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Stationarity of extreme bursts in the solar wind
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Recent results have suggested that the statistics of bursts in the solar wind vary with solar cycle. Here, we show
that this variation is basically absent if one considers extreme bursts. These are defined as threshold-exceeding
events over the range of high thresholds for which their number decays as a power law. In particular, we find
that the distribution of duration times and energies of extreme bursts in the solar wind ε parameter and similar
observables are independent of the solar cycle and in this sense stationary, and show robust asymptotic power
laws with exponents that are independent of the specific threshold. This is consistent with what has been observed
for solar flares and, thus, provides evidence in favor of a link between solar flares and extreme bursts in the solar
wind.
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I. INTRODUCTION

The exact interplay between the solar wind and the Earth’s
magnetosphere is an open problem of considerable inter-
est [1,2], with phenomena ranging from storm activity on short
time scales [3] to possible relationships with global warming
on long time scales [4,5]. As many solar wind parameters
correlate with the solar cycle [6], it is natural to search for
clear physical connections between geomagnetic activity and
coronal processes. For example, it is known that around solar
maximum the dominant interplanetary phenomenon causing
intense magnetic storms are interplanetary coronal mass
ejections, while coronal holes play the most important role
during solar minima [7]. This dependence on the solar cycle
is also reflected in the scaling of solar wind fluctuations since
these fluctuations arise due to a combination of local plasma
turbulence and propagating structures of coronal origin [8,9].

As solar flares—sudden powerful bursts of energy released
above active regions of the sun (see, for example, Refs. [10,11]
for a review)—are the most energetic events in our solar
system [12], one expects that they are important for heating
the solar wind [13] and, hence, to see some signature of
them in the solar wind. Indeed, we showed very recently that
during solar maximum solar flares and bursts in the solar wind
parameter ε share many statistical properties including the
same distribution of burst durations and energies if—and only
if—one considers extreme bursts [14]. These are defined as
threshold-exceeding events over the range of high thresholds
for which their number decays as a power law. Since ε

is a solar-wind proxy for the power input into the Earth’s
magnetosphere, the findings imply that the scaling of extreme
solar flares gives rise to a clear signature in the extreme energy
input into the magnetosphere.

Here, we investigate whether these findings also hold during
solar minimum, when the solar activity is vastly different and
one should consider the full-disk EUV/XUV solar irradiance
as the driver of the solar wind [15]. Yet, we find that the solar
cycle has no significant influence on the statistical properties
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of extreme bursts in the ε parameter—in sharp contrast to
the behavior of nonextreme bursts. This indicates that the
properties of extreme bursts are stationary (independent of
solar cycle) and universal. Specifically, the distribution of
burst energies follows a power law with exponent ≈1.6
over all scales while the distribution of burst durations is
only asymptotically a power law with exponent ≈2.4. Both
distributions are independent of the applied threshold. This
is consistent with findings for soft x-ray emission in solar
flares [10,16]. The distributions of time intervals between two
subsequent extreme bursts, however, are markedly different
between the solar wind and solar flares. We also show that
qualitatively similar results hold if one considers extreme
bursts in the magnetic energy density B2, which is sometimes
thought to be more directly coupled to solar flare activity than
ε [8,13]. Finally, we provide evidence for a weak clustering of
extreme bursts that can be explored for prediction.

The structure of the paper is as follows: We begin by
introducing the Akasofu ε time series and defining extreme
bursts in Sec. II. The statistical properties of extreme and
nonextreme bursts as well as the time intervals between
bursts are studied in Secs. III and IV, respectively. Section V
compares the extreme bursts in the ε parameter to those of
the magnetic energy density B2. Section VI looks into the
dependence structure of subsequent extreme bursts, which
could serve as a predictive tool. The article concludes with
Sec. VII where we also present a comparison with the statistical
properties of solar flares.

II. AKASOFU ε PARAMETER

The Akasofu ε parameter [17] is a solar-wind proxy for the
energy input into the Earth’s magnetosphere (see [18] for a
more recent discussion). In SI units it is defined as

ε = v
B2

μ0
�2

0 sin4(θ/2), (1)

where v is the solar wind velocity, B is the magnetic field, μ0 =
4π × 10−7 is the permeability of free space, �0 ≈ 7RE , and
θ = arctan(|By |/Bz). Geocentric solar magnetospheric (GSM)
coordinates are used. Here, we consider the time series of ε
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FIG. 1. Akasofu ε parameter derived from ACE data for the years
2000–2007.

as measured by the ACE spacecraft. The ACE spacecraft [19]
orbits the Earth-Sun L1 libration point approximately 1.5 ×
109 m from the Earth and monitors solar wind, interplanetary
magnetic fields, and high-energy particles [20]. Specifically,
for the years 2000–2007, we extracted the magnitude of the
x component of the solar wind, and the y and z components
of the magnetics fields, as seen respectively by the SWEPAM
and MAG instruments (level 2 data) of the ACE spacecraft,
all in GSM coordinates. The choice of components reflects
the Poynting flux interpretation of the ε parameter. For the
most part, measurements are available every 64 and 16 s
for the wind velocity and magnetic fields, respectively. We
calculated the ε parameter every 64 s. Since the wind velocity
and magnetic field measurements are not synchronized, we
linearly interpolated the magnetic field measurements towards
the time of the nearest wind velocity measurement. For these
8 years the ε time series consisted of 3 944 700 points; see
Fig. 1. Measurements for wind velocities or magnetic fields
are sometimes unavailable. Approximately 9 percent of the
points comprising the ε series are missing. As in Ref. [16],
we set missing data points to the value of the last valid
recording preceding them (irrespective of the size of the
data gap), thereby creating plateaus of constant intensity.
This minimizes artifacts associated with points missing at
regular experiment-specific frequencies. We have checked
that nothing changes crucially in our statistical analyses by
adopting other schemes.

During the 2000–2007 observation period the solar cycle
is in evidence, with greater activity in the first half of the
series than in the second half. We thus split up the catalog
into a solar maximum phase from 01.01.2000–31.12.2004,
containing 1 972 350 points, and a solar minimum phase from
01.10.2006–31.12.2007, containing 575 101 points.

Definition of extreme bursts

As in Refs. [21–23], we define bursts in the ε time series as
periods during which the values remain above some threshold,
as illustrated in Fig. 2. Thus, the duration of a burst, td ,
is the time between a threshold upcrossing and the next
threshold downcrossing. Two successive upwards crossings
of a threshold give the waiting time, tw, between subsequent
bursts. Finally, the time spent below threshold is denoted by the

tw
td tq

FIG. 2. Definition of waiting, duration, and quiet times, tw , td ,
and tq , respectively, for bursts (solid lines) exceeding a threshold,
given by the horizontal line.

quiet time tq , i.e., the time between a threshold downcrossing
and the next upcrossing. The times are therefore related
through tw = td + tq . We also consider burst sizes, given by
the area of the burst above threshold, which, in the case of the
ε series, corresponds to a quantity with units of energy. Note
that our notion of bursts is different from peak-over-threshold
events typically considered in extreme value theory [24].

The definition of a burst crucially depends on the chosen
threshold. Raising the threshold can lead to a fragmentation of
a burst into multiple bursts or to its disappearance. Lowering
the threshold can lead to a merging of bursts or the creation of
new bursts. Thus, the number of bursts varies with threshold.
Figure 3 shows that the variation in the number of bursts is
rather small for a wide range of thresholds, but a power-law
decay sets in beyond ε ≈ 5 × 109 W (or a little later during
solar minimum). Note that the difference in the number of
bursts between solar maximum and solar minimum is mainly
due to the different lengths of the time series. Almost all earlier
studies have exclusively focused on threshold values that were
smaller than or equal to the q = 0.9 quantile of the distribution
of ε values [21–23]. As Fig. 3 shows, these values are outside
the power-law regime. Here, we focus predominantly on
extreme bursts, which we define as those associated with
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FIG. 3. (Color online) Number of events above ε for solar max-
imum (upper) and solar minimum (lower). Points corresponding to
the q = 0.9 quantile are indicated by solid circles. The solid line has
slope −1.8.
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TABLE I. Thresholds for the ε series corresponding to quantiles
q = 0.95,0.97,0.99,0.993,0.995.

Solar max Solar min Symbol

start 01.01.2000 01.10.2006
end 31.12.2003 31.12.2007
threshold 0.094 0.040 +
[1011 W] 0.13 0.056 ×

0.24 0.10 �
0.30 0.12 ©
0.37 0.14 �

threshold values in the power-law regime [14]. For the extreme
bursts, the specific threshold values we consider are given in
Table I.

III. STATISTICAL PROPERTIES OF BURSTS

A. Duration of extreme bursts

For extreme bursts in the ε time series during solar
maximum, we have reported recently [14] that the duration
time td follows a probability density function (PDF) described
by

p(td ) = μ − 1

t0

(
1 + td

t0

)−μ

, td ∈ [0,∞). (2)

Figure 4 and Table II show that this is also true for extreme
bursts during solar minimum. In Fig. 4, the best fit using
maximum-likelihood estimation of the parameters μ and t0 is
plotted for the curve corresponding to the q = 0.993 quantile
for solar maximum and minimum, respectively. Although the
function in Eq. (2) is defined for continuous values of td , du-
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FIG. 4. (Color online) Probability density functions of the dura-
tion time of extreme bursts in ε during solar maximum (upper) and
solar minimum (lower; displaced vertically for clarity) for thresholds
at quantiles q = 0.95,0.97,0.99,0.993,0.995; see Table I for the
corresponding symbols. The solid lines are maximum-likelihood
estimates based on Eq. (2) for q = 0.993 quantile data (circles), with
parameters given in Table II. For presentation purposes, logarithmic
binning is applied to the tails where statistics are poorer.

TABLE II. Maximum-likelihood estimates of the fitting param-
eters μ and t0[64 s] for Eq. (2), describing duration time probability
densities for extreme bursts in ε. The numbers in parentheses
are maximum-likelihood error estimates giving 95% confidence
intervals.

Solar max Solar min

Quantile μ t0 μ t0

0.95 2.33(5) 1.5(1) 2.5(1) 1.7(2)
0.97 2.31(6) 1.5(1) 2.5(1) 1.8(3)
0.99 2.3(1) 1.5(3) 2.6(2) 1.8(5)
0.993 2.4(1) 2.1(4) 2.4(2) 1.3(5)
0.995 2.4(2) 1.9(5) 2.5(3) 1.8(8)

ration time data is recorded at discrete resolution as discussed
above. Thus, the maximum-likelihood function is constructed
by integrating Eq. (2) over the discrete bins [25,26]. For
solar maximum and minimum the p values of the fits are
0.45 and 0.58, respectively, using a G test [27] (owing to
the discrete nature of the data). The width of each bin is
allowed to increase to ensure that at least 20 data points
fall within each bin (with the possible exception of the final
bin). A χ2 test gives similar p values. Such high p values
indicate that Eq. (2) is indeed an excellent description of the
data for both solar maximum and solar minimum. Table II
gives the maximum-likelihood estimates of the parameters μ

and t0 for all thresholds considered. Table II also indicates
that the estimates of the parameters in Eq. (2) for different
thresholds are statistically indistinguishable during both solar
maximum and minimum. This implies that the duration time
distribution of extreme bursts are independent of the choice
of the threshold. Moreover, there is very little dependence
on solar cycle. Particularly at the highest thresholds, there is
no statistically significant difference between the estimated
exponents μ at the 95% confidence level [43]. The functional
form of Eq. (2) indicates that there is a short characteristic
time scale t0, which is of the order of the discrete sampling
frequency of our time series as follows from Table II. To
unambiguously establish that this time scale is indeed of
physical origin, one would need a higher sampling frequency
of the ε time series. The power-law decay of Eq. (2) for
larger duration times implies that these extreme bursts show
scale-invariant behavior.

B. Extreme burst sizes

It is natural to consider not just the duration of a burst, but
also its size. As discussed above, we define the size of a burst as
the area above threshold, which corresponds to the total energy
E of the burst in the case of the ε time series. Figure 5 shows
that the PDF of the extreme burst energies, p(E), decays as a
power law over many decades—independently of the threshold
and for both solar maximum and solar minimum. Specifically,
these distributions can be characterized by

p(E) = ν − 1

E1−ν
min

E−ν, E ∈ [Emin,∞). (3)
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FIG. 5. (Color online) Probability density functions of extreme
burst energies for ε during solar maximum (upper) and solar minimum
(lower; displaced vertically for clarity). The solid lines are power-law
fits to q = 0.99 quantile data (squares), with parameters given in
Table III. See Table I for the meaning of symbols.

Note that Emin in Eq. (3) reflects the fact that the energy
of bursts of short duration is typically underestimated due
to the discrete nature of the analyzed ε time series. The
values of ν and Emin in Table III are maximum-likelihood
estimates using Otte’s implementation of the method described
in Ref. [28]. Estimating the p values of these fits at the
q = 0.99 quantile using the MATLAB code [29], we find 0.11
during solar maximum and 0.72 during solar minimum. These
findings confirm that the energy distribution is scale-free with
universal exponent ν ≈ 1.55.

In order to determine whether there is any systematic
dependence between the size of a burst and its duration,
in Fig. 6 we plot the scatter of burst sizes for a given
duration, together with their averages, for the q = 0.99
quantile during solar maximum and minimum, respectively.
To a good approximation, the dependence can be described by
a power law, 〈E〉 ∝ td

ρ , with ρ ≈ 2.38 for solar maximum
and ρ ≈ 2.45 for solar minimum. Moreover, the scatter
around the mean energies is rather small—especially for larger
durations—indicating that one can indeed associate a typical
energy with an extreme burst of a given duration, E ∝ td

ρ . We

TABLE III. Maximum-likelihood estimates of the fitting parame-
ters ν and Emin[1011 J] for Eq. (3), describing the extreme burst energy
distribution of ε. Errors in brackets correspond to 95% confidence
intervals. Note that the uncertainties in Emin (not shown) are of the
same order as Emin.

Solar max Solar min

Quantile ν Emin ν Emin

0.95 1.59(7) 55.2 1.76(9) 19.3
0.97 1.6(1) 79.6 1.6(1) 7.7
0.99 1.53(4) 12.2 1.6(2) 4.3
0.993 1.50(6) 13.0 1.6(1) 4.1
0.995 1.48(4) 4.8 1.6(1) 3.8
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FIG. 6. (Color online) Mean extreme burst energies for ε (solid
lines) as a function of burst duration, together with underlying scatter,
for quantile q = 0.99 data during solar maximum (upper) and solar
minimum (lower; displaced vertically for clarity).

find that this is true for all extreme bursts independent of the
threshold; see Table IV. Within statistical uncertainties, ρ is
independent of the specific threshold and the solar cycle and,
thus, universal for extreme bursts in ε.

In fact, for truly scale-invariant statistics, only two of the
three exponents μ,ν,ρ are independent; see Ref. [30] for ex-
ample. The transformation of probability densities p(td ) dtd =
p(E) dE gives rise to the following scaling relation:

ρ = μ − 1

ν − 1
, (4)

which is valid over the ranges in td and E corresponding to
pure power laws in p(td ) and p(E). Plugging in the estimated
exponents for the q = 0.99 quantile, we find ρ(μ,ν) = 2.4(3)
for solar maximum, and ρ(μ,ν) = 2.7(9) for solar minimum,
where the uncertainty is estimated using standard error
propagation. Within the statistical error bars, the derived values
ρ(μ,ν) using Eq. (4) agree very well with the directly estimated
exponents. As Table IV shows, the statistical agreement is

TABLE IV. Estimates of ρ for E ∝ td
ρ . The first set of estimates is

obtained via Eq. (4), where the error is calculated by propagating the
maximum-likelihood errors of μ and ν. The second set of estimates
is obtained by least-squares fitting a power law to the mean extreme
burst energy 〈E〉 as a function of burst duration (solid black line in
Fig 6). While we also include the errors given by the least-squares
fit for completeness, they vastly underestimate the true errors; see
Ref. [28] for a discussion.

Solar max Solar min Solar max Solar min
Quantile ρ [via Eq. (4)] ρ [least-squares]

0.95 2.2(3) 1.9(3) 2.46(2) 2.39(4)
0.97 2.2(4) 2.5(6) 2.46(3) 2.37(4)
0.99 2.4(3) 2.7(9) 2.38(4) 2.45(6)
0.993 2.8(4) 2.1(5) 2.39(4) 2.23(9)
0.995 2.9(4) 2.5(8) 2.38(5) 2.3(1)
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similarly good for all other considered quantiles. This provides
clear evidence for the scale invariance of sufficiently energetic
and long-lasting extreme bursts.

C. Nonextreme bursts

Due to the two different regimes used to define extreme and
nonextreme bursts, see Fig. 3, one might expect that there are
qualitative differences in the statistical properties of extreme
and nonextreme bursts. Previous studies of the ε time series
derived from various satellite data [21–23] have concentrated
on thresholds in the range q = 0.1–0.9, corresponding to
the flat part of Fig. 3 and, thus, nonextreme bursts. For the
duration time of these nonextreme bursts, the following PDF
was proposed:

p(td ) ∝ td
−γ e−td /tc . (5)

Fitting this functional form by estimating γ and tc from
the data, significant differences between different threshold
values and between solar maximum and solar minimum were
discovered. For example, for the q = 0.5 quantile γ takes
the values 1.59(8) and 1.32(9) during solar maximum and
solar minimum, respectively [21]. If true, this would indicate
a very clear dependence of γ on the solar cycle. Unfortunately,
the data were fitted to Eq. (5) using a Levenberg-Marquardt
algorithm [31] that does not preserve the normalization
condition of probability distributions. It has also been argued
that other quantities related to ε exhibit variations in the burst
duration distributions with solar cycle [32].

Here, we revisit the statistical properties of non-extreme
bursts. Figure 7(a) reveals a clear dependence on threshold,
for quantiles q = 0.1,0.3,0.5,0.7,0.9. Yet, this threshold
dependence does not affect the functional form of p(td ) very
much. In fact, a good data collapse is possible by rescaling
each distribution by its mean duration time τd , as shown in
Fig. 7(b). This is true for solar maximum and solar minimum
and indicates that the threshold value predominantly influences
the mean duration time for nonextreme bursts.

Although Fig. 7 gives the visual impression that the duration
time distributions may be similar for nonextreme bursts during
solar maximum and minimum, they are in fact statistically
significantly different. We performed a Kolmogorov-Smirnov
test on each solar maximum and minimum pair for quantiles
q = 0.1,0.3,0.5,0.7,0.9, and, apart from q = 0.9 (for which
the p value is 0.07), all others pairs have p values of the
order of 10−4 or less. A χ2 test gives similar results. Thus,
our findings indicate that the distribution of nonextreme burst
durations appears to be weakly dependent on the solar cycle,
somewhat in agreement with Ref. [21].

However, in terms of the functional form of p(td ), we note
that it can be modeled neither by Eq. (5) nor by Eq. (2)—as
evident from Fig. 7(b). Specifically, in the former case the
maximum-likelihood fitting routine (using the nlm function in
the R statistical software) converges in very few cases, while
in the latter case fits are obtained with extremely low p values.
We also attempted to fit a power law p(td ) ∝ t

−μ̃

d to the tails of
the distribution using again the maximum-likelihood estimator
proposed in Ref. [28]. Table V gives estimates of the exponent
μ̃, which are approximately 2.6 and 2.8 during solar maximum
and solar minimum, respectively. While these estimates give a
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FIG. 7. (Color online) (a) Probability density functions for the
duration of nonextreme bursts in the ε time series during solar
maximum (upper set) and solar minimum (lower set; displaced
vertically for clarity), for thresholds q = 0.1,0.3,0.5,0.7,0.9 (top to
bottom). (b) As in (a) but the duration times are rescaled by their
respective mean duration time τd .

somewhat faithful representation for the solar minimum with p

values up to 0.09, for the solar maximum they should be treated
with caution since the p values are rather low (less than 10−3).
Note also that the values of μ̃ are significantly higher than
the estimated values of μ for extreme bursts given in Table II,
providing further evidence for the differences between extreme
and nonextreme bursts.

These differences are also evident in the distribution of burst
sizes. As an example, Fig. 8 shows the probability density
functions for the size of bursts at quantile q = 0.3 during
both solar maximum and minimum. While the asymptotic
behavior follows Eq. (3) as for extreme bursts (see Fig. 5),
there are significant differences for bursts of smaller size. In
particular, the probability density function in this regime can be
approximated by another power law with a (lower) exponent
of about 1.1–1.2 for low quantiles q � 0.5, rising to about
1.3–1.4 for higher quantiles 0.5 � q � 0.9 (independently of
solar cycle). The transition point between the two power-law
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FIG. 8. Probability density functions for the size of bursts at
quantile q = 0.3 during (a) solar maximum, (b) solar minimum.
Separate power-law fits for small and large arguments are shown as
solid black lines. The estimated values of the exponent characterizing
the latter (asymptotic) behavior, ν, are given in Table V.

regimes moves towards lower values for larger q. This is
consistent with the absence of the first power-law regime for
extreme bursts.

The asymptotic behavior of the size distribution of nonex-
treme bursts as captured by the second power law is sum-

TABLE V. Maximum-likelihood power-law estimates for the
probability density functions of the duration times (μ̃; see text for
details) and burst sizes [ν; see Eq. (3)] for lower thresholds [1011 W].
The numbers in parentheses are maximum-likelihood error estimates
giving 95% confidence intervals.

Solar max Solar min

Quantile Threshold μ̃ ν Threshold μ̃ ν

0.1 1.6 ×10−5 2.9(3) 1.8(1) 5.3 ×10−6 2.8(3) 1.8(1)
0.3 0.0010 2.6(3) 1.8(2) 0.00031 3.0(2) 1.9(1)
0.5 0.0058 2.7(3) 1.7(1) 0.0018 2.86(9) 1.80(6)
0.7 0.018 2.6(1) 1.67(8) 0.0061 2.8(1) 1.79(8)
0.9 0.058 2.51(7) 1.61(5) 0.023 2.7(1) 1.8(1)
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FIG. 9. (Color online) Mean burst energies for ε (solid lines)
as a function of burst duration, together with underlying scatter,
for quantile q = 0.3 data during solar maximum (upper) and solar
minimum (lower; displaced vertically for clarity). The asymptotic
scaling is characterized by ρ ≈ 2.1 and ρ ≈ 2.3, respectively. The
least-squares estimates match well with the expected values based on
Eq. (4).

marized in Table V. The maximum-likelihood estimates of
the exponent ν indicate very little or no dependence on
threshold and solar cycle and are only slightly higher than
for extreme bursts (see Table III). p values indicate that such a
power-law fit is more appropriate during solar minimum than
solar maximum, although, in some cases, a power-law fit is not
convincing at all. Despite this fact, the asymptotic relationship
between burst size and duration, 〈E〉 ∝ td

ρ , seems to hold
quite well. Figure 9 shows the case q = 0.3 as an example. As
before (for the case q = 0.99), we have checked that the scatter
of burst energies is sufficiently narrow for a well-defined mean
value to exist.

IV. WAITING TIMES

A. Extreme bursts

In addition to the statistical properties of bursts themselves,
the time intervals separating subsequent bursts are also of
interest. Since tw = td + tq , the waiting time distribution
could, in principle, be a nontrivial composition of duration
and quiet time distributions. However, this is not the case
for extreme bursts in the ε time series. Figure 10 shows that
for quantile q = 0.95, to a good approximation, the waiting
and quiet time distributions are similar with differences only
appearing for short times. This behavior is a consequence of the
fact that extreme bursts are relatively localized. For example,
for quantile q = 0.95 the mean duration time τd ≈ 5.5 min
is much smaller than the mean quiet time τq ≈ 104.4 min.
Moreover, the duration time of an extreme burst has little
effect on the subsequent quiet time (see Sec. VI for an analysis
of possible correlations). Thus, tw ≈ tq for sufficiently large
values and the duration time only leads to deviations for small
values. We find that this is generally true for extreme bursts
independent of the threshold and the solar cycle. Thus, we
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FIG. 10. (Color online) Waiting (crosses) and quiet (squares)
time probability densities during solar maximum (upper) and solar
minimum (lower; displaced downwards for clarity) rescaled by mean
waiting/quiet time τw,q , for quantile q = 0.95.

focus on waiting times in the following but we obtain very
similar results for quiet times.

In sharp contrast to the duration time distribution of extreme
bursts, both the waiting and quiet time distribution are not
independent of threshold and solar cycle. As Fig. 11 shows,
the distributions develop a shoulder with increasing threshold
at some characteristic time scale which depends on solar cycle:
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FIG. 11. (Color online) Probability density functions of waiting
times between subsequent extreme bursts in ε during solar maximum
(upper set) and solar minimum (lower set) for thresholds q =
0.95,0.97,0.99,0.993,0.995. See Table I for the meaning of symbols.
Curves have been displaced vertically for clarity.

tc ≈ 500 min for solar maximum, and tc ≈ 2000 min for solar
minimum. We have checked whether the characteristic time
depends on periods of intense activity by conditioning the
second waiting time in an adjacent pair of waiting times on
the first. Specifically, if the first waiting time is less than the
mean waiting time for the whole catalog, then the second
waiting time contributes to a “high activity” subset, else it
contributes to a “low activity” subset. We find no discernible
differences in the waiting time distributions between the two
subsets. This indicates that the characteristic time scale has
rather a solar origin and is likely not a consequence of the
local plasma turbulence in the solar wind. However, it seems
unrelated to the dynamics of solar flares as a direct comparison
shows [14].

Characteristic time scales for similar (but not identical)
observables have been documented in the literature. For
example, in studies of magnetic field changes and spatial
correlation functions in solar wind turbulence during solar
maximum, estimates of correlation times (typically attributed
to the underlying magnetohydrodynamic turbulent cascade)
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FIG. 12. Transformed probability density functions for the wait-
ing time of bursts at quantile q = 0.5 during (a) solar maximum, (b)
solar minimum. Each function has been multiplied by tw

α , where α

is the maximum-likelihood estimate of the exponent of a fitted power
law; see text for details. The fits are indicated by the solid black lines.
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are in the range 50–600 min [33,34]. This time scale is broadly
consistent with the monoscaling window of ε increments
[35–37], which breaks down in the range 300–600 min.

B. Nonextreme bursts

At lower thresholds, the shoulder and the associated char-
acteristic time scale in the waiting time distribution disappear
altogether. While one could expect that the distributions are
well described by power laws in this case [23], this is typically
not so. The majority of maximum-likelihood fits suffer from
very low p values (less than 10−2). This is especially true
during solar maximum. Figure 12 illustrates these significant
deviations from power-law behavior for q = 0.5, where the
distributions have been transformed in order to expose a
possible power-law tail as a horizontal line. The solid lines
represent maximum-likelihood fits to a power-law asymptote.
The estimated exponents are α = 2.8(2) for solar maximum
(fitting beyond tw;min = 96[64 s]) with p < 10−4, and α =
2.81(9) for solar minimum (fitting beyond tw;min = 65[64 s])
with p = 0.12. Unlike in the case of duration time distributions
[see Fig. 7(b)], the waiting time distributions of nonextreme
bursts for different thresholds cannot be collapsed onto each
other after rescaling by their respective mean waiting times
(not shown). We obtain qualitatively similar results for the
quiet times. Note that, for nonextreme bursts, waiting times
can be very different from quiet times since the duration time
is generally no longer negligible.

V. EXTREME BURSTS IN B2

To investigate whether our findings for extreme bursts in
the solar wind are specific to the chosen observable ε, we
also consider the time series of magnetic energy density B2

alone. This also allows us to study the connection between
solar flare activity and the solar wind in more detail since
B2 is thought to be a more direct indicator of solar flare
activity than ε—the solar wind velocity v is thought to be
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2 )
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FIG. 13. (Color online) Number of events above B2 for solar
maximum (upper) and solar minimum (lower). Points corresponding
to the q = 0.95 quantile are indicated by solid circles. The solid line
has slope −1.8.

TABLE VI. Thresholds for the B2 series corresponding to
quantiles q = 0.95,0.97,0.99,0.993,0.995.

Solar max Solar min Symbol

start 01.01.2000 01.10.2006
end 31.12.2003 31.12.2007
threshold 0.15 0.067 +
[10−15 T2] 0.20 0.088 ×

0.37 0.14 �
0.45 0.16 ©
0.56 0.19 �

only weakly related to solar flare activity [8,13]. In fact, we
find no qualitative differences between the duration, size, or
waiting time statistics of extreme bursts in ε and B2 as we show
in the following. The absence of variations in the statistics of
extreme bursts with respect to solar cycle and chosen threshold
is in sharp contrast to other properties of the B2 time series
that do vary with solar cycle [8,13].

As for ε, we find that the variation in the number of events
above a given threshold with the value of the threshold exhibits
two distinct regimes for B2. This follows from Fig. 13 and
allows us to define extreme and nonextreme bursts as before. In
contrast to ε, however, the number of events decays faster than
a power law during solar minimum. Just as for ε, we focus on
extreme bursts in B2. The thresholds for these extreme bursts
are give in Table VI.

Figure 14 shows that the duration times of extreme bursts in
B2 follow a probability density function that can be described
by Eq. (2). The estimated parameters for Eq. (2) are collected in
Table VII. Evidently, they are essentially independent of both
threshold and solar cycle. However, the exponent μ differs
markedly between ε and B2 as a comparison with Table II
shows. The much smaller value of μ in the case of B2 indicates
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FIG. 14. (Color online) Probability density functions for the du-
ration time of extreme bursts in B2 during solar maximum (upper) and
solar minimum (lower; displaced vertically for clarity). The solid lines
are fits to the functional form given by Eq. (2) for q = 0.993 quantile
data (circles). The estimated parameters are given in Table VII. See
Table VI for the meaning of all other symbols.
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TABLE VII. Maximum-likelihood estimates of the fitting param-
eters μ and t0[16 s] for Eq. (2), describing the probability density
function for the duration time of extreme bursts in B2.

Solar max Solar min

Quantile μ t0 μ t0

0.95 1.72(2) 1.3(1) 1.82(4) 1.8(2)
0.97 1.74(3) 1.5(2) 1.78(5) 1.6(3)
0.99 1.76(5) 1.5(3) 1.9(1) 1.7(4)
0.993 1.73(7) 1.8(4) 1.8(1) 1.3(4)
0.995 1.79(8) 1.9(5) 1.9(1) 1.7(6)

that extreme bursts of large duration are more common than
for ε. The estimated values of t0 are again close to the discrete
sampling time of the data, which is four times smaller for
the B2 series. This suggests that t0 does not have a physical
origin.

Figure 15 plots the probability density functions of extreme
burst sizes, p(s). Asymptotically, power-law decays are visible
over many decades indicating that Eq. (3) is a good description.
The fitted exponents ν are essentially independent of threshold
and solar cycle; see Table VIII. While this coincides with the
findings for ε, the value of ν is again different between ε and
B2 as follows from a comparison with Table III. In addition
to the smaller value of ν, the observed range of extreme burst
sizes is much bigger for B2.

As for ε, we find that there is typically a correspondence
between the size of an extreme burst and its duration. Figure 16
plots the scatter of burst sizes s for a given duration, together
with their averages, for the q = 0.99 quantile during solar
maximum and solar minimum. To a good approximation,
the dependence is power law, s ∝ td

ρ , with least-squares fits
giving ρ ≈ 2.43 for solar maximum and ρ ≈ 2.46 for solar
minimum—in quantitative agreement with the values for ε.
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FIG. 15. (Color online) Probability density function for extreme
burst sizes in B2 during solar maximum (upper) and solar minimum
(lower; displaced vertically for clarity). The solid lines are power-law
fits according to Eq. (3) to q = 0.99 quantile data (squares). The
estimated parameters are given in Table VIII. See Table VI for the
meaning of symbols.

TABLE VIII. Maximum-likelihood estimates of the fitting pa-
rameters ν and smin[10−12 T2 s] using the same functional form as
Eq. (3), describing the probability density function of extreme bursts
sizes in B2.

Solar max Solar min

Quantile ν smin ν smin

0.95 1.40(9) 47.8 1.4(1) 2.7
0.97 1.34(4) 3.4 1.5(3) 13.8
0.99 1.33(4) 3.1 1.4(1) 1.1
0.993 1.35(9) 13.2 1.4(1) 1.2
0.995 1.34(7) 4.5 1.38(9) 0.1

Table IX indicates, once again, little dependence on either
threshold or solar cycle. Following the same analysis as for ε,
an alternative estimate of ρ for B2 bursts is provided by Eq. (4).
Plugging in the estimated exponents for the q = 0.99 quantile,
we find ρ(μ,ν) = 2.3(3) for solar maximum and ρ(μ,ν) =
2.1(7) for solar minimum, where the uncertainty is estimated
using standard error propagation. Table IX includes estimates
of ρ(μ,ν) obtained in this way, as well as least-squares
estimates for comparison. The quantitative agreement in ρ

between the ε and the B2 series indicates that by changing the
observable the duration of an extreme burst is “transformed”
in a similar way to its size.

The waiting time distributions for B2 show the same
features as for ε (results not shown), namely, little dependence
on solar cycle, but a threshold-dependent shoulder in the dis-
tribution that develops for quantiles q � 0.9 at a characteristic
time of approximately 500–600 min. In contrast to ε, however,
there is no clear difference in this characteristic time between
solar maximum and solar minimum. This dependence on the
specific observable suggests that the origin of the characteristic
time is rather nontrivial.
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FIG. 16. (Color online) Mean extreme event sizes for B2 (solid
lines) as a function of event duration, together with underlying scatter,
for quantile q = 0.99 data during solar maximum (upper) and solar
minimum (lower; displaced vertically for clarity).
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TABLE IX. Estimates of ρ for s ∝ td
ρ . The first set of estimates

is obtained via Eq. (4), where the error is calculated by propagating
the maximum-likelihood errors of μ and ν. The second set of
estimates is obtained by least-squares fitting a power law to the mean
extreme burst size as a function of burst duration (solid black line in
Fig. 16). Note again that the errors obtained by least-squares fitting
significantly underestimate the true errors.

Solar max Solar min Solar max Solar min
Quantile ρ [via Eq. (4)] ρ [least-squares]

0.95 1.8(4) 2.0(5) 2.49(2) 2.46(2)
0.97 2.2(3) 1.6(8) 2.52(1) 2.46(3)
0.99 2.3(3) 2.1(7) 2.43(4) 2.46(3)
0.993 2.1(6) 1.9(7) 2.45(2) 2.43(3)
0.995 2.4(5) 2.3(7) 2.42(3) 2.43(3)

VI. DEPENDENCIES BETWEEN EXTREME BURSTS

In addition to the waiting or quiet times between subsequent
extreme bursts, another important characteristic is dependen-
cies between bursts. We first consider the influence of burst size
on the size of the subsequent extreme burst. Figure 17 shows
the average logarithmic size of an extreme burst E2 following
an extreme burst of size of E1, together with underlying scatter,
for the q = 0.95 quantile during solar maximum. The plot
indicates a weak tendency for subsequent burst sizes to be
larger than average if the preceding burst is also higher than
average. Conversely, subsequent bursts tend to be lower than
average when proceeded by a burst that is also lower than
average. This behavior is in keeping with the intermittent
nature of the solar wind, having regimes of high and low
activity. The same qualitative behavior is seen during solar
minimum in Fig. 18. This weak clustering of the sizes of
extreme bursts could be explored for the prediction of future
burst sizes.
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FIG. 17. (Color online) Logarithmic mean of the burst size E2

following a burst of size E1 (solid line), together with underlying
scatter, for quantile q = 0.95 during solar maximum. Error bars
reflect the error in the mean. The solid horizontal and vertical lines
denote the average of the logarithmic burst sizes.
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FIG. 18. (Color online) Logarithmic mean of the burst size E2

following a burst of size E1 (solid line), together with underlying
scatter, for quantile q = 0.95 during solar minimum. Error bars reflect
the error in the mean. The solid horizontal and vertical lines denote
the average of the logarithmic burst sizes.

Figure 19 shows the average logarithmic size of a burst E

following a quiet time of duration tq , together with underlying
scatter, for the q = 0.95 quantile during solar maximum. The
plot indicates little or no relationship between burst size and
quiet time, with the possible exception that long quiet times
tend to be followed by bursts slightly lower than average in
size. The same is true during solar minimum; see Fig. 20.
In conclusion, beyond the fact that the solar wind can be in
relatively active or inactive regimes (even within a solar cycle),
there appears to be little dependence between burst size and
the preceding burst size or quiet time, in line with results based
on extreme value statistics for the ε series as a whole [37,38].
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FIG. 19. (Color online) Logarithmic mean of the burst size E

following quiet time tq (solid line), together with underlying scatter,
for quantile q = 0.95 during solar maximum. Error bars reflect
dispersion in the scatter. The solid horizontal line denotes the average
of the logarithmic burst sizes.
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FIG. 20. (Color online) Logarithmic mean of the burst size E

following quiet time tq (solid line), together with underlying scatter,
for quantile q = 0.95 during solar minimum. Error bars reflect
dispersion in the scatter. The solid horizontal line denotes the average
of the logarithmic burst sizes.

VII. DISCUSSION AND CONCLUSIONS

Our statistical analysis of extreme bursts in the solar
wind provides clear evidence that the distributions of their
energies and their duration times asymptotically follow power
laws. These findings are in particular robust with respect
to (i) the specific threshold used to define these bursts,
and (ii) the specific measurement device; see the Appendix.
The observed power-law behavior implies the absence of
characteristic scales and further indicates the presence of
scale-free properties of the underlying physical dynamics
of extreme bursts. This dynamics seems to be independent
of the solar cycle and stationary in this sense, but nevertheless
related to solar flare activity. Specifically, defining solar flares
as threshold-exceeding events, their number as a function of
the threshold behaves in the same way as for bursts in the
solar wind: A constant regime for small and intermediate
thresholds is followed by a decaying power-law regime for
high threshold [16]. This allows one to establish an analogous
definition of extreme solar flares as those obtained over the
range of high thresholds. More importantly, the distribution of
duration times of these solar flares during both solar maximum
and solar minimum follows the same functional form as that
for extreme bursts in the solar wind and it is also independent
of the applied threshold [16]. The estimated values of the
associated power-law exponent μ are very similar to the values
we obtain here for the ε series and in particular there is no
statistically significant dependence of the exponent on the solar
cycle. Measurements using a different definition of solar flares
also found similar values [10]. Measurements of soft x-ray
emission in solar flares showed in addition that the distribution
of burst energies follows a power law with an exponent again
very similar to the value of ν we obtain here for the ε

series [10].
This quantitative agreement provides strong evidence for

the direct influence of the solar activity on the statistical

properties of the solar wind. Yet, it is important to realize
that the agreement is “only” qualitative if one considers B2

instead of ε even though the exponent ρ relating energy
and duration seems to be universal. This indicates that the
properties of the solar wind are qualitatively independent
but quantitatively dependent on the observable chosen to
characterize it, which also applies to the Poynting flux studied
in [23]. The quantitative difference in the statistics between
extreme bursts in B2 and solar flares further suggests that
the solar wind velocity v might be more strongly related to
solar flare activity than previously thought [8,13]—at least for
extreme bursts in the solar wind.

In contrast to the statistical agreement in energy and
duration between extreme bursts in the solar wind and the
analogously selected solar flares, the distributions of waiting
times exhibit clear differences. For example, the crossover
time emerging for the solar wind does not have an analog
in the solar flares [16]. Nevertheless, the dependence of the
crossover time on the solar cycle for ε but not for B2 indicates
that it might have a solar origin—unrelated to solar flares—and
is partially captured by changes in the solar wind velocity
v. Other differences in the distribution of waiting times are
more likely to be a consequences of intrinsic properties of the
local magnetohydrodynamic turbulence governing the solar
wind.

While the solar cycle and the specific choice of threshold
have no significant influence on the statistical properties of
extreme bursts in the solar wind, our analysis shows that
this is not the case if one considers nonextreme bursts.
Specifically, the distribution of duration times varies with
threshold predominantly by changes to the mean duration time
and the distribution of energies exhibits a second power-law
regime with varying exponent and crossover. Moreover, the
distribution of duration times has a more complicated form
than a simple power-law with exponential cut-offs for these
bursts, in contrast to what has been suggested before [21].
These behaviors could be related to the underlying correlations
and/or nonstationarities in ε as observed, for example, in the
corresponding standard extreme value properties [37].

Our analysis also raises important questions in the context
of the solar wind–magnetosphere interaction. While this
coupling has been studied in terms of burst statistics, only
thresholds below the q = 0.9 quantile have been considered.
It will be interesting to see whether any of the recent re-
sults [21,22,39,40] need to be augmented for higher quantiles,
corresponding to extreme bursts. Finally, our approach should
also prove helpful for the analysis of intermittent dynamics
and bursts in general; e.g., Refs. [41,42].
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APPENDIX: BARTOL VERSUS ADNET

Two time series for the magnetic field are available for
download [20] from the ACE spacecraft, provided by the
Bartol Research Institute and ADNET Systems. Thus two
Akasofu ε time series can be constructed. The results presented
here using the Bartol instrument have been cross-checked with
the ADNET Systems instrument. All features are identical
across the two series, except for some variation in the
first decimal place for the estimated exponents reported in
Tables II, III, and IV.

Figure 21 shows duration and waiting time distributions
for the two ε series overlayed on each other for the q = 0.99
quantile during solar maximum. By way of comparison, a fit
of the ADNET ε duration time distribution to the ansatz in
Eq. (2) gives μ = 2.4(1) and t0 = 3.0(6). Within error bars, μ

is consistent with that reported in Table II for the Bartol series.
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FIG. 21. (Color online) Waiting (upper) and duration (lower;
displaced vertically for clarity) time probability densities for Bartol
(crosses) and ADNET (squares) ε during solar maximum for quantile
q = 0.99.
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