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Mixing properties in the advection of passive tracers via recurrences and extreme value theory
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Laboratoire SPHYNX, Service de Physique de l’Etat Condensé, DSM, CEA Saclay, CNRS URA 2464, 91191 Gif-sur-Yvette, France

Xavier Leoncini† and Sandro Vaienti‡
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In this paper we characterize the mixing properties in the advection of passive tracers by exploiting the
extreme value theory for dynamical systems. With respect to classical techniques directly related to the Poincaré
recurrences analysis, our method provides reliable estimations of the characteristic mixing times and distinguishes
between barriers and unstable fixed points. The method is based on a check of convergence for extreme value
laws on finite datasets. We define the mixing times in terms of the shortest time intervals such that extremes
converge to the asymptotic (known) parameters of the generalized extreme value distribution. Our technique is
suitable for applications in the analysis of other systems where mixing time scales need to be determined and
limited datasets are available.
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I. INTRODUCTION

A general purpose of dynamical systems theory is to
characterize the stability properties of orbits. The distinction
between regular and chaotic dynamics can be easily made in a
dissipative case, whereas for conservative systems it is usually
a hard task, especially when we are in the presence of many
degrees of freedom, or for a complex geometry of the phase
space. A large number of tools known as indicators of stability
have been developed for this purpose: Lyapunov characteristic
exponents (LCEs) [1–3] and the indicators related to the return
time statistics [4–7] have been used for a long time for such a
task. Nevertheless, in the recent past, the need for computing
stability properties with faster algorithms and for systems
with many degrees of freedom resulted in a renewed interest
in the technique, and different dynamical indicators have
been introduced. The smaller alignment index (SALI) [8,9],
the generalized alignment index (GALI) [10], and the mean
exponential growth factor of nearby orbits (MEGNO) [11,12]
are suitable to analyze the properties of a single orbit. They are
based on the divergence of nearby trajectories and require in
principle the knowledge of the exact dynamics. Another class
of indicators is based on the round off error properties and
has been discussed previously [13]: the divergence between
two trajectories starting from the same initial condition but
computed with different numeric precision can be used to
illustrate the dynamical structure. The so-called reversibility
error that measures the distance between a certain initial
condition and the end point of a trajectory iterated forward and
backward for the same number of time steps gives basically
the same information.

These indicators perform generally well when chaotic and
regular trajectories are separated. However, in some interesting
physical problems, a key question is to distinguish between
different mixing regions and possibly recognize the associated
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mixing time scales. This problem becomes extremely relevant
for describing the dynamics of a passive tracer in an array of
alternating vortices. This type of flows emerge from Rayleigh-
Bénard convection and can be studied as well experimentally
using electromagnetic forces [14–16]. One of the primary in-
terests in this type of flow is that it can be generated by different
instabilities, and as such it lies on one of the paths to turbulence.
When considering mixing or transport in fluids, one usually
rely more on a Lagrangian than a Euler point of view. As such
regarding transport, the dynamics of passive tracers advected
in a two-dimensional incompressible flow is Hamiltonian. In
this setting the canonical variables are directly the space ones,
allowing for a direct visualization of the phase space. Moreover
we have an accessible framework to test theoretical ideas and
have a direct grasp of their physical consequences.

In our study we consider the flows proposed in
Refs. [17,18]. These flows theoretically offer the peculiarity
of “targeted mixing”, meaning that mixing is efficiently
performed within cells formed by one-dimensional barriers.
This offers a suitable setting to test our approach and
quantify it versus the already proposed measurements. In
Refs. [17,18], the mixing properties of the barriers have
been analyzed for several flow configurations. For instance,
the finite time Lyapunov map was computed, showing some
kind of uniform mixing. When performing an analysis using
Poincaré recurrences and a finite time average recurrence
time, the barriers naturally emerged. However, no remarkable
differences between the barriers and the fixed points stood out.

In this paper we try to overcome this difficulty by suggesting
a new method for the characterization of mixing times based
on the extreme value theory (EVT) for dynamical systems. In
particular, we will show that by exploiting the EVT, one is
able to observe differences between unstable fixed points and
barriers as well as to extrapolate the characteristic time scales
such that the dynamics become mixing.

The EVT was originally introduced [19,20] to study the
maxima of a series of independent and identical distributed
variables: under a very general hypothesis a limiting distri-
bution called a generalized extreme value (GEV) distribution
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exists for the series of extremes. An extensive account of recent
results and relevant applications is given in Ref. [21].

In the recent past the EVT has been adapted to study the
output of dynamical systems. As we will explain in detail in
the next section, it is not trivial to observe asymptotic GEV
distributions in dynamical systems: some sort of independence
of maxima must be recovered by requiring certain mixing
conditions on the orbits. Furthermore, we need to introduce
some peculiar observables that satisfy the conditions proposed
by Gnedenko [20] on the parent distribution of data: they are
related to the closest return of a trajectory in a ball centered
around a reference point of the attractor and therefore allow a
very detailed description of the dynamics in the neighborhood
of the chosen point.

The parameters of the distribution are dependent on the
geometrical properties of the system, i.e., the local dimension
of the attractor [22,23]. When these properties are known, like
for the advection of the passive tracers, one can study the
convergence of finite datasets to the asymptotic parameters
recovered in the limit of infinitely long time series. For finite
datasets, the rate of convergence will be directly related to
the chosen point of the phase space and to the local mixing
structure of the trajectories passing nearby. The main idea is to
define a mixing time scale based on the minimum time interval
for the selection of maxima, which allows for recovering the
asymptotic parameters predicted by the theory. We will tackle
this problem in the remainder of the paper, which is organized
as follows: in Sec. II we recall the results of EVT for dynamical
systems, and in Sec. III we explain the numerical algorithm
and procedures used to compute the parameters of the GEV
distribution [24]. In Sec. IV we describe the model and the
numerical results. Section V is dedicated to discussion and
possible outlooks.

II. ASYMPTOTIC EXTREME VALUE THEORY
FOR DYNAMICAL SYSTEMS

Gnedenko [20] studied the convergence of maxima of i.i.d.
variables

X0,X1, . . . ,Xm−1

with cumulative distribution function (cdf) F (x) of the form

F (x) = P {am(Mm − bm) � x}, (1)

where am and bm are normalizing sequences and Mm =
max{X0,X1, . . . ,Xm−1}. Equation (1) can be rewritten as
F (um) = P {Mm � um} where um = x/am + bm. Under a
general hypothesis on the nature of the parent distribution
of data, the cdf of maxima F (x) converges to a single family
of generalized distribution called the GEV distribution with
cdf

FG(x; μ,σ,κ) = exp

{
−

[
1 + κ

(
x − μ

σ

)]−1/κ}
, (2)

which holds for 1 + κ(x − μ)/σ > 0, using μ ∈ R (location
parameter) and σ > 0 (scale parameter) as scaling constants
in place of bm and am [25]. In particular, we have shown [26]
that the following relations hold:

μ = bm σ = 1

am

.

Here κ ∈ R is the shape parameter, also called the tail index,
and we discriminate the type of classical extreme value laws:
when κ → 0, the distribution corresponds to a Gumbel type
(Type 1 distribution). When κ is positive, it corresponds to a
Fréchet (Type 2 distribution); when κ is negative, the extreme
value law corresponds to a Weibull (Type 3 distribution).

In the last decade many works focused on the possibility of
treating time series of observables of deterministic dynamical
system using EVT. The first rigorous mathematical approach
to EVT in dynamical systems goes back to the pioneering
paper [27]. Important contributions have successively been
given [22,28–30]. The goal of all these investigations was
to associate to the stationary stochastic process given by the
dynamical system a new stationary independent sequence:
when the latter sequence satisfies one of the classical three
extreme value laws, the same result also holds for the original
dynamical sequence. We summarize shortly the main findings
of the theory.

Let us consider a dynamical system (�,B,ν,f ), where �

is the invariant set in some manifold, usually Rd , B is the
Borel σ -algebra, f : � → � is a measurable map, and ν is a
probability f -invariant Borel measure. In order to adapt the
extreme value theory to dynamical systems, we introduce the
stationary stochastic process X0,X1, . . . given by

Xm(x) = g(dist(f m(x),ζ )) ∀m ∈ N, (3)

where “dist” is a distance on the ambient space �, ζ is a given
point, and g is an observable function. The probability measure
is here the relevant invariant measure ν for the dynamical
system often called the physical measure. Hereinafter we will
use three types of observables gi,i = 1,2,3 that are suitable
to obtain one of the three types of extreme value laws for
normalized maxima:

g1(x) = − log(dist(x,ζ )), (4)

g2(x) = dist(x,ζ )−1/β, (5)

g3(x) = C − dist(x,ζ )1/β, (6)

where C is a constant and β > 0 ∈ R (see, e.g., Refs. [22,27]).
By using these observables we get convergence to the

Type 1, 2, or 3 distribution if one can prove two sufficient
conditions called D2 and D′, which basically require a sort of
independence of the stochastic dynamical sequence in terms
of uniform mixing conditions on the distribution functions.
In particular condition D2, introduced in its actual form in
Ref. [28], could be checked directly by estimating the rate of
decay of correlations for a suitable class of observables. We
summarize these conditions as follows.

If Xm,m � 0 is our stochastic process, we can define Mj,l ≡
max{Xj,Xj+1, . . . ,Xj+l} and set M0,m = Mm. The condition
D2(um) holds for the sequence Xm if for any integer l,t,m

we have

|ν(X0 > um,Mt,l � um)

−ν(X0 > um)ν(Mt,l � um)| � γ (m,t),
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where γ (m,t) is nonincreasing in t for each m and
mγ (m,tm) → 0 as m → ∞ for some sequence tm = o(m),
tm → ∞.

Let (kn)n∈N be a sequence of integers such that

kn → ∞ and kntn = o(n). (7)

We say that D′(un) if there exists a sequence {kn}n∈N
satisfying (7) and such that

lim
n→∞ n

�n/kn	∑
j=1

P(X0 > un,Xj > un) = 0. (8)

Here �m/l	 indicates the integer part of m/l.
Instead of checking the previous conditions, we can use

other results that established a connection between the extreme
value laws and the statistics of first return and the Hitting time
statistics (HTS) [22,31]. Before introducing HTS, we need first
to define the recurrence time τA in a measurable set A ∈ �, as

τA(x) = inf
t�1

{x ∈ A : f t (x) ∈ A},

and the average recurrence time 〈τA〉 as

〈τA〉 =
∫

τA(x) dμA(x), μA(B) = μ(A ∩ B)

μ(A)
.

We notice that, whenever the measure μ is ergodic, Kac’s
theorem ensures that 〈τA〉 = μ(A)−1. Following Refs. [32,33],
we define the HTS as the following limit (whenever it exists):

H (t) = lim
μ(A)→0

μA(A>t ), A>t ≡
{
x ∈ A :

τA(x)

〈τA〉 > t

}
.

(9)
In particular, Refs. [22,31] showed that for dynamical

systems preserving an absolutely continuous invariant measure
or a singular continuous invariant measure ν, the existence
of an exponential HTS on balls around almost any point ζ ,
namely, H (t) = e−t , implies the existence of extreme value
laws for one of the observables of type gi,i = 1,2,3 described
above. The converse is also true: if we have an extreme
value law which applies to the observables of type gi,i =
1,2,3 achieving a maximum at ζ , then we have exponential
HTS to balls with center ζ . Recently, these results have
been generalized to local returns around balls centered at
periodic points [29] and for stochastically perturbed dynamical
systems [34–36].

The previous results have deep physical implications
because they allow us to reframe the hitting time statistics in
terms of EVLs whose functional form depends only on the type
of the observable gi chosen. This remarkable feature allows
for assessing the mixing properties of an orbit in an almost
automated way: it is sufficient to check that the functional
form of the EVL found for a specific orbit corresponds to the
one expected from the theory. Another interesting fact is that
the normalizing sequences an and bn are related to the local
properties of the measure, i.e., the local dimension, so that we
can use the EVT to study the geometrical properties of the
attractor.

III. THE METHOD FOR FINITE TIME DATASETS

In Refs. [23,26], the authors have analyzed both from an
analytical and a numerical point of view the extreme value
distribution in a wide class of low-dimensional maps showing
that, when the conditions D′ and D2 are verified, the block
maxima approach can be used to study extrema. This approach
consists of dividing the data series of length s of some
observable into n bins each containing the same number m

of observations, and selecting the maximum (or the minimum)
value in each of them [37]. The GEV distribution is obtained
by performing a fit of the histogram of maxima (minima) to
the GEV model. When one uses the gi observable functions
and the underlying dynamic is mixing, the asymptotic GEV
parameters are known and depend on m (or equivalently n)
and the local dimension of the attractor d(ζ ). Although it
is uniform over ζ for the system considered in this work,
the quantity d(ζ ) is very relevant for the characterization of
strange attractors, as it can be used to sample the property of the
invariant measure at a local level. As explained in Ref. [23], the
local dimension appears in the expression of the parameters of
the GEV distribution if we suppose that the measure ν[Br (ζ )]
of a ball Br (ζ ) of radius r and centered at almost ν-all points
ζ scales as

ν[Br (ζ )] ∼ rd(ζ ).

For a justification of such relation see, for instance,
Ref. [38]). In Ref. [23] we also find the expression of the
GEV parameters in the asymptotic limit m,n → ∞, which we
report here. For a g1 type observable:

σ = 1

d(ζ )
, μ ∼ 1

d(ζ )
ln(s/n), κ = 0; (10)

for a g2 type observable:

σ ∼ n−1/(βd(ζ )), μ ∼ n−1/(βd(ζ )), κ = 1

βd(ζ )
; (11)

for a g3 type observable:

σ ∼ n1/(βd(ζ )), μ = C, κ = − 1

βd(ζ )
. (12)

Here ∼ means asymptotically for m,n → ∞. As we can see
from the previous expressions, the values of σ and μ depend
on the bin length n as well as on the total length of the series
s. In fact, by analyzing longer time series, we get larger and
larger maxima, corresponding to larger location parameters μ

and scale parameters σ . Although in practical applications we
never end up with infinite σ and μ, we need to introduce
the normalizing sequences am and bm whenever checking
asymptotic properties to avoid degenerate distributions. On
the other hand, the distribution shape, given by the tail index
κ , does not change providing that we are in the asymptotic
regime. In order to construct mixing indicators which do not
depend on the length of our dataset, we will consider only the
shape parameters in the following discussion.

Since at finite time the convergence depends on the rate of
mixing around the point ζ , we can have one of the following
behavior:

(1) For a ζ on periodic or quasiperiodic orbits we do not
observe convergence to the GEV distribution. If the motion is
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purely periodic, the asymptotic extreme value law is a Dirac’s
delta; otherwise it is a collection of Heaveside functions
modulated by the shape of the gi .

(2) For a ζ on mixing orbits there exists a value of m such
that Eqs. (10)–(12) hold. This value of m can be defined as the
shortest mixing time scale. As we will see from the numerical
analysis, detailed mixing properties of the phase space may be
explored with this method.

(3) For a ζ located in the proximity of unstable fixed points,
Eqs. (10)–(12) do not hold. Extremes cluster around the fixed
points making the convergence slower as we get closer to the
fixed point.

A. A practical numerical algorithm

In Ref. [24] we have introduced a simple algorithm to get
the parameter specified in Eqs. (10)–(12):

(1) Compute the orbit of the dynamical system for s

iterations.
(2) Compute the series Xm(x) = g(dist(f m(x),ζ )) where

ζ is a point of the phase space.
(3) Divide the series in n bins each containing m data.
(4) Take the maximum in each bin and fit the GEV

distribution.
For the inference, we have used the maximum likelihood

estimation (MLE) procedure explained in Ref. [24]. Those
authors introduced the method and tested it on the relevant
example of the standard map. They characterized different
regions of the phase space in terms of rate of convergence to the
parameters expected by Eqs. (10)–(12). The results have been
checked against the divergence of two nearby trajectories and
the reversibility error [13]. Once the experimental parameters
μ, σ, κ are obtained by a fit at a certain m, there are only two
possibilities:

(1) If the fit succeeds, one can repeat the experiment for
shorter bin lengths and find the smallest m such that, for the
chosen ζ , the fit converges. This defines the shortest mixing
time scale.

(2) If the fit fails, one should repeat the experiment by
increasing the size of m until it is possible to retain a sufficient
number of maxima to perform a reliable fit to the GEV model.

As we have already said, for a purely periodic orbit one
never finds a m such that the fit converges. In the next section
we show how the application of this method provides reliable
results in the case of the advection of a passive tracer.

IV. RESULTS

Before describing the capabilities of the EVT in detecting
barrier and fixed points, we briefly recall the model for the
advection of passive tracers introduced in Refs. [17,18]. These
flows theoretically offer the peculiarity of “targeted mixing”,
meaning that mixing is efficiently performed within cells
formed by one-dimensional barriers. This offers a suitable
setting to test our approach and quantify it versus the already
proposed measurements. We give a brief description of the
flows. We first start with the integrable stream function that
describes an array of alternating vortices:


0(x,y) = α sin x sin y. (13)

Here the x direction is the one along the channel, and the y

direction is the bounded orthogonal one. The amplitude α sets
the maximal value the velocity. The dynamics resulting from
the Hamiltonian, which is identical to the stream function (13),
is integrable, and thus no chaotic mixing occurs. In this setting,
tracers motion are confined within barriers delimited by the
invariant lines y = π and y = 0 and the other invariant lines
which are localized at x = mπ for m ∈ Z along the channel.
As we shall see later, it is important to mention that these
points are joined by vertical heteroclinic connections for which
the stable and unstable manifolds coincide. The phase space,
which is here the real space, is then characterized by a channel
populated by alternating vortices with separatrices localized at
x = mπ for m ∈ Z.

In order to visualize the phenomenon of chaotic advection
in experiments, a typical perturbation f (x,y,t) is introduced
as a time-dependent forcing [14–16]. This allows us, for
instance, to subsequently study the transport and mixing
properties. To be more explicit, the perturbation corresponds
to a modification of the stream function:


c(x,y,t) = 
0(x + f (x,y,t),y). (14)

For instance, in the experiment a flow has been realized which
is well modeled by the following stream function [14]:


1(x,y,t) = α sin(x + ε sin ω0t) sin y. (15)

The perturbation f becomes simply f = ε sin ω0t and
describes the lateral oscillations of the roll patterns where ε and
ω0 are, respectively, the amplitude and the angular frequency
of the lateral oscillations. Setting the proper time units, we
may assume that ω0 = 1. In this setting, the field lines have
not changed but simply oscillate back and forth along the
channel, and chaotic advection is triggered. This perturbation
breaks the separatrices and invariant tori, leading to chaotic
mixing along the channel. However, we still have invariant
tori corresponding to stable island of regular motion near the
vortex cores. These act as a transport barrier, and mixing is
not uniform. Regarding this problem a different perturbation
was proposed in Refs. [17,18]. This perturbation allows us in
some windows of parameters to only preserve the separatrices
while destroying all regular tori. For the separatrices acting as a
transport barrier we end up with a homogeneous mixing within
cells delimited by the separatrices. The proposed perturbation
writes


c(x,y,t) = α sin[x + ε sin t + α cos yCε(t)] sin y, (16)

where

Cε(t) =
∑
n�0

−2

2n + 1
J2n+1(ε) cos(2n + 1)t, (17)

and Jl (for l ∈ N) are Bessel functions of the first kind.
We defer to Ref. [18] for the details, but we recall that

this perturbation has two main purposes: (1) particles remain
trapped within a specific domain bounded by two oscillating
barriers (suppression of chaotic transport along the channel),
(2) the stochastic sea seems to cover the whole domain
(enhancement of mixing within the cells).

We now present the results obtained for the EVT applied
to the Hamiltonian dynamics associated to the stream function
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FIG. 1. Poincaré sections for the stream function in Eq. (16). The
parameters are α = 1,ε = 0.63 (left), and α = 1,ε = 0.8 (right).

introduced in Eq. (16). By definition, the advection term relates
to the action of being moved by and with a flow. The velocity
field is then obtained by v = curl(ψ ẑ), where ẑ is the unit
vector normal to the flow. The flow of passive tracers exhibits
a Hamiltonian structure:

ẋ = −∂


∂y
, ẏ = ∂


∂x
, (18)

where (x,y) corresponds to the coordinates of the tracer on the
plane. The space variables (x,y) are canonically conjugate for
the stream function 
, which acts as the Hamiltonian of the
system. Hence the phase space is formally the two-dimensional
physical space (with the addition of time).

In Fig. 1 we represent two Poincaré sections obtained by
numerical simulations performed by setting the time step
�T = 5 × 10−3, and computing the trajectory of 1000 par-
ticles, released at x0 = 3.3, y0 = 1.6 for 1000 time iterations.
The left panel of Fig. 1 refers to the set of parameters
α = 1,ε = 0.63; the right one to α = 1,ε = 0.8. For the first
set of parameters, stability islands are clearly visible in the
domain, whereas for α = 1,ε = 0.8, the domain looks well
mixed on the time scale considered.

For the extreme value analysis we consider the experiment
with ε = 0.63. First, one can check that the method based
on the EVT allows for recognizing the different stability
regions. The experiment follows the setup described before:
we consider a very long run, s = 106 iterations, and take
2000 different ζ points uniformly distributed in the domain
at which the extreme value statistics for the observables gi is
computed by taking m = 250, n = 4000 maxima. The results
obtained with the EVT analysis are qualitatively similar for
the three observables considered so that in Fig. 2 we have
chosen to represent only the results for the observable g3 with
β = 3. Since we are dealing with a bidimensional system, we
expect to find κ = −1/6 in the chaotic region. This is true in
a wide region of the phase space which can be identified as
a region where orbits mix efficiently. However, we observe
a different behavior in correspondence of the regular islands
where divergence from the theoretical expected parameters
are observed. In Fig. 2 the locations of the barriers is well
highlighted as it forms a sort of frame of divergent values of κ

around the figure (marine green areas). Within the barriers the
values of the shape parameters are slightly different than in the
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FIG. 2. (Color online) κ for the observable g3, β = 3 for an
ensemble of 2000 points. The theoretical expected value is κ = −1/6
(yellow). See text for a description.

chaotic sea and point to regions where intermediate properties
between the regular islands and the chaotic sea are present.

In order to better quantify the effect of the barriers, we have
isolated a region of the phase space corresponding to the left
border of the plot and repeated the analysis. The results are
presented in Fig. 3 for g1 (left) and g3 (right). The expected
values in the chaotic sea are, respectively, 0 and −1/6, and they
correspond to the highest values of the color bars (red). The
position of the barriers and the in-homogeneities within them
are evident. In particular, one can recognize the fixed points
(top left) and (bottom right) for the remarkable deviations from
the theoretical parameters. Other methods (i.e., the Poincaré
recurrences technique applied in Ref. [18]) do not distinguish
between barriers and fixed points; actually the latter method
quantifies the frequency of visits in small balls spread in the
phase space. Instead the parameters of the EVT depend on
the structure of the fixed points via the so-called extremal
index θ , introduced in Ref. [29] and further analyzed in
Ref. [35]. By invoking again the equivalence between extreme
value statistics and statistics of return times, the presence
of an extremal index simply means that the statistics of
the first return time in a ball shrinking to zero around a
periodic point of (minimal) period p and normalized with the
average recurrence time converges to e−tθ , where θ := φ(p)
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FIG. 3. (Color online) Left: κ for the observable g1. Right: κ for
the observable g3, β = 3. Ensemble of 2000 points. The theoretical
expected value are κ = 0 for g1 and κ = −1/6 for g3. See text for a
description.
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FIG. 4. (Color online) κ for the observable g1 at different bin lengths m for three different ensemble of points. The theoretical expected
values are κ = 0 (black line). See text for a description.

is a nonlinear function φ of the period p determined by the
potential associated to the invariant measure μ [39]. Instead
the distribution is simply the exponential one e−t around a
nonperiodic point discussed after Eq. (9).

This divergence between the behavior around periodic
and nonperiodic points reflects a departure of the theoretical
parameters expected for the GEV in the regime of a pure
Gumbel’s law shown in Fig. 3.

This qualitative considerations can be made quantitative
when the bin length is varied. In this way one can reliably
compute the time scale on which the barriers become mixing.
In order to do so, we consider three different ensembles of
500 points each. The first one contains all points extracted in
the periodic sea, the second one includes only points located
on the barriers, and the third one points in a neighborhood of
the fixed point. For each ensemble, we computed the average
shape parameter κ at several bin lengths. The results are
displayed in Fig. 4 together with a linear fit of the data. For
the chaotic points, no substantial dependence on the m chosen
is visible, and the values are substantially distributed around
the expected value κ = 0. The points located in the barriers
show divergent values of the parameters and, for increasing m,
approach a fully chaotic behavior extrapolated at m = 10 000.
The shape parameter is highly divergent in the neighborhood
of the fixed points, and two different linear approximations
have been computed. Note that, if exactly the fixed point is
considered, the fit does not improve even at higher m but
oscillates on negative values. The explanation for the direction
of the drift (towards more negative values of κ) follows the
argument described in Ref. [40].

V. FINAL REMARKS

In this paper we have defined a rigorous approach for the
definition of mixing time scales by exploiting the results of the
extreme value theory for dynamical systems. With respect to

classical methods based on the Poincaré recurrences theory,
our method is able to discriminate between slow mixing
regions, the barriers, and the fixed points of the dynamics.
Previous analysis (see Ref. [18]) could not highlight any
difference between fixed points and barriers by using the
statistics of Poincaré recurrences. The effectiveness of our
method is based on the fact that the asymptotic statistics can
be computed analytically just by knowing the geometrical
properties of the system (the local dimensions). Once the
asymptotic parameters are known, a mixing time is intuitively
defined as the minimum bin length of the block-maxima
approach such that one obtains convergence to the predicted
extreme value laws. Differences between barriers and fixed
points appear because asymptotic laws are strongly modified
in the proximity of unstable fixed points by the existence of
a regular dynamics, which is responsible for the clustering of
extreme events. Clusters introduce an extra parameter in the
theory, the so-called extremal index, which we used indirectly
for discriminating between fixed points and barriers.

The results obtained in this paper can be extended to a
large class of systems where the computation of mixing time
scales is of any interest. Moreover, one has a powerful tool
to study the dynamics around unstable fixed points. In a
future publication we will address the issue of having an
extremal index different than one. In particular, this implies
an interesting nonequivalence between the block-maxima
approach discussed in the present paper and the peak-over-
threshold approach.

Other extensions of our methods concern the applicability
on geophysical flows. An example is given in Ref. [36].
There, mixing-time scales are linked to the definition of
normal or extreme recurrences of air temperature data. It will
be interesting to apply the findings of this paper to extend
the results presented in Ref. [36] and, by including other
atmospheric variables, construct a more complex geography
of the phase space.
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[38] J.-P. Gazeau, J. Nečetřil, and B. Rovan (eds.), in Physics and

Theoretical Computer Science: From Numbers and Languages
to (Quantum) Cryptography Security, Vol. 7 (IOS Press,
Amsterdam, 2007).

[39] N. Haydn and S. Vaienti, Probab. Theory Relat. Fields 144, 517
(2009).

[40] D. Faranda, V. Lucarini, and P. Manneville, Chaos, Solitons
Fract. (2014), doi:10.1016/j.chaos.2014.01.008.

052901-7

http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0167-2789(93)90009-P
http://dx.doi.org/10.1016/0167-2789(93)90009-P
http://dx.doi.org/10.1016/0167-2789(93)90009-P
http://dx.doi.org/10.1016/0167-2789(93)90009-P
http://dx.doi.org/10.1073/pnas.20.6.376
http://dx.doi.org/10.1073/pnas.20.6.376
http://dx.doi.org/10.1073/pnas.20.6.376
http://dx.doi.org/10.1073/pnas.20.6.376
http://dx.doi.org/10.1103/PhysRevLett.83.3178
http://dx.doi.org/10.1103/PhysRevLett.83.3178
http://dx.doi.org/10.1103/PhysRevLett.83.3178
http://dx.doi.org/10.1103/PhysRevLett.83.3178
http://dx.doi.org/10.1063/1.1629191
http://dx.doi.org/10.1063/1.1629191
http://dx.doi.org/10.1063/1.1629191
http://dx.doi.org/10.1063/1.1629191
http://dx.doi.org/10.1016/j.chaos.2004.07.019
http://dx.doi.org/10.1016/j.chaos.2004.07.019
http://dx.doi.org/10.1016/j.chaos.2004.07.019
http://dx.doi.org/10.1016/j.chaos.2004.07.019
http://dx.doi.org/10.1088/0305-4470/37/24/006
http://dx.doi.org/10.1088/0305-4470/37/24/006
http://dx.doi.org/10.1088/0305-4470/37/24/006
http://dx.doi.org/10.1088/0305-4470/37/24/006
http://dx.doi.org/10.1016/j.physd.2007.04.004
http://dx.doi.org/10.1016/j.physd.2007.04.004
http://dx.doi.org/10.1016/j.physd.2007.04.004
http://dx.doi.org/10.1016/j.physd.2007.04.004
http://dx.doi.org/10.1016/S0167-2789(03)00103-9
http://dx.doi.org/10.1016/S0167-2789(03)00103-9
http://dx.doi.org/10.1016/S0167-2789(03)00103-9
http://dx.doi.org/10.1016/S0167-2789(03)00103-9
http://dx.doi.org/10.1051/0004-6361:20011189
http://dx.doi.org/10.1051/0004-6361:20011189
http://dx.doi.org/10.1051/0004-6361:20011189
http://dx.doi.org/10.1051/0004-6361:20011189
http://dx.doi.org/10.1142/S021812741250215X
http://dx.doi.org/10.1142/S021812741250215X
http://dx.doi.org/10.1142/S021812741250215X
http://dx.doi.org/10.1142/S021812741250215X
http://dx.doi.org/10.1103/PhysRevA.38.6280
http://dx.doi.org/10.1103/PhysRevA.38.6280
http://dx.doi.org/10.1103/PhysRevA.38.6280
http://dx.doi.org/10.1103/PhysRevA.38.6280
http://dx.doi.org/10.1103/PhysRevE.48.288
http://dx.doi.org/10.1103/PhysRevE.48.288
http://dx.doi.org/10.1103/PhysRevE.48.288
http://dx.doi.org/10.1103/PhysRevE.48.288
http://dx.doi.org/10.1103/PhysRevLett.96.124503
http://dx.doi.org/10.1103/PhysRevLett.96.124503
http://dx.doi.org/10.1103/PhysRevLett.96.124503
http://dx.doi.org/10.1103/PhysRevLett.96.124503
http://dx.doi.org/10.1103/PhysRevE.76.046217
http://dx.doi.org/10.1103/PhysRevE.76.046217
http://dx.doi.org/10.1103/PhysRevE.76.046217
http://dx.doi.org/10.1103/PhysRevE.76.046217
http://dx.doi.org/10.1017/S0305004100015681
http://dx.doi.org/10.1017/S0305004100015681
http://dx.doi.org/10.1017/S0305004100015681
http://dx.doi.org/10.1017/S0305004100015681
http://dx.doi.org/10.2307/1968974
http://dx.doi.org/10.2307/1968974
http://dx.doi.org/10.2307/1968974
http://dx.doi.org/10.2307/1968974
http://dx.doi.org/10.5194/npg-18-295-2011
http://dx.doi.org/10.5194/npg-18-295-2011
http://dx.doi.org/10.5194/npg-18-295-2011
http://dx.doi.org/10.5194/npg-18-295-2011
http://dx.doi.org/10.1007/s00440-009-0221-y
http://dx.doi.org/10.1007/s00440-009-0221-y
http://dx.doi.org/10.1007/s00440-009-0221-y
http://dx.doi.org/10.1007/s00440-009-0221-y
http://dx.doi.org/10.1063/1.4718935
http://dx.doi.org/10.1063/1.4718935
http://dx.doi.org/10.1063/1.4718935
http://dx.doi.org/10.1063/1.4718935
http://dx.doi.org/10.1142/S0218127412502768
http://dx.doi.org/10.1142/S0218127412502768
http://dx.doi.org/10.1142/S0218127412502768
http://dx.doi.org/10.1142/S0218127412502768
http://dx.doi.org/10.1214/aoms/1177698320
http://dx.doi.org/10.1214/aoms/1177698320
http://dx.doi.org/10.1214/aoms/1177698320
http://dx.doi.org/10.1214/aoms/1177698320
http://dx.doi.org/10.1007/s10955-011-0234-7
http://dx.doi.org/10.1007/s10955-011-0234-7
http://dx.doi.org/10.1007/s10955-011-0234-7
http://dx.doi.org/10.1007/s10955-011-0234-7
http://dx.doi.org/10.1017/S0143385701001201
http://dx.doi.org/10.1017/S0143385701001201
http://dx.doi.org/10.1017/S0143385701001201
http://dx.doi.org/10.1017/S0143385701001201
http://dx.doi.org/10.1016/j.spl.2007.11.002
http://dx.doi.org/10.1016/j.spl.2007.11.002
http://dx.doi.org/10.1016/j.spl.2007.11.002
http://dx.doi.org/10.1016/j.spl.2007.11.002
http://dx.doi.org/10.1016/j.aim.2012.07.029
http://dx.doi.org/10.1016/j.aim.2012.07.029
http://dx.doi.org/10.1016/j.aim.2012.07.029
http://dx.doi.org/10.1016/j.aim.2012.07.029
http://dx.doi.org/10.1017/S014338571000057X
http://dx.doi.org/10.1017/S014338571000057X
http://dx.doi.org/10.1017/S014338571000057X
http://dx.doi.org/10.1017/S014338571000057X
http://dx.doi.org/10.1007/s10955-010-0096-4
http://dx.doi.org/10.1007/s10955-010-0096-4
http://dx.doi.org/10.1007/s10955-010-0096-4
http://dx.doi.org/10.1007/s10955-010-0096-4
http://dx.doi.org/10.1007/s002200050697
http://dx.doi.org/10.1007/s002200050697
http://dx.doi.org/10.1007/s002200050697
http://dx.doi.org/10.1007/s002200050697
http://dx.doi.org/10.1088/0305-4470/36/14/102
http://dx.doi.org/10.1088/0305-4470/36/14/102
http://dx.doi.org/10.1088/0305-4470/36/14/102
http://dx.doi.org/10.1088/0305-4470/36/14/102
http://arxiv.org/abs/arXiv:1308.5624
http://dx.doi.org/10.1088/0951-7715/26/9/2597
http://dx.doi.org/10.1088/0951-7715/26/9/2597
http://dx.doi.org/10.1088/0951-7715/26/9/2597
http://dx.doi.org/10.1088/0951-7715/26/9/2597
http://dx.doi.org/10.1002/2013GL057811
http://dx.doi.org/10.1002/2013GL057811
http://dx.doi.org/10.1002/2013GL057811
http://dx.doi.org/10.1002/2013GL057811
http://dx.doi.org/10.1023/A:1009963131610
http://dx.doi.org/10.1023/A:1009963131610
http://dx.doi.org/10.1023/A:1009963131610
http://dx.doi.org/10.1023/A:1009963131610
http://dx.doi.org/10.1007/s00440-008-0153-y
http://dx.doi.org/10.1007/s00440-008-0153-y
http://dx.doi.org/10.1007/s00440-008-0153-y
http://dx.doi.org/10.1007/s00440-008-0153-y
http://dx.doi.org/10.1016/j.chaos.2014.01.008
http://dx.doi.org/10.1016/j.chaos.2014.01.008



