Ajl(zl − zj ),

(1)
for j = 1, . . . ,N,

where zj (=xj + iyj ) is the complex variable of the j th
oscillator, αj is the real parameter controlling the potential
activity of the j th oscillator, � is the natural frequency, and
K is the coupling strength. The dynamics of single isolated
oscillators is represented by the Stuart-Landau oscillator [22]:
dzj/dt = (αj + i� − |zj |2)zj . This equation corresponds to
a normal form of the supercritical Hopf bifurcation, which is
a typical mechanism for the onset of oscillation in dynamical
systems [5,6,22,23]: for αj > 0, the isolated oscillator exhibits
a stable limit-cycle motion with amplitude

√
αj and frequency

�; for αj < 0, the state converges to a stable equilibrium
after transient damping oscillation. Note that |αj | controls the
strength of attraction to the stable state. The connectivity of the
oscillators is represented by the adjacency matrix A = (Ajl),
where Ajl = Alj = 1 if the j th and lth oscillators are coupled
and Ajl = Alj = 0 otherwise. The degree of the j th oscillator
node is denoted by kj ≡ ∑N

l=1 Ajl and the mean degree by
〈k〉 = (1/N )

∑N
j=1 kj .

Figure 1 illustrates a network with random topology [24],
consisting of N (=32) coupled heterogeneous oscillators. For
j = 1, . . . ,N , the parameter αj in Eq. (1) controls the behavior
of the j th oscillator when it is isolated: if αj > 0, the

oscillator facilitates the global oscillation in the network;
otherwise, it suppresses the global oscillation. The facilitation
or suppression is more effective for a larger value of |αj |.
We assume a distribution of αj (j = 1, . . . ,N) to introduce
population heterogeneity. The level of global oscillation is
measured by the order parameter |Z| where Z = ∑N

j=1 zj /N .
The deterioration of the individual oscillators is represented
by a continuous decrease in αj for all j , which is simply char-
acterized by a decrease in the average value μ = ∑N

j=1 αj/N .
When αj is positive for all j as in Fig. 1(a), the global
oscillatory behavior is observed. After a decrease in μ, the
global oscillation can be still maintained but the oscillation
amplitudes are relatively small as shown in Fig. 1(b). A
further decrease in μ causes a loss of sustained oscillation
as shown in Fig. 1(c). Therefore, as μ continuously decreases,
the oscillator network is expected to exhibit a transition from
a global oscillatory state to a nonoscillatory state at a critical
point μ = μc. Our aim is to analytically derive this critical
value and clarify the impact of population heterogeneity on
dynamical robustness of coupled oscillator networks.

B. Derivation of the critical point

We derive the condition for the critical point at which the
global oscillation vanishes, using the heterogeneous mean-
field approximation [25]. We assume that a network consists
of M subpopulations of oscillators, in each of which the control
parameters are identical. Namely, we set αj = am for j ∈ Sm

(m = 1, . . . ,M) where Sm denotes the set of indices of the
oscillators included in the mth subpopulation. The proportion
of the oscillators in the mth subpopulation is denoted by
pm, satisfying

∑M
m=1 pm = 1. For sufficiently large N , the

number of the oscillators belonging to the mth subpopulation
in the neighbors of the j th oscillator is expected to be kjpm.
Therefore, the sum of the inputs to the j th oscillator in Eq. (1)
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FIG. 1. (Color online) The upper panels illustrate random networks of coupled heterogeneous oscillators. The model equation is given by
Eq. (1), where N = 32, � = 3, K = 10, and 〈k〉 = 4. The color intensity corresponds to the value of αj , indicating the activity of the oscillator
when it is isolated. The value of αj was randomly chosen from [μ − 5/2,μ + 5/2]: (a) μ = 5/2; (b) μ = 0; (c) μ = −5/2. The lower panels
show the time evolutions of the real parts xj of all the state variables (the gray lines) and the ensemble average (the black line).
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is approximated as follows:

N∑
l=1

Ajlzl � kj

M∑
m=1

pmHm(t), (2)

where the mean field for each subpopulation is given by

Hm(t) ≡
∑

j∈Sm
kj zj (t)∑

j∈Sm
kj

for m = 1, . . . ,M. (3)

The above approximation means that the oscillators with the
same degree in the same subpopulation are regarded to behave
identically. As shown in Fig. 1, numerical observations suggest
that all the oscillators are synchronized in phase. Therefore, the
state variables can be written as zj (t) = rj (t) exp[i(�t + θ )],
where rj is the amplitude and θ is the phase delay. The mean
fields are rewritten as follows:

Hm(t) = Rm(t)ei(�t+θ) for m = 1, . . . ,M, (4)

where Rm(t) = [
∑

j∈Sm
kj rj (t)]/(

∑
j∈Sm

kj ). By using Eqs. (2)
and (4), Eq. (1) can be reduced to the following equation for
the oscillation amplitude:

drj

dt
=

(
αj − Kkj

N
− r2

j

)
rj + Kkj

N

M∑
m=1

pmRm. (5)

The stationary amplitude r∗
j is obtained by solving the

equilibrium condition drj /dt = 0, that is,

r3
j −

(
αj − Kkj

N

)
rj − Kkj

N

M∑
m=1

pmRm = 0. (6)

Under the assumption βj ≡ αj − Kkj/N < 0 for all j , the
equation above has a positive solution given as follows:

r∗
j =

⎛
⎝γj

2
+

√(
γj

2

)2

−
(

βj

3

)3
⎞
⎠

1/3

+
⎛
⎝γj

2
−

√(
γj

2

)2

−
(

βj

3

)3
⎞
⎠

1/3

, (7)

where γj ≡ (Kkj/N)
∑M

m=1 pmRm.
The self-consistency condition for the mean-field ampli-

tudes Rm (m = 1, . . . ,M) is given by

Rm = Gm(R1, . . . ,RM ) for m = 1, . . . ,M, (8)

where

Gm(R1, . . . ,RM ) ≡
∑

j∈Sm
kj r

∗
j (R1, . . . ,RM )∑
j∈Sm

kj

. (9)

A solution with Rj > 0 for all j corresponds to a global
oscillatory state, whereas the solution with Rj = 0 for all j

to a nonoscillatory quiescent state. Hence, the critical point is
characterized by using the following matrix:

J =

⎡
⎢⎣

∂G1
∂R1

· · · ∂G1
∂RM

...
. . .

...
∂GM

∂R1
· · · ∂GM

∂RM

⎤
⎥⎦

∣∣∣∣∣∣∣
R1=···=RM=0

. (10)

From Eqs. (7) and (9), the (m,n) entry of J is evaluated as

∂Gm

∂Rn

∣∣∣∣
R1=···=RM=0

� pn

pmd

⎛
⎝ 1

N

∑
j∈Sm

d2
j

dj − αj/K

⎞
⎠ , (11)

where dj ≡ kj/N is the degree normalized by the system size
and d ≡ ∑N

j=1 dj/N corresponds to the link density for large
N . From the assumption βj < 0 for all j , the above formula
requires the condition dmin − amax/K > 0, where dmin denotes
the minimum normalized degree and amax the maximum
value of am for m = 1, . . . ,M . Moreover, the term inside the
parentheses in the right-hand side of Eq. (11) is approximated
as pmF (am) with

F (α) ≡ 1

N

N∑
j=1

d2
j

dj − α/K

=
∑

k

P (k)
(k/N)2

k/N − α/K
, (12)

where P (k) denotes the degree distribution. Accordingly, the
matrix J is expressed as follows:

J = 1

d

⎡
⎢⎣

p1F (a1) · · · pMF (a1)
...

. . .
...

p1F (aM ) · · · pMF (aM )

⎤
⎥⎦ . (13)

The condition that one of the eigenvalues of J is unity yields
the following formula for the critical point:

M∑
m=1

pmF (am) − d = 0. (14)

This result indicates that the critical value depends on
the interplay among the network topology, the dynamical
properties of the individual oscillators, and the size of the
subpopulations.

Equation (14) for a network composed of multiple sub-
populations includes the results of the previous studies on
two subpopulations (i.e., two groups of active and inactive
oscillators) as special cases. By setting M = 2, p1 = 1 − p,
p2 = p, a1 = a > 0, and a2 = −b < 0 and solving Eq. (14)
with respect to p, we can derive the critical point for
the globally coupled network with dj � 1 as pc = a(K +
b)/[(a + b)K] [7] and that for more complex networks as
pc = [F (a) − d]/[F (a) − F (−b)] [13].

Now, let us examine the effect of population heterogeneity
on the critical threshold in the oscillator networks where the
control parameter values are continuously distributed. For a
given range [amin,amax] of the control parameter values, we set
am = amin + m−1

M−1 (amax − amin) for m = 1,2, . . . ,M . Further,
the proportion of the subpopulation size pm is assumed to
follow a distribution with probability density function h(am).
For analytical tractability, we consider the case that the degree
kj and the parameter αj are uncorrelated.

When the network structure is a random graph [24] and
the parameter αj is uniformly distributed in [μ − δ/2,μ +
δ/2], it follows that F (α) � d2/(d − α/K) and h(α) � 1/δ.
In the thermodynamic limit N → ∞ and the continuous limit
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M → ∞, the condition (14) yields∫ μ+δ/2

μ−δ/2

1

δ

d2

d − α/K
dα − d = 0. (15)

By solving this equation, we obtain the critical value μc as
follows:

μc = Kd + δ

2

e−δ/(Kd) + 1

e−δ/(Kd) − 1
. (16)

In the strong-coupling limit K → ∞, μc approaches 0 which
is the bifurcation point of the single isolated oscillator [20]. In
the weak coupling limit K → 0, μc approaches −δ/2.

Similarly, we can formally describe a conditional equation
satisfied by the critical point for any other networks where
the degree distribution is given by P (k) and the probability
density function of the parameter distribution is given by
h(α). However, it is not generally possible to get an explicit
expression of μc due to the difficulty in the integral calculation.

C. Analysis of the order parameter

We analyze the order parameter in the vicinity of the critical
point. When the oscillators are synchronized in phase, the
order parameter |Z| is equivalent to R ≡ ∑M

m=1 pmRm. From
γj = (Kkj/N )R, the stationary amplitude r∗

j in Eq. (7) is
written as r∗

j = r̂∗
j (R). Therefore, using Eqs. (8) and (9), the

self-consistency condition for the order parameter R is written

as follows:

R =
M∑

m=1

pm

∑
j∈Sm

kj r̂
∗
j (R)∑

j∈Sm
kj

� 1

dN2

N∑
j=1

kj r̂
∗
j (R), (17)

where the approximation
∑

j∈Sm
kj � pmdN2 is used. Ex-

panding r̂∗
j with respect to R around R = 0 as

r̂∗
j (R) =

∑
n

1

n!

∂nr̂∗
j (0)

∂Rn
Rn, (18)

we obtain

R =
⎡
⎣ 1

dN

N∑
j=1

d2
j

dj − αj/K

⎤
⎦ R

−
⎡
⎣ 1

KdN

N∑
j=1

(
dj

dj − αj/K

)4
⎤
⎦R3 + O(R4). (19)

Note that the coefficient of the first order term in the right-hand
side of the above equation is equivalent to (1/d)F (α). Once
the normalized degree dj (=kj/N ) and the control parameter
αj are given for j = 1, . . . ,N , the order parameter can be
numerically calculated by solving Eq. (19) with respect to R

after neglecting the fourth and higher order terms.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

-4 -3 -2 -1  0  1  2

|Z
|

μ

δ=2
δ=5
δ=10

(a) (b)

 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

-4 -3 -2 -1  0  1  2

|Z
|

μ

(c) (d)
δ=2
δ=5
δ=10

 0

 0.1

 0.2

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1

|Z
|

μ

 0

 0.1

 0.2

-0.14 -0.12 -0.1 -0.08 -0.06

|Z
|

μ

Simulation
Theory

  μ−μc

10-1

10-4 10-2
2*10-2

10-1

2*10-2

  μ−μc
10-4 10-2

FIG. 2. (Color online) The order parameter |Z| is plotted against the average μ under the uniform distribution of αj in Eq. (1), where
N = 1000, � = 3, K = 10, d ∼ 〈k〉/N = 0.08, and αj ∈ [μ − δ/2,μ + δ/2]. (a) Results for random networks. Each plot is the average of
ten simulations and the error bar indicates the maximum and minimum values. (b) Comparison between the theoretical and numerical values
of the order parameter for three sample random networks with δ = 2. The inset is a log-log plot of the order parameter near the critical point
for all the three samples. The blue solid line with slope 1/2 shows a scaling property. (c) The same as (a), but for scale-free networks. (d) The
same as (b), but for three sample scale-free networks with δ = 2.
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D. Numerical simulations

We validate the analytical results with numerical simula-
tions. The fourth-order Runge-Kutta method with time step
0.1 is used for numerical integration of the model and the
initial conditions are randomly set to be zj (0) ∈ [−1,1] for
j = 1, . . . ,N . The macroscopic oscillation level of the entire
network is evaluated by the order parameter |Z|. Figure 2(a)
demonstrates the variations of the order parameter with a
change in the average control parameter μ for three different
cases of population heterogeneity δ in random networks. A
breakdown of the oscillator network occurs at a critical value
of μ in each case, which is smaller for a larger value of δ.
Figure 2(b) shows that the theoretical prediction of the order
parameter obtained from Eq. (19) is in good agreement with
the numerical results for three sample networks with δ = 2.
The inset shows the scaling property of the order parameter
near the critical point, i.e., |Z| ∝ (μ − μc)λ, where the critical
exponent λ is estimated as 1/2. However, for δ = 10, the value
of the exponent seems to be different from 1/2 as shown in
Fig. 2(a), probably due to the strong population heterogeneity.
Note that the formula (19) is not valid in this case because
the condition dmin − amax/K > 0 is not satisfied. Figures 2(c)
and 2(d) are the results for the oscillator networks with
scale-free structure. The effect of the population heterogeneity
δ on the critical μ value in these networks is similar to that
in the random networks. In comparison between Figs. 2(a)
and 2(c), we observe that the critical μ value for a random
network is smaller than that for a scale-free network when
the population heterogeneity is the same. This property is also
checked for δ = 2 by comparing Figs. 2(b) with 2(d) (note
that the scale of the horizontal axis is different). The validity
of the approximate formula for the order parameter in Eq. (19)
is confirmed for the scale-free networks as shown in Fig. 2(d).
The scaling property of the order parameter for the scale-free
networks is the same as that in the random networks.

Figure 3 shows that the theoretical values of the critical
point obtained from Eq. (16) are in good agreement with the
numerical results. In the numerical simulations, the parameter
μ is decreased from a sufficiently large value for each δ and
the transition is considered to have occurred if |Z| < 10−6 at
t = 50 000. From Eq. (16), μc is a monotonically decreasing

function of δ. Namely, the heterogeneity of the oscillators
enhances the network robustness to the deterioration of the
oscillator components. We can also see that oscillator networks
are more robust for more sparse networks as shown in Fig. 3(a)
as well as for more weakly coupled networks as shown in
Fig. 3(b). This is because the component deterioration has
little negative impact on the global oscillatory behavior in
such networks. In return for this merit, they are less likely to
achieve globally synchronized oscillation.

To check the generality of our main result about the
effect of population heterogeneity, numerical simulations
were performed to compute the critical values for oscillator
networks with combinations of different coupling schemes
uniform coupling or weighted coupling), different network
structures (random graph [24] or scale-free network [26]), and
different distributions of αj (uniform or Gaussian). Figure 4(a)
shows the results for the network model with uniform coupling
in Eq. (1) where the same coupling strength is assigned to each
link. In all the cases, an increase in the standard deviation σ of
the distribution of αj results in the almost monotonic decrease
in the critical value μc. Next, we consider the following
oscillator network model with weighted coupling [14]:

dzj

dt
= (αj + i� − |zj |2)zj + K

kj

N∑
l=1

Ajl(zl − zj ),

(20)
for j = 1, . . . ,N,

where the coupling strength is weighted by the inverse of
the degree. The analyses of the critical point and the order
parameter for this model are performed similarly to those in
Secs. II B and II C, respectively. It should be noted that, instead
of Eq. (12), the function F is given by F (α) = 1/(1 − α/K)
in this case. Therefore, the critical point is not influenced by
the network topology. When the network structure is a random
graph [24] and the parameter αj is uniformly distributed in
[μ − δ/2,μ + δ/2], the critical value is given by

μc = K + δ

2

e−δ/K + 1

e−δ/K − 1
, (21)

which is independent of the link density d unlike Eq. (16) for
the networks with uniform coupling. Figure 4(b) shows that
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FIG. 3. (Color online) The critical value μc is plotted against the range δ of the uniform distribution of αj in Eq. (1) with random topology,
where N = 3000, � = 3, and αj ∈ [μ − δ/2,μ + δ/2]. The symbols and solid curves indicate the numerically estimated values and the
theoretical values obtained from Eq. (16), respectively. Each plot is the average of ten simulations and the error bar indicates the maximum and
minimum values. (a) Results for different link densities. The coupling strength is fixed at K = 10. (b) Results for different coupling strengths.
The link density is fixed at d ∼ 〈k〉/N = 0.08.
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FIG. 4. (Color online) The critical value μc is plotted against the
standard deviation σ of the distribution of αj in the networks where
N = 3000, � = 3, K = 30, and d ∼ 〈k〉/N = 0.08. (a) Results for
the network model with uniform coupling in Eq. (1). (b) Results for
the network model with weighted coupling in Eq. (20). Each panel
shows the four cases resulting from the combinations of the two
factors: random or scale-free network topology; uniform or Gaussian
distribution of the control parameter value αj , with mean μ and
standard deviation σ . For the uniform distribution case, σ = δ/

√
12.

Each plot is the average of ten simulations and the error bar indicates
the maximum and minimum values. The solid line represents the
theoretical prediction, i.e., Eq. (16) for (a) and Eq. (21) for (b).

our main result is valid also for the oscillator network model
(20) with weighted coupling.

E. Coupled Morris-Lecar neuron models

Our framework is also useful to investigate the effect of
population heterogeneity on dynamical robustness of coupled
dynamical components exhibiting another type of bifurcation.
We demonstrate numerical results for networks of coupled
Morris-Lecar (ML) neuron models [27]. The ML neuron
model exhibits repetitive spike firing when the external input
current is increased beyond a certain threshold value. The
mechanism for the onset of firing activity is a saddle-node
on invariant circle (SNIC) bifurcation or a subcritical Hopf
bifurcation, depending on the system parameter values [28].
The bifurcation type characterizes the dynamical property
of the neuron model: the former type is called a class I neuron
and the latter type a class II neuron [29]. The ML neuron model
has been used in the studies on mixed populations of excitable
and oscillatory units [8,21].

The networks of ML neuron models coupled via electrical
synapses (gap junctions) are described as follows [30]:

CM
dVj

dt
= I ext

j − I ion
j − I

syn
j , (22)

dWj

dt
= [W∞(Vj ) − Wj ]/τW (Vj ), (23)

for j = 1, . . . ,N , where Vj (t) represents the membrane
potential, Wj (t) represents the recovery variable,
W∞(V ) = {1 + tanh[(V − V3)/V4]}/2, and τW (V ) =

(a) (b)

(c) (d)
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FIG. 5. (Color online) The order parameter Q plotted against the mean external input 〈I ext〉 in the networks of Morris-Lecar neuron models
coupled via electrical synapses, given by Eqs. (22) and (23). The number of neurons is set at N = 200 and the mean degree at 〈k〉 ∼ 4. The
system parameter values are set at CM = 20, gK = 8, gCa = 4, gL = 2, VK = −80, VCa = 120, VL = −60, V1 = −1.2, V2 = 18, V4 = 17.4,
φ = 1/15 [28], and ggap = 1 [30]. We set V3 = 12 for class I neurons and V3 = 2 for class II neurons [28]. The heterogeneity of the neurons
is represented by δ, which is the range of the uniform distribution of the external input. Each plot is the average over ten simulations and the
error bar indicates the standard deviation. (a) Random networks of class I neurons. For an isolated class I neuron, a saddle-node on invariant
circle bifurcation occurs at I ext ∼ 39.7 (see Ref. [28] for details). (b) Scale-free networks of class I neurons. (c) Random networks of class II
neurons. For an isolated class II neuron, a subcritical Hopf bifurcation occurs at I ext ∼ 50.4 (see Ref. [28] for details). (d) Scale-free networks
of class II neurons.
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1/{φ cosh[(V − V3)/(2V4)]}. The ionic current I ion
j is given by

I ion
j = gL(Vj − VL) + gCaM∞(Vj )(Vj − VCa) + gKWj (Vj −

VK), where M∞(V ) = {1 + tanh[(V − V1)/V2]}/2. We set
V3 at different values for modeling class I and class II
neurons while keeping the other parameters fixed [28].
The synaptic current I

syn
j through a gap junction is given

by I
syn
j = ∑N

l=1 gjl(Vj − Vl), where the coupling strength
is gjl = ggap if neuron j and neuron l are connected and
gjl = 0 otherwise. The external input current I ext

j is the
control parameter for the individual neurons. Therefore,
we assume that I ext

j is uniformly distributed in the range
[〈I ext〉 − δ/2,〈I ext〉 + δ/2], where 〈I ext〉 is the mean external
input current and δ represents the degree of heterogeneity of
the neurons. The level of neuronal firing in the entire network
is evaluated by the order parameter Q =

√
〈|xc − 〈xc〉|2〉,

where xc = (1/N )
∑N

j=1 (Vj (t),Wj (t)) is the centroid and
the brackets mean a long time average [7,31,32]. The
fourth-order Runge-Kutta method with time step 0.05 is used
for numerical integration of the model. We randomly set the
initial conditions to be Vj (0) ∈ [−40,40] and Wj (0) ∈ [−1,1]
for j = 1, . . . ,N . In numerical simulations, the parameter
〈I ext〉 is decreased from a sufficiently large value for a fixed
value of δ and the transition is considered to have occurred if
Q < 10−6 at t = 50 000.

Figure 5 shows the variation of the order parameter with
a change in the mean external input current 〈I ext〉. As the
mean external input current decreases and falls beyond a
critical value, the neuronal firing in the whole network is
lost in all the cases. In the networks consisting of class I
neurons, the component heterogeneity enhances the robustness
of the firing activity in both random and scale-free networks
as shown in Figs. 5(a) and 5(b). The same effect of population
heterogeneity is found in the random and scale-free networks
of class II neurons as shown in Figs. 5(c) and 5(d).

III. SUMMARY AND DISCUSSION

In the analysis of the Stuart-Landau oscillator networks,
we have derived the general condition for the critical point
at which a loss of global oscillation occurs as the individual
oscillator components deteriorate. By comparing the critical

values for networks with different levels of heterogeneity in
the oscillator components, we have shown that the dynamical
robustness of the oscillator networks is enhanced by the
population heterogeneity. This property is considered to
be widely observed in networks of dynamical components
exhibiting a supercritical Hopf bifurcation, such as those
widely found in chemical, biological, and engineering systems
[5,6,22,23], because the Stuart-Landau oscillator is a normal
form of the supercritical Hopf bifurcation. Moreover, we have
obtained the approximate formula for the order parameter in
the vicinity of the critical point and confirmed its validity
with numerical simulations. In the simulations of coupled
Morris-Lecar neuron models with different types of bifurcation
phenomena, we have shown that the population heterogeneity
makes the neuronal network more tolerant to component
deterioration.

Our framework enables to analyze the transition between
two different dynamical regimes in complex networks of
dynamical components, each of which exhibits a bifurcation
phenomenon. The critical point for the transition, as a measure
of dynamical robustness, is normally affected by the network
topology, the characteristics of the dynamical components, and
the heterogeneity of the components. Nevertheless, the effect
of population heterogeneity on the dynamical robustness is
common to the models addressed in this paper. It is a future
work to check this property in more biologically plausible
models. The methods for identifying mathematical models of
heterogeneous cell populations from experimental data [33]
would be useful for theoretically understanding the role of
heterogeneity in biological robustness.
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