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We study the origin of mixed-mode oscillations and related bifurcations in a fully molecular laser model
that describes CO2 monomode lasers with a slow saturable absorber. Our study indicates that the presence of
isolas of periodic mixed-mode oscillations, as the pump parameter and the cavity-frequency detuning change,
is inherent to Q-switched CO2 monomode lasers. We compare this model, known as the dual four-level model,
to the more conventional 3:2 model and to a CO2 laser model for fast saturable absorbers. In these models, we
find similarities as well as qualitative differences, such as the different nature of the homoclinic tangency to a
relevant unstable periodic orbit, where the Gavrilov-Shilnikov theory and its extensions may hold. We also show
that there are isolas of periodic mixed-mode oscillations in a model for CO2 lasers with modulated losses, as
the pump parameter varies. The coarse-grained bifurcation diagrams of the periodic mixed-mode oscillations in
these models suggest that these oscillations belong to similar classes.
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I. INTRODUCTION

Certain dynamical systems display multiple time scales and
are the subject of substantial current research [1,2]. These
are known as mixed-mode oscillators (MMOs), and their
evolution switches between slow and fast motions and small
and large amplitudes. MMOs are ubiquitous in nature and
have been observed for over 30 years in chemical, physical,
biological, and engineering systems [1,2]; in particular in
chemical reactions [3], neural systems [4], intracellular cal-
cium dynamics [5], lasers [6], dusty plasmas [7], and Faraday
waves in fluids [8].

Recent work gives improved insight into the mathematical
properties of MMOs. In Ref. [2], a systematic framework is
considered for studying the properties of MMOs, where nu-
merical methods for computing invariant manifolds and their
intersections are an important tool. Singular Hopf bifurcation
has been identified as one mechanism for the creation of
mixed-mode oscillations [9]. Many slow-fast systems show
that there is a range of parameter values for which the model
has MMOs, which have also been explained in terms of the
canard phenomenon [10].

Recently, we have studied laser models described by non-
linear ordinary differential equations (ODE) systems with fast
and slow variables, i.e., some of the derivatives are multiplied
by a small parameter. Using a suitable reduction procedure, we
found that reduced models preserve the bifurcation structure
qualitatively quite well. These reduced systems have one fast
variable, the laser intensity, and two or three slow variables,
namely, the energy level populations [11–13]. Numerical
continuation was used to explore regions in parameter space
where MMOs exist.

In this article, we consider another laser model that belongs
to the category of mixed-mode oscillators: the dual four-level
model (4:4 model) for the CO2 laser with a slow saturable
absorber. Motivated by the physics of this model and the
renewed interest in MMOs, we investigate its dynamics using
numerical continuation and supplemental simulations. We also
give a comparison to related models and discuss the connection
of our results to experiments.

A. The physics and dynamics of the CO2 laser
with a saturable absorber

In Q-switched lasers, the optical resonator losses are
changed from high values (low Q factor) to low values
(high Q factor) after the pump energy has been stored long
enough in the active medium. Q switching has been achieved
in different laser gain media, such as ion-doped solid-state
crystals and semiconductor media and gas mixtures [14].
Much theoretical and experimental work concentrated on an
important Q-switched laser: the CO2 laser with intracavity
gaseous saturable absorbers [15–18]. Its rich dynamical
behavior and its versatility in changing control parameters have
made it a particularly interesting object for study in nonlinear
dynamics [17–30].

Our study considers a theoretical model of the CO2 laser
with saturable absorber (LSA) where the intracavity gaseous
saturable absorber is an SF6 gas mixture [21,22]. This model
has also been used when the amplifier and absorber contain
other mixtures of gases [21,22]. It is known as the dual four-
level model (4:4 model), where the amplifier and absorber are
both described by four-level models [20,21], composed of two
active rotational states and two reservoir states.

The central contribution of our article is a study of the rele-
vant bifurcations of passive Q-switched (PQS) self-pulsations
in the 4:4 model, as physically relevant control parameters
are varied. Each PQS self-pulsation of the CO2 LSA typically
consists of a leading spike, named the reinjection, and n − 1
small intensity undulations in a tail [23,24]. In this article,
we denote these periodic PQS self-pulsations as �(n). When
the incoherent external pump [27,31] or the cavity-frequency
detuning [30] is changed in the experiment, period-adding
cascades of PQS self-pulsations can arise: �(n) → �(n+1),
or vice versa. In this paper, we show that the period-adding
cascades of PQS self-pulsations can also be described within
the framework of the 4:4 model. This is in contrast to the
common belief that the 4:4 model does not predict the �(n)

observed in experiments [27,31]. Specifically, using numerical
continuation methods [32], we show that the 4:4 model predicts
the existence of isolas of periodic PQS self-pulsations �(n) as
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the incoherent external pump or the cavity-frequency detuning
changes. By an isola, we mean a smooth, closed, and isolated
family of periodic orbits, stable or unstable, which is generated
as a single control parameter is free to change. Isolas of
periodic orbits in autonomous systems have been found in
different contexts, such as in an electronic circuit [33] and in
a model for air oxidation of hydrogen in a continuous-flow
stirred tank reactor [34,35]. We show that as the incoherent
pump or the cavity-frequency detuning are changed, the origin
of the period-adding cascades stems from the coexistence of
stable �(n). For each n, stable and unstable �(n) belong to
a corresponding isola In, while their period increases with n.
Previous studies of period-adding cascades have been done for
optically injected lasers [36–38] and for a laser rate equation
model with a term describing a saturable absorber and a
modulated pump source [39].

In addition to this model, we also consider the more
conventional 3:2 model [12], which is a generalization of
the two-level rate-equation model for the CO2 LSA, taking
into account the presence of a third level in the active
medium [23,27]. This model has ad hoc parameters that
describe the temporal dynamics of this laser system very
well [24,30]. We also discuss a CO2 laser model for fast
saturable absorbers, and we compare the models.

B. Main result and outline

Our study shows that isolas of periodic mixed-mode
oscillations are inherent to Q-switched CO2 monomode lasers,
as the incoherent external pump or the cavity-frequency
detuning changes. In addition to the LSA models, we show
that a model for CO2 lasers with modulated losses also has
isolas of periodic MMOs as the pump parameter changes.
To our knowledge, such isolas have not been reported earlier
for PQS semiconductor lasers [40,41] or in PQS microchip
lasers [42]. Despite the fact that the 4:4 model was devised
a long time ago [20–22], its bifurcation structure has not
been thoroughly studied, in contrast to the more popular
model 3:2 model [23–31]. In this paper, we carry out this
study and give a comparison to related LSA models, where
we find qualitative similarities and differences. In particular,
though the coarse-grained picture of the bifurcation diagrams
is qualitatively similar, the relative position of the largest
stability intervals along the isolas is different between the
molecular models and the 3:2 model, as we change a second
physical parameter such as the saturability.

This paper is organized as follows. In Sec. II, we discuss
the 4:4 model at exact resonance, also considering the effect of
the cavity-frequency detuning within the framework of semi-
classical laser theory. In Sec. III, we compare the 4:4 model
to its reduced version as the pump parameter changes at zero
cavity-frequency detuning, emphasizing the onset of isolas.
In Sec. IV, we consider a reduced version of the 4:4 model,
as several physically relevant control parameters are varied,
namely, the incoherent pump, the cavity-frequency detuning,
the saturability, and the pressure in the absorber cell. Through-
out we compare our results to those found in the literature in
order to stress that the 4:4 model gives a good description of
well-known experimental facts. In Sec. V, we consider bifur-
cation sequences near folds of isolas in the 4:4, 3:2, and 4:2

models. These occur near the homoclinic tangency to a relevant
unstable periodic orbit along the primary periodic family in
these models. In Sec. VI, we consider a physically different Q-
switched monomode laser, namely, a molecular model for the
CO2 laser with modulated losses, where we show the existence
of isolas of periodic MMOs as the pump parameter changes. In
Sec. VII, we state our final conclusions. For completeness, we
give the equations of the 3:2 and 4:2 model in the Appendix.

II. THE DUAL FOUR-LEVEL MODEL

In contrast to standard laser models, where a single mode
interacts with a resonant atomic transition, in the CO2 LSA the
population transfers are more complicated since the amplifier
and absorber cells each need to be modeled by a four-level
system [21]. This model is known as the dual four-level model
(4:4 model) [23,27]. In the early 1990s, a four-level model
(4LM) was used to describe the amplifier in a CO2 laser with
modulated losses [43,44], for the CO2 laser transient behav-
ior [45,46], and for the CO2 laser with electronic feedback [47–
49]. Good quantitative agreement between models and experi-
ments was found as parameters were varied. The saturable ab-
sorber of our system was described by a 4LM in 1971 [20,50].
Using this model, the transmission of CO2 LSA self-pulsations
through SF6 gas mixtures was studied numerically in Ref. [50],
which compared well with experiments. The factor determin-
ing the rate of absorption was shown to be the rotational
energy transfer process between the resonant and nonresonant
rotational levels from the same vibrational band [50].

A. The zero cavity-frequency detuning: Exact resonance

The 4:4 model is based on the usual field-matter equations
in a resonant cavity [18]. Taking into account the dynamics of
the active rotational states and the two reservoir states at exact
resonance between the cavity and the molecular frequencies
of the media, the coupled field-matter rate equations for a
single-mode CO2 LSA are described by the following set of
equations [21,22]:

dI

dt
= −KI + Bglg

L
I (N2 − N1) − Bala

L
I (N̄2 − N̄1),

dN2

dt
= −BgI (N2 − N1) − γ2N2 − γRN2 + γ ′

RM2 + γ2Q,

dN1

dt
= BgI (N2 − N1) − γ1N1 − γRN1 + γ ′

RM1,

dM2

dt
= −γ2M2 + γRN2 − γ ′

RM2 + γ2zQ,

dM1

dt
= −γ1M1 + γRN1 − γ ′

RM1, (1)

dN̄2

dt
= −BaI (N̄2 − N̄1) − γ̄2N̄2 − γ̄RN̄2 + γ̄ ′

RM̄2,

dN̄1

dt
= BaI (N̄2 − N̄1) − γ̄1N̄1 − γ̄RN̄1 + γ̄ ′

RM̄1 + γ̄1Q̄,

dM̄2

dt
= −γ̄2M̄2 + γ̄RN̄2 − γ̄ ′

RM̄2,

dM̄1

dt
= −γ̄1M̄1 + γ̄RN̄1 − γ̄ ′

RM̄1 + γ̄1z̄Q̄.
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Here, I is the field intensity within the laser cavity, and
N2 (M2) and N1 (M1) denote the populations of the upper
and lower active (reservoir) rotational energy levels in the
gain medium, respectively. Bg and Ba are the cross sections
multiplied by the velocity of light for the induced emission
in the gain medium and in the absorber. Q is the incoherent
pump induced by the excitation current in the gain medium.
The parameters lg and L are the lengths of the gain medium
and laser cavity, la denotes the length of the absorption cell,
K is the cavity loss rate, and z is the effective number of
reservoir rotational levels in each vibrational band. Also, γ ′

R

is the rotational relaxation rate for the transitions between
M2 → N2 and M1 → N1, and γR is the rotational relaxation
rate for the inverse transitions, γR/γ ′

R = z. The vibrational
relaxation rates for N1 and N2 are denoted by γ1 and γ2. These
relaxation rates hold also for M1 and M2. The same physical
processes that take place in the active medium occur also in the
absorber. In our notation, constants and variables with a bar
are for the absorber and have the same meaning as those for
the amplifier. The main difference with the amplifier is that in
the absorber, the rotational energy levels of the upper energy
vibrational band are not pumped, and there is never population
inversion.

After normalization of the variables and parameters in
Eq. (1), we obtain the following set of equations from the
4:4 model, which we call the complete model (CM) at exact
resonance:

dI

dt
= −I + I (N2 − N1) + αI (N̄2 − N̄1),

dN2

dt
= −I (N2 − N1) − γ2N2 − γRN2 + γ ′

RM2 + γ2Q,

dN1

dt
= I (N2 − N1) − γ1N1 − γRN1 + γ ′

RM1,

dM2

dt
= −γ2M2 + γRN2 − γ ′

RM2 + γ2zQ,

dM1

dt
= −γ1M1 + γRN1 − γ ′

RM1, (2)

dN̄2

dt
= −βI (N̄2 − N̄1) − γ̄2N̄2 − γ̄RN̄2 + γ̄ ′

RM̄2,

dN̄1

dt
= βI (N̄2 − N̄1) − γ̄1N̄1 − γ̄RN̄1 + γ̄ ′

RM̄1 + γ̄1,

dM̄2

dt
= −γ̄2M̄2 + γ̄RN̄2 − γ̄ ′

RM̄2,

dM̄1

dt
= −γ̄1M̄1 + γ̄RN̄1 − γ̄ ′

RM̄1 + γ̄1z̄.

Here, I denotes the intensity, which has been normalized
by I → IBg/K . The populations and the pump variable
Q in the gain medium have been rescaled identically, e.g.,
Q → QBglg/KL. Relaxation parameters in the amplifier
and absorber have also been normalized, e.g., γ1 → γ1/K .
Time has been rescaled as t → Kt . The populations N̄1,2,
M̄1,2 in the absorber medium have been normalized as
N̄1 → N̄1Bglg/Q̄KL, etc. After these renormalizations, the

parameters α and β become

α = BalaQ̄

Bglg
, β = Ba

Bg

.

To the parameters of the 4:4 model, we assigned the values
used in previous studies of CO2 lasers. The data for the CO2

molecules are taken from [43], whereas those for the saturable
absorber SF6 are found in Ref. [22].

In this model, the control parameters are taken to be Q

and η (the cavity-frequency detuning), while α and β remain
constant (α = 0.75 and β = 200γ ), unless otherwise stated.
The numerical values of the parameters α and β have been
taken from [11]. Interestingly, we find that the parameter values
for which the instabilities arise in the 4:4 model have the same
order of magnitude of those of the 4:2 model [51], which in
the limit of a fast saturable absorber was studied in Ref. [11].

Following a reduction procedure [52,53], we obtain a
reduced model (RM) from the CM in Eq. (2). This procedure,
known as the reduction principle, is quite generally applica-
ble [54]. The RM is obtained from the CM in Eq. (2) by
first making a linear transformation to new coordinates. The
old coordinates are the energy level populations in both the
amplifier and the absorber. In the amplifier equations, the
relaxation rates of two of the new variables are very large
compared to those of the other two. As a result, we neglect their
time derivatives. A similar situation occurs in the saturable
absorber equations, except that another new variable decouples
from the remaining equations because γ̄1 = γ̄2 = γ . The linear
transformation is related to the eigenvectors of the trivial
solution in Eq. (2), where I = 0. Using this transformation,
the following equations are obtained:

dI

dt
= I

[
−1 + (z + 1)�

z
(w − v) + α(z̄ + 1)�̄

z̄
�

]
,

dv

dt
= �I (w − v) − γ1v,

(3)
dw

dt
= �I (v − w) − γ2w + zγ2Q,

d�

dt
= −2β�̄I� − γ� − z̄γ ,

where

� = z + 1

(z + 1)2 + 2zI/γR
′ , �̄ = z̄ + 1

(z̄ + 1)2 + 2z̄βI/γ̄ ′
R

,

and

v = zN1 + zM1

z + 1
,

w = zN2 + zM2

z + 1
,

� = z̄(N̄2 + M̄2 − N̄1 − M̄1)

z̄ + 1
.

These equations are similar to those obtained by Asquini
and Casagrande [55], who applied the adiabatic elimination of
the resonant energy levels in both the absorber and amplifier.
The precision of our reduction procedure was recognized
within the context of similar laser models [43–49], and will be
demonstrated in Sec. III.
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B. The cavity-frequency detuning effect

The cavity-frequency detuning from the resonant frequen-
cies of both the amplifier and absorber has an important
effect on the behavior of the laser [22,26]. Despite a number
of experiments where the cavity-frequency detuning has
been monitored, we are unaware of a functional dependence
between this parameter and the 4:4 model or any other CO2

molecular laser model. However, in the context of the 3:2
model, a dependence ansatz is given in Ref. [30]. Although it is
not explicitly deduced from the standard laser model equations,
it gives a good description of the experiment [30].

To understand how the equations of the 4:4 model general-
ize from the exact resonance case in order to take into account
cavity-frequency detunings, we write down the laser equations
for the amplitudes of the electric field and the polarizations
induced by the amplifier and absorber within the optical cavity,
as carried out for a class-B laser [56]. Equation (1) generalizes
as follows:

dE

dt
= −K

2
E + i(ω − ωc)E − GP − ḠP̄ ,

dP

dt
= −γ⊥P + i(ω − ωa)P − GE(N2 − N1), (4)

dP̄

dt
= −γ̄⊥P̄ + i(ω − ω̄a)P̄ − ḠE(N̄2 − N̄1).

The equations for E, P , and P̄ in Eq. (4) are coupled to those
for the populations of the resonant and nonresonant rotational
energy levels in the amplifier and absorber in Eq. (1). Here,
E is the complex field amplitude within the laser cavity, and
P and P̄ are the polarizations of the resonant rotational levels
in the amplifier and absorber. As for the parameters, G is the
field-matter coupling constant in the amplifier, and Ḡ is that
of the absorber. Both G and Ḡ are real numbers. We let ω

denote the frequency of the reference frame. ωc is the cavity
frequency, ωa is the resonant atomic transition frequency in
the amplifier, and ω̄a is that in the absorber.

The electric field E and the polarizations P and P̄ are
rewritten in polar coordinates as

E = ρ exp(iθ ), P = μ exp(iψ), P̄ = μ̄ exp(iψ̄).

In Eq. (4), the adiabatic elimination of the equations for
μ and μ̄ is based on the fact that γ⊥ and γ̄⊥ are the fastest
relaxation rates. In addition, if we consider that

2G2

γ⊥
= Bglg

KL
,

2Ḡ2

γ̄⊥
= Bala

KL
,

we obtain the following equations from Eq. (4):

dδ

dt
= η − γ⊥ tan(δ) − 1

4
(N2 − N1) sin(2δ),

(5)
dδ̄

dt
= η̄ − γ̄⊥ tan(δ̄) − 1

4
(N̄2 − N̄1) sin(2δ̄),

where η = ωc − ωa , η̄ = ωc − ω̄a , δ = θ − ψ , and δ̄ = θ −
ψ̄ . In Eq. (5), time, relaxation rates, and frequency detunings
have been renormalized: t → Kt , γ⊥ → γ⊥

K
, γ̄⊥ → γ̄⊥

K
, η →

η

K
, and η̄ → η̄

K
.

After applying the following four steps to Eq. (4), suitably
coupled with the populations, we obtain a reduced model

(RM). First, assume that γ̄1 = γ̄2 = γ , as in Eq. (3). Second,
eliminate adiabatically not only the variables μ and μ̄ from
Eq. (4), but also the variables δ and δ̄ in Eq. (5), since their
relaxation rates are the fastest, γ⊥

K
� 1, γ̄⊥

K
� 1. Third, apply

variable normalization to this new equation, as in Eq. (2).
This step determines the complete model (CM) with frequency
detuning. This CM is formally obtained by implementing the
following substitution in Eq. (2):

I (N2 − N1) → I (N2 − N1) cos2(δ),

I (N̄2 − N̄1) → I (N̄2 − N̄1) cos2(δ̄).

Finally, apply the reduction procedure to this CM, as
in Eq. (3). As a result, we obtain a reduced model (RM)
with cavity-frequency detuning which is formally identical
to Eq. (3), but where the new parameters are the following:

tan(δ) = η

γ⊥
,

tan(δ̄) = η̄

γ̄⊥
,

� = (z + 1) cos2(δ)

(z + 1)2 + 2zI cos2(δ)/γR
′ ,

�̄ = (z̄ + 1) cos2(δ̄)

(z̄ + 1)2 + 2z̄βI cos2(δ̄)/γ̄ ′
R

.

We are not aware that this RM and its CM version have
been studied previously in the literature. Both of these models
show the functional dependence between the cavity-frequency
detuning within the context of the 4:4 model or any other
CO2 molecular laser model. The cavity-frequency detuning
has been varied in several CO2 LSA experiments [26,30,57].

III. THE DUAL FOUR-LEVEL MODEL AND ITS REDUCED
VERSION: A COMPARISON

In this section, we compare the bifurcation structure of the
CM and the RM in the case of exact resonance, η = η̄ = 0, as
the incoherent pump Q changes. These models are described
in Sec. II A. In both models, much of the interesting dynamics
takes place in the neighborhood of a Hopf bifurcation, as
the incoherent pump in the amplifier changes. In the CM
and the RM, the trivial solution, for which I = 0, loses
stability at a transcritical bifurcation, where it intersects with
a nonzero stationary family, as typically occurs in LSA model
s [11–13,15,18]. The value of Q at this bifurcation point, when
η = η̄ = 0, is given by

Qtc = 1 + α,

in both models. Past Qtc, one leg of the bifurcating family of
nontrivial stationary solutions consists of unstable solutions
until a Hopf bifurcation is reached, beyond which these
equilibria are stable, as seen in Figs. 1(a) and 1(b) for the
CM and the RM.

The numerical computations, carried out with AUTO [32],
depend sensitively on how small I gets. For this reason, it is
better to use a new variable c, where I = ec. The trivial solution
I = 0 then corresponds to c = −∞. For the nontrivial station-
ary solutions, our bifurcation diagrams show the absolute value
of c versus Q, while for periodic solutions of period T , the
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FIG. 1. (Color online) Bifurcation diagrams with stationary solution family (black) containing a Hopf bifurcation (solid red square), the
bifurcating one-pulse family (red) containing two period doublings (PDs) denoted by open diamonds, and the bifurcating two-pulse family
(brown) which contains two secondary PDs. Here, α = 0.75, β = 200γ . Solid (dashed) curves denote stable (unstable) solutions. Isolas are
omitted, but appear in Figs. 2 and 3. (a) Diagram for the CM. (b) Diagram for the RM, with the the one-pulse (two-pulse) families labeled 1 (2).

solution measure is defined as ||c|| ≡ {∫ T

0 [c(t)2]dt}1/2/
√

T .
This choice of the solution measure is mostly dictated by the
clarity of the bifurcation diagrams it produces. Note that due
to the above transformation, the trivial solution cannot be seen
in the bifurcation diagrams, as it corresponds to ||c|| = ∞.
In Secs. V and VI, we also use another solution measure,
the L2 norm, defined as {∫ T

0 [�N
j=1Xj (t)2]dt}1/2/

√
T , where

Xj (t), j = 1,2, . . . ,N , are the variables of the model, with
X1(t) ≡ c(t).

The bifurcating nontrivial stationary solution family is
stable to the right of the Hopf bifurcation point that it contains,
as seen in Figs. 1 and 2. The remaining part of this family to
the left of the Hopf point contains a fold and is unstable. Due
to the choice of ||c|| as the representative solution measure,
the unstable part of the stationary family tends to infinity in

the diagrams as it approaches Q = 1.75, where it bifurcates
from the trivial stationary family I = 0.

The bifurcation diagrams for the CM and the RM displayed
in Figs. 1– 3 also show the primary family of periodic solutions
that emanates from the Hopf bifurcation. This family contains
a fold as well as two period-doubling bifurcations (PDs), of
which one is near the fold. The primary periodic solutions
are stable beyond the second PD bifurcation. Note that the
stable portion of the primary periodic family also tends to
infinity in Fig. 1. The reason for this is that the periodic orbits
along it approach a terminating orbit that is homoclinic to the
trivial stationary solution I = 0. As a result of our choice of
the solution measure ||c|| for periodic solutions, this primary
family then also approaches ||c|| = ∞ in the diagram. In the
4:2 model for the CO2 LSA, the homoclinic bifurcation curve

FIG. 2. (Color online) A closeup of Fig. 1, also showing the isolas. (a) Diagram for the CM. (b) Diagram for the RM. The stable regions
(solid curves), from left to right, belong to the one-pulse family (red), the bifurcating two-pulse family (brown), and the the isolas I3–I13 (blue).
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FIG. 3. (Color online) A further blowup of the bifurcation diagram in Fig. 2. The stable regions (solid curves), from left to right, belong to
the one-pulse family (red), the bifurcating two-pulse family (brown), and the the isolas I3–I13 (blue). (a) Diagram for the CM. (b) Diagram for
the RM, with the one-pulse (two-pulse) families labeled 1 (2).

emanates from a Bogdanov-Takens bifurcation, approaches the
transcritical curve, and follows it exponentially closely [11],
as also observed in Ref. [41] in a model for a semiconductor
LSA without chaos.

Figures 1–3 also show that the two PD bifurcations along
the primary family are connected by a single secondary
periodic family, which contains a stability region bordered
by further PD bifurcations. These secondary PDs can lead to
more complicated stable dynamics that is typically confined
to very small regions in parameter space. In these figures, �(2)

corresponds to the secondary periodic family which emanates
from the primary periodic family �(1).

Figure 2 shows that there are additional periodic solution
families in the CM and the RM models that cannot be reached

directly from the primary or secondary periodic families, at
least not by only varying the parameter Q. Specifically, Fig. 2
shows a number of isolated families (isolas) of periodic PQS
self-pulsations. We refer to these isolas as In, n = 3,4,5, . . ..
The PQS self-pulsation �(n) (MMOs) then belongs to the
isola In. In our figures, we only show In for n = 3,4, . . . ,13,
although we have computed many more such isolas; in fact,
there may be infinitely many. Figure 2 shows that several
isolas In contain a region of stable PQS self-pulsations that is
bordered by PDs. For the CM, the isolas I3 through I12 contain
such a region, while for the RM, the isolas I3 through I9

contain a stable region. Of course these numbers also depend
on other model parameters. In Ref. [13], we have shown that
a small shift of a suitable parameter in the RM reproduces the

FIG. 4. (Color online) (a) Bifurcation diagram for the RM for Q = 2.5, α = 0.75, β = 200γ , with a stationary family (black) containing
two Hopf bifurcations (solid red squares), their bifurcating one-pulse families, period-doubled families, and isolas. (b) A closeup of the left part
of (a). The stable regions, bordered by PDs (open diamonds), from left to right, belong to the one-pulse family (red), the bifurcating two-pulse
family (brown), and the the isolas I3–I13 (blue).
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FIG. 5. (Color online) (a) As in Fig. 4(a), but for Q = 2.4, where the various families of periodic orbits have merged. (b) A closeup of the
left part of (a).

sequence of stability intervals of the CM qualitatively well as
Q changes.

The enlarged view of the stability regions in Fig. 3 shows
more clearly that stable periodic solutions �(n) coexist. For
example, note the coexistence of stability regions along the
primary periodic family (with label 1) and the period-doubled
secondary family (labeled 2), as well as the coexistence of
stable periodic orbits along the secondary periodic family and
the isola I3.

We note the close qualitative similarity of the bifurcation
diagrams of the CM and the RM, whose solution families play
an important role in explaining observed physical phenomena
such as period-adding cascades and chaotic behavior. We
carried out an extensive comparison of the CM and the RM
taking into account the cavity-frequency detuning effect, and
here also we found that the bifurcation diagrams are very
similar. For this reason, we will only discuss the bifurcation
diagram for the RM in the following sections.

Our bifurcation diagram in Figs. 1–3 shows that period-
adding cascades of PQS self-pulsations (MMOs), �(n) →
�(n+1), or vice versa, occur within the framework of the
4:4 model. This disproves the common belief that the 4:4
model is unable to predict the �(n) cascades observed in
experiments [27,31].

IV. DEPENDENCE OF BIFURCATIONS ON LASER
CONTROL PARAMETERS

In this section, we consider bifurcations in the CO2 LSA
system as the cavity-frequency detuning η changes. The results
are for the RM of Sec. II B, for which the transition frequencies
of both the amplifier and absorber are approximately the same.
The laser frequency is assumed to be that of the optical cavity,
whose length is subject to change. In the CO2 LSA, where the
absorber is a cell containing an SF6 gas mixture, this situation
holds for suitable energy levels [27,30]. As a result, we have
η = η̄ in what follows.

The fixed parameter values are α = 0.75 and β = 200γ ,
while Q = 2.5 in Figs. 4(a) and 4(b), and Q = 2.4 in Figs. 5(a)

and 5(b). Note the symmetry of the bifurcation diagrams with
respect to η = 0, as seen in Figs. 4(a) and 5(a). As before, due
to the choice of ||c|| as the representative solution measure, the
trivial solution family I = 0 is at η = ±ηtc, where ||c|| = ∞,
and hence not visible in Figs. 4(a) and 5(a). However, as in
Fig. 1 where Q is the free parameter, the bifurcating nontrivial
stationary family (with I > 0) does appear in Figs. 4(a)
and 5(a), where it tends to infinity as it approaches the point ηtc

where it bifurcates from the trivial stationary family I = 0 as a
result of a transcritical bifurcation. Here, ηtc = ±71.30 when
Q = 2.5, and ηtc = ±66.19 when Q = 2.4. The nontrivial
stationary solution family is stable between two symmetrically
located Hopf bifurcations at ηHB ≈ ±53.99 when Q = 2.5
[Fig. 4(a)], and at ηHB ≈ ±46.81 when Q = 2.4 [Fig. 5(a)].

FIG. 6. (Color online) Closeup of Fig. 5(a), with stationary fam-
ily (black) having two Hopf bifurcations (solid red squares), and a
one-pulse family (dashed red) that connects the Hopf points. Also
shown is the second, split one-pulse family, namely, the upper
curve (also dashed red) at η = 0. The two-pulse family (brown)
is the third curve from the top. The remaining curves are isolas
(blue).
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FIG. 7. (Color online) (a),(b) Loci of homoclinic orbits (curve 1; black), primary PDs (4; also black), secondary PDs (2, 5; dashed red),
and PDs along the isolas (3, 6, 7, 8, 9, . . .; blue), for α = 0.75 and β = 200γ . The one-pulse solution family �(1) is stable between curves 1
and 4, the period-doubled two-pulse family �(2) is stable between 2 and 5, while the self-pulsations �(n), n = 3,4, . . ., are stable in overlapping
regions, e.g., �(3) between curves 3 and 7, and �(4) between curves 6 and 8. (b) A closeup of (a).

The bifurcation diagram for Q = 2.5 in Fig. 4(a) also
shows the families of periodic solutions that emanate from the
two symmetrically located Hopf bifurcation points. Similar to
the results in the preceding section, these families contain a
fold and two PDs, of which one is near the fold. The periodic
solutions are stable beyond the second PD at ηPD ≈ ±56.81,
as best seen in Fig. 4(b). As in the preceding section, these
two PDs are connected by a single period-doubled family
that, in turn, contains a stability region bordered by secondary
PDs at η ≈ ±57.91 and η ≈ ±56.27; see Fig. 4(b). As also
seen in Fig. 4(b), there are again isolas In, of which the isolas
I3–I8 contain regions of stable MMOs, referred to as �(n),
bordered by two PDs. Also note the coexistence of stable �(n)

for different n.
Figure 4(a) shows that there are no periodic orbits for

|η| < 22.69. This is consistent with the fact that periodic orbits

�(n) do not exist for Q = 2.5 at exact resonance (η = 0), as
seen in Fig. 2(b). However, Fig. 2(b) also shows that periodic
orbits �(n) do exist when Q = 2.4. Correspondingly, the
bifurcation diagram in Fig 5(a), with Q fixed at Q = 2.4 and
with η as bifurcation parameter, does have periodic orbits when
η = 0. The transition from Fig. 4(a) (with Q = 2.5) to
Fig. 5(a) (with Q = 2.4) can be explained by the merg-
ing of symmetry-related families, as their symmetry-related
folds coalesce and annihilate each other. The enlarged
view in Fig. 6 shows the periodic families when Q =
2.4, shortly after their merger. The values of η were
changed in a recent experiment [30], where period-adding
cascades and chaos were observed. However, it is difficult
to say from these experimental results whether the latter
was the case before or after the merging of the periodic
families.

FIG. 8. (Color online) Loci of PDs for varying Q and β. (a) Loci of PDs along the isolas. The seven loci shown correspond, from bottom
to top, to I3, I4, . . . ,I9. (b) The larger (red) locus represents PDs along the one-pulse family, and the smaller (brown) locus represents PDs
along the two-pulse family. Fixed parameters are α = 0.75, η = 0, γ = 0.0065.
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FIG. 9. (Color online) Loci of PDs for varying Q and α. (a) Loci of PDs along the isolas. The seven loci shown correspond, from bottom
to top, to I3, I4, . . . ,I9. (b) The larger (red) locus represents PDs along the one-pulse family, and the smaller (brown) locus represents PDs
along the two-pulse family. Fixed parameters are β = 200γ , η = 0.

Now consider the dependence of the Q intervals of stability
on η, α, and β. Here, α accounts for the pressure or the
equilibrium population difference in the absorber at η = 0,
while β represents the saturability. These parameters have
also been varied in experiments [26,31,57,58]. Figure 7 shows
the locus of homoclinic orbits that terminates the primary
periodic family of self-pulsations �(1), and loci of PDs along
the primary, secondary, and isola families, as dependent on Q

and η. The locus of homoclinic orbits is the left-hand border of
the stability region for the �(1) self-pulsations. The loci of PDs
are those that delimit stability regions. Note the parabolic shape
of these curves. A similar dependence has also been observed
in the experiments reported in Ref. [57], where the authors
describe the stability regions of the periodic self-pulsations
�(n) as Q and η are changed.

The panels in Fig. 8 show the loci of PDs for varying
parameters Q and β, where the latter is in units of γ . In
particular, Fig. 8(a) shows that the Q intervals of stability of
the isolas In, bordered by PDs, shrink and disappear as β

decreases. Note that for decreasing β, the isolas of higher n

are the first to disappear, and that the effect of increasing β is
to shift the Q interval of stability of In to the left. The latter is
implicit in the synchronization of two unidirectionally coupled
CO2 LSA [58], where the output beam of the master LSA is
injected into the saturable absorber of the slave LSA, inducing
an effective increase in the parameter β in the latter. It implies
that the Q interval of stability for a given attractor, say �(n),
shifts to the left in the slave LSA, precisely as observed in the
experiment.

The Q intervals of stability of the primary periodic family
�(1) and those of the secondary period-doubled family �(2)

are shown in Fig. 8(b). The dependence of these stability
regions on β and Q is qualitatively similar to that observed
in experiments [31], where the authors report the stabil-
ity regions of the primary periodic family, the secondary
period-doubled family, and the periodic self-pulsations, �(n),
which correspond to intervals bordered by PDs in Figs. 8(a)
and 8(b).

Figure 9 shows the dependence of the PDs that define the
Q intervals of stability on the parameter α. In particular,
we see that as α decreases, the stability intervals on the
isolas In become smaller and disappear one after another. The
isolas themselves have the same fate: they shrink in size and
disappear sequentially as α decreases. We also observe that
for fixed α, the stability regions along the isolas contract as
n increases. The dependence of these stability regions on α is
observed in Fig. 9(b) for the secondary period-doubled family.
As for the primary periodic family, the Q interval of stability
lies between Q = 1 + α = 1.75 and the red curve in Fig. 9(b).
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FIG. 10. (a) Plot of the Poincaré section, showing c = ln(I ) vs
increasing pump parameter Q for the 4:4 model (RM). This figure
corresponds to the bifurcation diagram shown in Fig. 3(b). Here,
α = 0.75, β = 200γ , η = 0. (b) The Poincaré section, showing c vs
decreasing cavity-frequency detuning η for the 4:4 model (RM). This
figure corresponds to the bifurcation diagram shown in Fig. 4(b).
Here α = 0.75, β = 200γ , Q = 2.5. In both figures, we observe
period-adding cascades and windows of chaotic behavior.
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FIG. 11. (Color online) The 3:2 model. (a) Detail of the bifurcation diagram. The bottom (black) curve is a stationary family, the rightmost
(red) curve is the �(1) family, and the isolas In, n = 3,4, . . . ,50, (blue) are the curves having folds near A = 2.88. Not indicated are PDs close
to these folds. (b) The isola I8, with stability regions between PDs and folds. (c) A detail of the isola I8. (d) Loci of PDs (dashed red curves)
and folds (solid blue curves) for I3–I8. The minimum of the fold curve for In is smaller than that for In+1, and similarly for the PD curves.
Fixed parameters are ε = 0.137, ε̄ = 8.0, a = 4.17, b = 0.85; while Ā = 3.50 in panels (a)–(c).

The stability intervals of the isolas In of higher index n

appear for larger Q, as seen in Fig. 2. In contrast, the stability
intervals for higher index n arise for smaller absolute values
of η, as seen in Figs. 4 and 5. This observation indicates that
the dependence of the stability intervals shown in Fig. 9 is
consistent with those of the experiments reported in Ref. [26],
where α (absorber pressure) and η (cavity-frequency detuning)
are changed.

Finally, to illustrate that chaos is present in the 4:4 model,
we show in Fig. 10 the phase diagram as the control parameters
are changed. The Poincaré section is taken at the maxima
of I (t). The windows of stability for the periodic orbits are
consistent with those of Fig. 3 (η = 0) and Fig. 5 (Q = 2.4),
as Q and η change. Our diagrams show that chaos is present
in the 4:4 model, in contrast to previous studies [27,31] which
suggested the absence of chaotic behavior in this model. In the
next section, we show that the instabilities seen in Fig. 10 are

induced by the presence of unstable periodic orbits in a neigh-
borhood of a homoclinic tangency to an unstable periodic orbit.

V. BIFURCATION SEQUENCES NEAR A HOMOCLINIC
ORBIT: A COMPARISON OF CO2 LSA MODELS

A seminal article dealing with the study of instabilities near
a homoclinic tangency to a periodic orbit is the mathematical
work of Gavrilov and Shilnikov [59,60]. They proved that
if a given two-dimensional map has a quadratic homoclinic
tangency to a saddle periodic orbit at a parameter ρ, then there
exists a sequence of parameter values ρ(sn)

n → ρ such that at
each value of ρ(sn)

n , there is a saddle-node (SN) bifurcation
creating orbits of period n. From Eq. (4.4) in Ref. [60], the
following is obtained [61]:

lim
n→∞

(
ρ(sn)

n − ρ
) = K1

(λu)n
.
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Here, λu denotes the unstable eigenvalue of the map and
K1 is a constant. In Ref. [60], a limit for ρ

(pd)
n is shown to

exist, where ρ
(pd)
n is the PD where the stable periodic orbit

born at ρ(sn)
n becomes a saddle. The resulting stability intervals

are consecutive and disjoint. From Eq. (4.5) in Ref. [60], the
following is obtained [61]:

lim
n→∞

(
ρ(pd)

n − ρ
) = K2

(λu)n
,

for some constant K2.
We assessed the validity of the conditions for these limits

to hold as we change the pump parameter: Q in the 4:4 and 4:2
models [11,13] and A in the 3:2 model [12]. For completeness,
we give the 3:2 and 4:2 models in the Appendix.

A. Homoclinic tangencies in the three LSA models

First we consider the 3:2 model [12]. The isolas In for
this model are shown in Fig. 11(a) and the isola I8 is
displayed separately in Fig. 11(b). The rightmost folds at
A

(f )
n tend to a limit A(f ) as n → ∞, where a homoclinic

tangency to a saddle periodic orbit P occurs. P belongs
to the primary family of periodic orbits that arises from
a Hopf bifurcation. The rightmost and leftmost folds in
Fig. 11(a) are SN bifurcations, as seen in Fig. 11(b) and
its blowup in Fig. 11(c). The stability intervals near these
folds are shown in a two-parameter diagram in Fig. 11(d).
Based on the theory of Gavrilov and Shilnikov [60–62] and
its multidimensional generalization [63], we find that the
dependence of |A(f )

n − A(f )| on the unstable eigenvalue λu,
i.e., the unstable Floquet multiplier of P near the rightmost
fold, holds to a good extent. As seen in Fig. 12(a), there is a
region of linear behavior for the dependence of ln |A(f )

n − A(f )|
on n, whose slope is to be compared to − ln(λu). The slope
for the approximate straight line in Fig. 12(a) is −0.443,
while − ln(λu) equals −0.438, where λu = 1.55 is the unstable
Floquet multiplier. λs1 = 0.16 and λs2 = 6.0 × 10−17 are the
stable Floquet multipliers of the homoclinic tangency orbit P.
This orbit is located near A(f ) ≈ 2.88 on the lower part of
the primary family in Fig. 11(a). Within the stability interval
along In near the rightmost fold A

(f )
n , as shown in Fig. 11(c)

for the isola I8, the �(n) are multiround, stable periodic orbits,
i.e., they make n � 3 rounds near the homoclinic tangency
orbit P before closing up. The latter property allows for
the coexistence of stable orbits �(n) [63]. Small windows of
typical chaotic behavior, as the incoherent pump changes, are
more easily observed near the leftmost folds in the 3:2 model
than in the 4:4 model, as suggested by Figs. 11(d) and 9(a):
within these chaotic windows, no stability intervals along In

exist.
The neighborhood of P, the unstable periodic orbit of ho-

moclinic tangency, expands nearby volumes in the 4:2 and 4:4
models, in contrast to the 3:2 model. In such case, consider the
backward flow [60], so unstable Floquet multipliers become
stable, and conversely. The rightmost folds Q

(f )
n of the isolas

In for the 4:2 model when α = 0.75 are shown in Figs. 13(a)
and 13(b), and for α = 0.35 in Figs. 13(c) and 13(d). For
α = 0.75, the isola I3 is shown in Figs. 14(a) and 14(b) for
the 4:2 and 4:4 models, respectively. In these figures, we see
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FIG. 12. (a) The 3:2 model: dependence of S(n) = |A(f )
n − A(f )|

on n, where A(f )
n is the pump parameter value for the rightmost

fold of isola In, and A(f ) is the pump parameter value for the
associated homoclinic tangency to the unstable periodic orbit P. Here,
ε = 0.137, ε̄ = 8.0, a = 4.17, b = 0.85, and Ā = 3.50. (b) The 4:2
model: dependence of S(n) = |Q(f )

n − Q(f )| on n, where Q(f )
n is the

pump parameter value for the rightmost fold of isola In and Q(f )

is the pump parameter value for the related homoclinic tangency to
the unstable periodic orbit P. Here, α = 0.35, β = 200. (c) The 4:2
model: similar to (b), but for α = 0.75, β = 200. (d) The 4:4 model:
similar to (b); dependence of S(n) = |Q(f )

n − Q(f )| on n for the RM
given in Eq. (3). Here, α = 0.75, β = 200γ .

that there are no stability intervals in a neighborhood of the
rightmost folds Q

(f )
3 . Numerical results indicate that this holds

for all right-hand folds at Q
(f )
n , whose index n is larger than a

given integer n. The latter is congruent with the expansion of
volumes near P in the 4:2 and 4:4 models. In these models, the
�(n) are multiround unstable periodic orbits, i.e., they make
n � 3 rounds near the homoclinic tangency orbit P before
closing up.

For the 4:2 model [11], an autonomous three-dimensional
(3D) flow, we see in Figs. 12(b) and 12(c) that there is a
region of approximate linear behavior for the dependence
of ln |Q(f )

n − Q(f )| on n. The unstable and stable Floquet
multipliers of the homoclinic tangency orbit P are λu = 6.12
and λs = 0.40 for α = 0.35, and λu = 183.28 and λs = 0.44
for α = 0.75. Considering the backward flow, the calculated
value of ln(λs) is equal to −0.89 for α = 0.35, while the slope
of the approximate straight line in Fig. 12(b) is also −0.89.
Similarly, the calculated value of ln(λs) is equal to −0.82 for
α = 0.75, while the slope of the approximate straight line in
Fig. 12(c) is −0.86.

Finally, consider the 4:4 model, an autonomous 4D flow.
In Fig. 12(d), there is a region of approximate linear behavior
of the dependence of ln |Q(f )

n − Q(f )| on n. The unstable and
stable Floquet multipliers of the homoclinic tangency orbit P
are λu = 439.95 and λs = 0.443 ± i0.057, where the stable
Floquet multipliers have a small imaginary part. As in the 4:2
model, we consider the backward flow. The calculated value of
ln(|λs |) is equal to −0.80, while the slope of the approximate
straight line in Fig. 12(d) is −0.96. For completeness, we show,
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FIG. 13. (Color online) The 4:2 model. (a) Bifurcation diagram showing a stationary family (bottom, black) with Hopf bifurcation (solid,
red square) from which the one-pulse family (red) bifurcates. The stable regions (solid curves) bordered by PDs (open diamonds), from left to
right, belong to the one-pulse family (red), the bifurcating two-pulse family (also red), and the isolas I3, I4, I5, . . . (blue). Here, α = 0.75 and
β = 200. (b) A detail of (a), showing the one-pulse family (rightmost curve, red), with bifurcating two-pulse family (also red), and the isolas.
(c) Similar to (a), but for α = 0.35, β = 200. The rightmost curve (red) is the one-pulse family, with torus bifurcation (solid, red diamond) and
PDs (open diamonds). The closed curves (blue) are the isolas In, n = 3,4, . . . ,38. (d) A closeup of (c).

in Table I, all Floquet multipliers, the value of the theoretical
slope according to the theory [60–62], and the estimated slope.
The estimated slopes, which fit the data to some extent in
Fig. 12, were taken to minimize the standard deviation in a
suitable set of points.

In these two molecular models, there are PDs very close to
the left and right folds of the isolas, at least for In with small n

and α = 0.75. This is in addition to the other two PDs which
border the aforementioned Q intervals of stability, as shown
in Figs. 13(a) and 13(b) for the 4:2 and 4:4 models. Thus,
such isolas In have four PDs. Near the left fold of these isolas,
there are very small stability regions bordered by the fold and
the near-fold PD. This is in contrast to the rightmost folds, as
discussed in the preceding paragraph.

The absence of the Q intervals of stability at the rightmost
folds, for the isolas In with large enough n, can perhaps
be explained as follows. The two cases considered in the

4:2 model (α = 0.35, α = 0.75) lead to the situation where
|λuλs | > 1 holds. This implies expansion of volumes near the
homoclinic orbit, ruling out the emergence of stable periodic
orbits in a neighborhood of the homoclinic tangency. However,
the Floquet multipliers of the homoclinic tangency orbit P for
the backward flow give a qualitatively good description of the
slope dependence of ln |Q(f )

n − Q(f )| on n, as expected from
the Gavrilov-Shilnikov (GS) theory, since volumes contract.
The latter is similar in the 4:4 model, except that now we
have a homoclinic tangency to a saddle-focus periodic orbit,
where |λuλs | > 1, |λu||λs |2 > 1. This implies again that in a
neighborhood of the homoclinic orbit, the emergence of stable
periodic orbits is inhibited.

Table I shows that the 3:2 model has a homoclinic tangency
to the saddle periodic orbit P at A(f ), where |λuλs1| < 1,
|λuλs2| < 1, |λu||λs1||λs2| < 1. As a result, stable periodic
orbits may exist in neighborhoods of the rightmost folds.
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FIG. 14. (Color online) (a) The isola I3 of the 4:2 model, for which the periodic self-pulsations are stable (the solid blue segment) between
two PDs (open diamonds). Here, α = 0.75, β = 200. (b) The isola I3 of the 4:4 model (RM), for α = 0.75, β = 200γ , η = 0.

In this multidimensional case [63], the Floquet multipliers
satisfy the conditions for an infinite sequence of SN and PD
bifurcations, and we verified the existence of these stability
intervals for many In, n � 50 [12]. The saddle periodic orbit
P is called sectionally or strongly dissipative since it has only
one expanding eigenvalue (Floquet multiplier) and the product
of any two eigenvalues has a norm of less than one. If this is not
the case for P, then the unfolding of the homoclinic tangency
can give infinitely many periodic orbits of smaller index such
as saddles or sources [64], as in the 4:2 and 4:4 models.
Finally, we point out that the genesis of isolas of periodic
orbits in three-dimensional vector fields has been considered
in Refs. [65,66]. Accordingly, a higher order codimension
bifurcation analysis is necessary to determine the onset of the
isolas.

VI. ISOLAS OF MIXED-MODE OSCILLATIONS IN THE
CO2 LASER WITH MODULATED LOSSES

In the 1980s, interest arose in the nonlinear dynamics
of lasers with modulated parameters [15,18]. One of the
first detailed experiments was done with a CO2 laser with
modulated losses (CO2 LML) [67]. More recent studies found
that the standard two-level model for this laser displays a
network of self-similar stability islands [68]. This is also the
laser we consider in this section, but within the framework of
the four-level model. The four-level model, used to study the
single-mode, homogeneously broadened CO2 LML, describes
transient and chaotic dynamics of this system [43–46,52]. Its

validity has been supported by several studies [69,70]. At
exact resonance between the laser cavity and the molecular
transition frequencies, the coupled field-matter equations for
the single-mode CO2 LML are

dI

dt
= −[1 + ε cos(νt)]I + (z + 1)�

z
(w − v),

dv

dt
= �I (w − v) − γ1v, (6)

dw

dt
= �I (v − w) − γ2w + zγ2Q.

The variables and parameter values for the amplifier in
Eq. (6) are those of the 4:4 and 4:2 models, where now K =
31.746 for the parameters in Table II. As in Eq. (3), time
has been normalized: t → Kt . An intracavity electro-optic
crystal induces a modulation in the cavity losses of the form
1 + ε cos(νt), as shown in Eq. (6) for the intensity I . Here,
ε and ν are the depth and frequency of modulation [43,44],
where ν = 0.019792, corresponding to 100 kHz.

We started from a known nonzero stationary equilibrium at
Q = 1.12, when the forcing amplitude ε is zero. This solution
was continued (as a periodic orbit) to a representative nonzero
value of the forcing amplitude, for which we used ε = 0.05
and ε = 0.06, respectively. The periodic response at the target
value of ε was then continued, keeping ε fixed and allowing
Q to vary, resulting in the lower blue curve in Fig. 15(a)
(ε = 0.05) and in Fig. 15(b) (ε = 0.06). In each of these two
cases, the basic periodic family is unstable between two PDs.

TABLE I. The Floquet multipliers, the value of the theoretical slope according to the theory, and the estimated slope.

Model Floquet multipliers Slope (theory) Slope (data)

3:2 A(f ) ≈ 2.88 1.55; 1.0; 0.161; 6.0 × 10−17 −0.43 −0.44
4:2 Q(f ) ≈ 1.97; α = 0.35 6.12; 1.0; 0.407 −0.89 −0.89
4:2 Q(f ) ≈ 2.60; α = 0.75 183.2; 1.0; 0.445 −0.82 −0.86
4:4 Q(f ) ≈ 2.40 439.95; 1.0; 0.443 ± 0.057i −0.80 −0.96
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TABLE II. Parameters and associated values for the 4:4,4:2 and
LML models, see text.

Parameter Value Parameter Value

γ1 0.08 μ/K γ̄1 γ

γ2 0.01 μ/K γ̄2 γ

γR zγ ′
R γ̄R 2.5 μ/K

γ ′
R 0.7 μ/K γ̄ ′

R 0.0007 μ/K

z 10 γ 0.02 μ/K

K 3.2 μ γ⊥ 190
μ 106 sec−1 γ̄⊥ 100

For example, when ε = 0.05, the two PDs are at Q = 1.107
and Q = 1.497, as denoted by open diamonds in Fig. 15(a).
The two PDs lead to a secondary family (red), which in
turn is unstable between two secondary PDs. For example, in
Fig. 15(a), these secondary PDs are located at Q = 1.162 and
Q = 1.271. As seen in Fig. 15(a) (ε = 0.05), the secondary
PDs lead to a tertiary family that consists entirely of stable PD
orbits. In contrast, in Fig. 15(b) (ε = 0.06), the tertiary family
contains further PDs.

Also seen in the two panels of Fig. 15 is an isola, represented
by a closed curve (blue). The periodic solutions along the isola
contain three maxima per period. In each of the two cases,
ε = 0.05 and ε = 0.06, a stable starting periodic solution
along the isola was found by time integration, and then
followed by numerical continuation as the pump parameter Q

is allowed to vary, thereby computing the entire isola including
its unstable portions. Figure 15(a) for ε = 0.05 shows that the
isola contains two PDs connected by a secondary family (red)
that consists entirely of stable orbits. Note that the stability
intervals of both isolas in Fig. 15 are bordered by a SN and a
PD. Similarly, for ε = 0.06, the isola is unstable between two
PDs connected by a secondary family (red). However, as seen
in Fig. 15(b), this secondary family now contains a region of
instability bordered by secondary PDs.

Figure 16(a) shows the locus of folds (blue) that delimit the
isola, with ε as secondary parameter, the locus of PDs along
the isola (red), and loci of secondary, tertiary, and quaternary
PDs (also red). As seen in Fig. 16(a), the red PD loci quickly
accumulate on a limiting curve. The interpretation of this figure
includes the following: The isola does not exist for ε < 0.42
(approximately). For increasing forcing amplitude ε, the set
of primary PDs appears at ε ≈ 0.049, the secondary PDs
appear at ε ≈ 0.053, the tertiary PDs at ε ≈ 0.054, etc. Stable
periodic behavior of increasing complexity exists between
consecutive red curves, while relatively simple stable behavior
along the isola itself exists between the locus of folds (blue)
and the first red locus (the primary PDs). Figure 16(b) shows a
representative periodic orbit along a quaternary family for the
isola with ε = 0.06; this orbit has 24 maxima.

VII. CONCLUSIONS AND DISCUSSION

We have studied several models for the single-mode CO2

laser with a saturable absorber (LSA), as well as a molecular
model for the CO2 laser with modulated losses (LML). We
find that the bursting behavior of single-mode Q-switched
CO2 lasers is largely characterized by periodic mixed-mode
oscillations organized along isolas, as either the incoherent
pump parameter or the cavity-frequency detuning is varied.
It would be interesting to determine if this solution structure
is also present in other types of class-B lasers of physical
relevance, such as Q-switched microchip lasers [71], where
a recent model incorporates features of the 4:4 model from
the CO2 LSA. The existence in the amplifier of at least two
effective energy levels (upper and lower) with slow dynamics
but with different decay rates appears to be a necessary
condition for the observation of isolas.

For the single-mode CO2 LSA, we have studied the
4:4 model with physically relevant control parameters, and
compared its salient features to those of two other single-mode
CO2 LSA models, namely, the 4:2 model and the 3:2 model.

FIG. 15. (Color online) Bifurcation diagrams for (a) ε = 0.05 and (b) ε = 0.06, with ν = 0.019792, K = 31.746. Solid (dashed) curves
denote stable (unstable) orbits. In both diagrams, the lower (blue) curve is the main family, which is unstable (dashed) between two PDs
connected by a secondary (red) family. The closed (blue) curve is an isola that also has two PDs connected by a secondary (red) family. For
ε = 0.06 in (b), there are further cascading PDs.
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FIG. 16. (Color online) (a) The locus of folds (dashed blue) that delimit the isola, with Q and ε as parameters. Also shown are the loci of
the first four cascading PDs (solid red), from bottom to top, for the isola. Note that there are only two PDs when ε = 0.05, and at least eight
when ε = 0.06. (b) The value of c = log(I ) vs scaled time for a stable quaternary solution for the isola for ε = 0.06.

The 4:4 model was proposed more than three decades ago [21],
and only now we find that its MMOs (periodic self-pulsations
�(n)) are organized along isolas In, as either the incoherent
pump parameter Q or the cavity-frequency detuning η change.
Stable MMOs along these isolas are delimited by PDs, with
the stability interval decreasing in size as n increases. This
organization of MMOs appears to be typical in these molecular
models [11,13], where the sequence of coexisting stability
intervals for different isolasIn induces the phenomenon known
as period-adding cascades. However, there is a difference
depending on how the control parameters η and Q are changed.
Specifically, due to the mirror symmetry of the bifurcation
diagrams with respect to η = 0, symmetry-related families of
periodic orbits may merge, provided that the symmetry-related
folds coalesce at a critical value of Q. We are not aware of
experiments in CO2 LSA that either confirm or contradict this
behavior.

Next we summarize relevant differences and similarities of
the CO2 LSA models. In the 3:2 model, it is assumed that
the amplifier in the LSA is a three-level system with ad hoc
parameters. Many studies show that it gives good agreement
with experimental observations [23,24,27]. In contrast, in
the 4:4 model, the amplifier is described by a refined
four-level system [11,13,51], whose relaxation parameters
have been physically estimated and later used in several
experiments, as discussed in our paper. This description of the
amplifier also explains experimental observations in the CO2

LML [43,45,46]. Similar conclusions hold for the four-level
model description of the absorber in the CO2 LSA [22]. We
have shown that the period-adding cascades induced by �(n)

and the associated windows of chaotic regime, as Q and η

change, can be described within the framework of the 4:4
model. This is in contrast with the common belief [27,31] that
the 4:4 model is unable to display these features observed
in experiments. The coarse-grained bifurcation picture is
qualitatively similar in the three models for the CO2 LSA.
However, they display distinct scenarios near a homoclinic

tangency to a periodic orbit P as the pump parameter is allowed
to vary.

In the 3:2 model, the rightmost folds of In accumulate at the
pump parameter A(f ) as n → ∞, where the neighborhood of
the saddle periodic orbit P at A(f ) contracts volumes. The
multidimensional GS theory [63] then holds, and stability
intervals coexist for different In. Considering that the �(n)

are multiround stable periodic orbits, infinitely many of them
may coexist [63]. The latter would be an example of the effect
known as the Newhouse phenomenon [64]. In the GS theory,
the stable orbits are single round, making one round near the
homoclinic tangency orbit before closing up, and the stability
intervals are disjoint [61], while in our models the �(n) are
multiround.

In the 4:2 and 4:4 models, the rightmost folds of In

accumulate at the pump parameter Q(f ) as n → ∞, where
a neighborhood of the homoclinic tangency orbit P at Q(f )

now expands volumes. The multidimensional GS theory [63]
does not hold, and there are no stability intervals near these
folds for In with large enough n. However, for the backward
flow, which contracts volumes near P, the unstable Floquet
multipliers become stable, and conversely, as Q

(f )
n → Q(f ),

the GS rates hold to some extent. We note that in these two
molecular models, the unstable orbits �(n) are also multiround
near the rightmost folds. In the four-level models, there is also
a PD close to the rightmost folds, at least for In with small n,
but no associated stability intervals were found. In the leftmost
folds, where a nearby PD and the SN border a small stability
interval, there is also a larger stability interval that is bordered
by two additional PDs.

We found that the CO2 LML also has MMOs organized
along isolas as the pump parameter Q varies. A similar
behavior is expected when the cavity-frequency detuning η is
varied for suitable values of Q. The amplitude ε of the periodic
modulation affects the stability intervals and the folds along
the isolas. These stability intervals are bordered by SN and PD
bifurcations.
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For a possible experiment, we observe that as the incoherent
pump changes, the relative position of the larger stability
intervals along the isolas In is qualitatively different in the 3:2
model and in the molecular models; see Figs. 9(a) and 11(d).
In particular, small windows of chaotic behavior are more
easily observed in the 3:2 model, as the incoherent pump
changes, compared to the molecular models. The number of
these windows depends strongly on a second parameter such
as the saturability [31] and the absorber pressure [12] in the 3:2
model and less in the molecular models. Moreover, merging
of isolas is observed in the 4:4 model as the cavity-frequency
detuning is changed from positive to negative for suitable
values of the incoherent pump parameter. We are not aware
of corresponding experiments. The fact that isolas are also
present in the CO2 LML makes this model a good candidate
for further study, for example, of the dependence of the isolas
on the driving frequency and the amplitude of the periodic
losses.
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APPENDIX: THE 3:2 AND 4:2 MODELS

The following set of equations defines the 3:2
model [12,27,30]:

dI

dt
= I (U − Ū − 1),

dU

dt
= ε[W − U (1 + I )],

dW

dt
= ε(A + bU − W ),

dŪ

dt
= ε̄[Ā − Ū (1 + aI )],

where I is the laser intensity, and U and W are proportional to
the active population difference and the effective population

source term in the amplifier, respectively. Ū is proportional
to the population difference in the absorber. The parameters
ε and ε̄ are normalized relaxation rates in the amplifier and
absorber. The constant a is proportional to the ratio of the
absorption coefficient to the amplification coefficient. Finally,
b is the squared ratio between two effective relaxation rates
in the amplifier. The parameter A is proportional to the
external incoherent pump rate in the gain medium, while
Ā is proportional to the equilibrium population difference
in the absorber. When A is the main control parameter, the
numerical values assigned to the parameters in the 3:2 model
are the following [27,30]: ε = 0.137, ε̄ = 8.00, a = 4.17,
b = 0.85, and Ā = 3.50. These values indicate that there is
a fast variable, I , and two slow variables, U and W .

The 4:2 model [11,13] is given by the following equations:

dI

dt
= I

[
−1 + (z + 1)�

z
(w − v) − α

1 + 2βI

]
,

dv

dt
= �I (w − v) + γ1v,

dw

dt
= �I (v − w) − γ2w + zγ2Q,

where

� = z + 1

(z + 1)2 + 2zI/γR
′ ,

v = zN1 + zM1

z + 1
,

w = zN2 + zM2

z + 1
.

The parameters and variables are the same as those of the 4:4
model, and Q is our main control parameter.
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