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Probabilistic physical characteristics of phase transitions at highway bottlenecks:
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Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase
and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates
at the bottleneck, to induce a moving jam (F→J transition) in the metastable free flow through the application of a
time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude
of the impulse is required. If a smaller impulse than this critical one is applied, neither F→J transition nor other
phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA
model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow
to synchronized flow (F→S transition) can be induced at the bottleneck. This explains why rather than the F→J
transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F→S transition,
as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F→S transition
in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand,
this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this
clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of
traffic breakdown at highway bottlenecks.
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I. INTRODUCTION

Since three-phase traffic theory was introduced and formu-
lated [1,2] and until now, there has been a highly controversial
discussion about the question of what traffic-flow theory can
better describe the physics of traffic breakdown observed at
highway bottlenecks in real measured traffic data [3–16].
“Traffic breakdown at a highway bottleneck” describes the
phenomenon of the phase transition from an initial free flow to
congested traffic at the bottleneck [14,15,17–29]. During the
breakdown vehicle speed sharply decreases, whereas the flow
rate can remain as large as in an initial free flow (see empirical
results presented in figures of [14–16,30]).

The importance of understanding real traffic breakdown at
highway bottlenecks is as follows: (i) The capacity of free
flow is restricted by traffic breakdown. (ii) The reliability of
control and optimization of traffic and transportation networks
depends crucially on whether traffic control can prevent traffic
breakdown or not. (iii) The efficiency of dynamic traffic assign-
ment in traffic and transportation networks depends crucially
on whether the assignment can reduce traffic congestion in a
network or not. Therefore each traffic-flow model and theory
that can be reliably used for control and optimization in traffic
networks should explain the set of empirical features of traffic
breakdown.

From a huge number of traffic breakdown observations in
different countries (see, e.g., [14–29]), the following common
set of fundamental empirical features of traffic breakdown at
a highway bottleneck has been distinguished:

1. Traffic breakdown at a highway bottleneck is a local
phase transition from free flow (F) to congested traffic whose
downstream front is usually fixed at the bottleneck location
(see, e.g., [17,20–28] and references there). Such congested
traffic we call synchronized flow (S) [14,15] [Figs. 1(a) and
1(b)]. This means that traffic breakdown is an F→S transition.

2. At the same bottleneck, traffic breakdown can be either
spontaneous or induced [Fig. 1(b)] [14–16].

3. The probability of traffic breakdown is an increasing flow
rate function [23–28].

4. There is a well-known hysteresis phenomenon associated
with traffic breakdown and a return transition to free flow (e.g.,
[17,20,21]).

In accordance with general features of metastable systems
of natural science (see, e.g., [32]), empirical features 2–4 of
traffic breakdown mean that free flow at a highway bottleneck
is in a metastable state with respect to the F→S transition.
Therefore traffic breakdown and the F→S transition occurring
in a metastable free flow at a highway bottleneck are synonyms.

There were two generally accepted traffic-flow theories
introduced in the 1950s–1960s:

(i) The Lighthill-Whitham-Richards (LWR) model [33,34].
In the classic LWR model there is no traffic-flow instability.
It is assumed that complex traffic-flow phenomena are caused
by large amplitude disturbances in traffic [3,33,35,36].

(ii) The General Motors (GM) car-following model by
Herman et al. [37] and Gazis et al. [38,39] (see reviews
[40]) explains traffic breakdown by a traffic-flow instability
associated with an overdeceleration effect as follows: If a
vehicle begins to decelerate unexpectedly, then due to a finite
driver reaction time, the following vehicle starts deceleration
with a delay. As a result, the speed of the following vehicle
becomes lower than the speed of the preceding vehicle. If this
overdeceleration effect is realized for all following drivers,
the traffic-flow instability occurs, leading to a growing wave
of vehicle speed reduction in traffic flow. With the use of very
different mathematical approaches, the overdeceleration effect
has been incorporated in a huge number of traffic-flow models
that can be considered belonging to the GM model class.
This is because (as found first in [41–43]) in all these very
different traffic-flow models, the overdeceleration effect leads
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FIG. 1. (Color online) A known empirical example of phase
transitions in traffic flow illustrating two traffic-flow instabilities
of three-phase theory (real measured traffic data of road detectors
installed along three-lane highway) [30]. (a) Sketch of section of
three-lane highway in Germany with three bottlenecks. (b) Speed data
measured with road detectors installed along road section in (a); data
[14] are presented in space and time with averaging method described
in Sec. C 2 of [31]. (c) Hypothesis of three-phase theory about
discontinuous character of overacceleration probability [2,14,15].
(d) Hypothesis of three-phase theory about features of phase
transitions in traffic flow: 2Z characteristic for phase transitions [14],
F – free flow phase, S – synchronized flow phase, J – wide-moving
jam phase. In (b), “sp” – spontaneous F→S transition, “ind” – induced
F→S transition. In (d), vcr, FS is the branch for critical speed within
local disturbance required for F→S or S→F transitions, labeled by
associated arrows; vcr, SJ is the branch for critical speed within local
disturbance required for S→J transition, labeled by associated arrow.

to a moving jam (J) formation in free flow (F) (F→J transition)
(see references in [7,8,16,44]). The overdeceleration effect
should explain a transition from free flow to congested traffic
in traffic-flow models of the GM model class.

As explained in [14–16], the LWR theory [33–36] fails in
the explanation of real traffic breakdown because the LWR
theory cannot show induced traffic breakdown observed in
real traffic. Two-phase traffic-flow models of the GM model
class (see references in [14–17]) fail in the explanation of
real traffic breakdown because rather than an F→S transition,
traffic breakdown in the models of the GM class is an F→J
transition.

The main reason for the three-phase theory is the ex-
planation of traffic breakdown at a highway bottleneck
rather than congestion resulting from the breakdown. In
accordance with the fundamental empirical features of traffic
breakdown at the bottleneck, in three-phase theory, traf-
fic breakdown is an F→S transition in a metastable free
flow.

To reach this goal, in the three-phase theory a traffic-flow
instability has been introduced associated to an overacceler-
ation effect as follows: It is assumed that due to a driver’s
time delay in overacceleration [45], between the free flow
and synchronized flow phases, the probability of a driver’s
overacceleration from car-following exhibits a discontinuous
character [2,14,15] [Fig. 1(c)]. This overacceleration effect
leads to the instability that causes a growing wave of a local
increase of the vehicle speed.

A competition of the overacceleration effect with the
adaptation of the vehicle speed to the speed of the preceding
vehicle should explain F→S and a return S→F transitions
observed in real traffic [45]. In addition to the instability
associated with the overacceleration effect, the three-phase
theory incorporates the overdeceleration effect of the GM
model class. In the three-phase theory, the overdeceleration
effect explains moving jam emergence in synchronized flow
(S→J transition) observed in real traffic [Fig. 1(b)].

Thus the characteristic feature of the three-phase theory
is the assumption about the existence of two qualitatively
different instabilities in vehicular traffic: (i) The instability
associated with the overacceleration, causing a growing wave
of vehicle speed increase. (ii) The instability of the GM model
class associated with the overdeceleration effect that causes
a growing wave of speed reduction. These two instabilities
should explain complex phase transitions in vehicular traffic,
as shown qualitatively on a 2Z characteristic of phase transi-
tions of three-phase theory [Fig. 1(d)].

The first mathematical implementation of these hypothe-
ses of three-phase theory [1,2,14,15] has been a stochastic
continuous-in-space microscopic model [9], which has been
further developed for different applications in [11,13,46]. Over
time a number of other three-phase traffic-flow models have
been developed (e.g., [31,47–96]) that incorporate some of the
hypotheses of the three-phase theory.

However, both the two-phase theory associated with studies
of the GM model class [7,8,44] and the three-phase theory
[14,15] show a metastable free flow at a highway bottleneck.
This free flow metastability leads to a complex dynamics of
congested traffic patterns at highway bottlenecks found in both
traffic-flow theories. This can explain the highly controversial
discussion in the field of vehicular traffic physics mentioned
above [4–16,44].

In this article, we try to resolve this highly controversial
discussion based on the following methodology. We choose
stochastic microscopic three-phase and two-phase traffic-flow
models that incorporate the same traffic-flow instability of the
GM model class leading to moving jam emergence. With
the use of simulations of both models at the same model
parameters, we analyze the critical disturbances required for
induced phase transitions at the bottleneck.

To be sure that both three-phase and two-phase traffic-
flow models exhibit the same quantitative characteristics of
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moving jams, we choose the Kerner-Klenov-Schreckenberg-
Wolf (KKSW) three-phase cellular automaton (CA) traffic-
flow model of Ref. [48]. Then we remove those terms
of the KKSW CA model that describe mathematically the
overacceleration effect. We find that the three-phase KKSW
CA model transforms into the Nagel-Schreckenberg (NaSch)
CA model [97–99] that belongs to the GM model class. By the
transformation from the KKSW CA model into the NaSch CA
model, no changes in model terms and parameters responsible
for moving jam characteristics are made. We find that this
procedure does result in the same quantitative characteristics
of moving jams in both CA models.

In comparison with previous studies of three-phase traffic
theory [10,14–16,48,89] and the NaSch CA model [97–99], we
focus on an analysis of features of induced phase transitions at
an on-ramp bottleneck in the KKSW and NaSch CA models.
We have found that at given flow rates at the bottleneck, to
induce an F→J transition in a metastable free flow at the
bottleneck through the application of a time-limited on-ramp
inflow impulse, in both the KKSW and NaSch CA models the
same critical amplitude of the impulse is required. If a smaller
on-ramp inflow impulse than this critical one is applied, neither
F→J transition nor other phase transitions can occur in the
NaSch CA model: Free flow recovers at the bottleneck. In
contrast with the NaSch CA model, in the KKSW CA model,
if the same smaller impulse is applied, then an F→S transition
can be induced at the bottleneck. This explains why rather
than the F→J transition, in the three-phase theory traffic
breakdown at a highway bottleneck is governed by the F→S
transition, as observed in real measured traffic data. None
of the two-phase traffic-flow theories incorporates an F→S
transition in a metastable free flow at the bottleneck, which
is the main feature of the three-phase theory. This shows the
incommensurability of three-phase and two-phase traffic-flow
theories.

The article is organized as follows. Features of induced
traffic breakdown at an on-ramp bottleneck in the KKSW
CA model is the subject of Sec. II. In Sec. III, we analyze
the probability of phase transitions in a metastable free flow
at the bottleneck in the NaSch CA model. In Sec. IV we
discuss the basic difference of probabilistic features of phase
transitions in three-phase and two-phase traffic-flow theories.
In the Discussion section (Sec. V), we make a comparison
of threshold and critical characteristics of phase transitions
in three-phase and two-phase theories (Sec. V A), and make
an explanation of macroscopic and microscopic definitions of
synchronized flow and wide-moving jam phases (Sec. V B),
as well as formulate conclusions.

II. INDUCED TRAFFIC BREAKDOWN AT ON-RAMP
BOTTLENECK IN KKSW CA MODEL

A. KKSW CA model

In the KKSW CA model for a single-lane road for identical
vehicles [48], the following designations for main variables
and vehicle parameters are used: n = 0,1,2, . . . is the number
of time steps; τ = 1 s is time step; δx = 1.5 m is space step;
xn and vn are the coordinate and speed of the vehicle; time
and space are measured in units of τ and δx, respectively;

FIG. 2. Steady states of the KKSW CA model (a, b) and NaSch
CA model (c, d) in the flow-density (a, c) and space-gap–speed planes
(b, d). G and gsafe are, respectively, a synchronization gap and a safe
gap at a time-independent speed v (where gsafe = v), F – free flow,
S – synchronized flow [hatched 2D regions in (a, b)], J – line J. In
(a,c), line J represents the downstream front of a wide-moving jam
in the flow-density plane, qout is the flow rate in free flow related to
the outflow from the wide-moving jam. In (b), the model parameter
vpinch is explained after formula (16).

vfree is the maximum speed in free flow; the lower index �

marks variables related to the preceding vehicle; d is vehicle
length; gn = x�,n − xn − d is a space gap between two vehicles
following each other; and Gn is a synchronization space gap
[Figs. 2(a) and 2(b)].

The KKSW CA model consists of the following sequence
of rules:

(a) “Comparison of vehicle gap with the synchronization
gap:”

if gn � G(vn)

then follow rules (b) and (c), and skip rule (d), (1)

if gn > G(vn)

then skip rules (b) and (c), and follow rule (d). (2)

(b) “Speed adaptation within synchronization gap” is given
by the formula

vn+1 = vn + sgn(v�,n − vn). (3)

(c) “Overacceleration through random acceleration within
a synchronization gap” is given by the formula

if vn � v�,n, then with probability pa,

vn+1 = min(vn+1 + 1, vfree). (4)

(d) “Acceleration:”

vn+1 = min(vn + 1, vfree). (5)

(e) “Deceleration:”

vn+1 = min(vn+1, gn). (6)

(f) “Randomization” is given by the formula

with probability p, vn+1 = max(vn+1 − 1, 0). (7)
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(g) “Motion” is described by the formula

xn+1 = xn + vn+1. (8)

Formula (4) is applied when

r < pa, (9)

and formula (7) is applied when

pa � r < pa + p, (10)

where pa + p � 1; r = rand() is a random value distributed
uniformly between 0 and 1. Probability of overacceleration pa

in (4) is chosen as the increasing speed function:

pa(vn) = pa,1 + pa,2 max[0, min (1, (vn − vsyn)/�vsyn)],

(11)

where pa,1, pa,2, vsyn, and �vsyn are constants. In (1)–(11),

G(vn) = kvn. (12)

The rules of vehicle motion (2)–(12) [without formula
(11)] have been formulated in the KKW CA model [10]. In
comparison with the KKW CA model, we use in (7), (10) for
probability p the formula

p =
{
p2 for vn+1 > vn,

p3 for vn+1 � vn,
(13)

which has been used in the KKSW CA model of Ref. [48]. The
importance of formula (13) is as follows. This rule of vehicle
motion leads to a time delay in vehicle acceleration at the
downstream front of synchronized flow. In other words, this is
an additional mechanism of time delay in vehicle acceleration
in comparison with the slow-to-start rule of the NaSch CA
model [98],

p2(vn) =
{
p

(2)
0 for vn = 0,

p
(2)
1 for vn > 0,

(14)

that is also used in the KKSW CA model. However, in the
KKSW CA model in formula (14), probability p

(2)
1 is chosen

to provide a delay in vehicle acceleration only if the vehicle
does not accelerate at the previous time step n:

p
(2)
1 =

{
p

(2)
2 for vn � vn−1,

0 for vn > vn−1.
(15)

In (13)–(15), p3, p
(2)
0 , and p

(2)
2 are constants.

To describe the pinch effect resulting in spontaneous wide-
moving jam emergence in synchronized flow (S→J transition)
[14], we also assume that in (12) [10],

k(vn) =
{
k1 for vn > vpinch,

k2 for vn � vpinch,
(16)

where vpinch, k1, and k2 are constants (k1 > k2 � 1). The model
parameter vpinch defines a range of speeds in synchronized flow
0 < v � vpinch [Fig. 2(b)] within which wide-moving jams
occur spontaneously with a larger probability.

The rule of vehicle motion (13) of the KKSW CA model
[48] together with formula (11) allows us to improve the
characteristics of synchronized flow patterns (SP) simulated
with such a new version of the KKSW CA model (2)–(16) for
a single-lane road. Other physical features of the KKSW CA
model have been explained in [48]. A model of an on-ramp
bottleneck is the same as that presented in [89]. Parameters

TABLE I. Model parameters of the KKSW and NaSch CA models
used in simulations.

Parameters for vehicle motion in road lane:

d = 5 (7.5 m), vfree = 25 (135 km/h),
p3 = 0.01, p

(2)
0 = 0.5,

vpinch = 8 (43.2 km/h), k1 = 3, k2 = 2.
pa,1 = 0.07, pa,2 = 0.08, p

(2)
2 = 0.35,

vsyn = 14 (75.6 km/h), �vsyn = 3 (16.2 km/h)

of the KKSW CA model used in simulations are presented in
Table I. Open road boundary conditions are used; the boundary
and initial conditions are the same as those used in the KKS
CA model [89].

Because a competition between speed adaptation and over-
acceleration determines F→S and S→F transitions (Sec. I),
it is useful to discuss the description of these effects with
the KKSW CA model. In the KKSW CA model, the speed
adaptation effect in synchronized flow of three-phase theory
[14] takes place within the space gap range [Fig. 2(b)]

gsafe, n � gn � Gn, (17)

where gsafe, n is a safe space gap, gsafe, n = vn. Under condition
(17), formula (3) is valid, i.e., the vehicle tends to adjust its
speed to the preceding vehicle without caring what the precise
space gap is, as long as it is safe. The vehicle accelerates
or decelerates in dependence on whether the vehicle moves
slower or faster than the preceding vehicle, respectively. In
other words, there is both “negative” and “positive” velocity
adaptation.

In the KKSW CA model, the overacceleration is simulated
as a collective effect that occurs on average in traffic flow
through the use of random vehicle acceleration given by
formula (4). Probability of overacceleration pa in (4) is respon-
sible for the existence of a time delay in the overacceleration;
the time delay [45] is required in the three-phase theory to
simulate the discontinuous character of the overacceleration
between metastable states of free flow and synchronized
flow [Fig. 1(c)]. The overacceleration (4) occurs only under
conditions (17) and

vn � v�,n. (18)

In accordance with the three-phase theory [15], under condi-
tion (17) overacceleration takes place even if the vehicle is not
currently slower than the preceding vehicle and the preceding
vehicle does not accelerate.

Thus in the KKSW CA model the description of the
overacceleration and overdeceleration are related to the S→F
and F→J phase transitions, respectively. It must be stressed
that this is true also for many other three-phase traffic-flow
models. In particular, as explained in detail in Sec. 16.3
of [14], very similar descriptions of overacceleration and
overdeceleration have been used in the continuous-space
models of Ref. [9,11].
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B. Characteristics of induced traffic breakdown
(induced F→S transition)

In the KKSW CA model (1)–(16), free flow at the bottleneck
is in a metastable state with respect to an F→S transition
(traffic breakdown) within the flow rate range between a
minimum capacity Cmin and a maximum capacity Cmax of
free flow at the bottleneck:

Cmin � qsum < Cmax, (19)

where

qsum = qin + qon (20)

is the flow rate downstream of the bottleneck, qin is the flow
rate on the main single-lane road upstream of the bottleneck,
and qon is the on-ramp inflow rate. Under condition (19), the

FIG. 3. Induced traffic breakdown in KKSW CA model (1)–(16).
(a) Dependence of critical impulse amplitude �qon(qsum) on the
flow rate qsum downstream of the bottleneck. (b) Dependence of
the probability of spontaneous traffic breakdown P (B)(qsum) on the
flow rate qsum calculated at Tob = 30 min and N = 40 [102].
(Breakdown probability in (b) is qualitatively the same as found
earlier in [48].) In (a), the impulse of on-ramp inflow rate �qon with
a duration �tind = 1 min (curve 1) and 2 min (curve 2) is applied
beginning at Tind = 3 min. (c–f) Different simulation realizations for
synchronized flow patterns (SP) resulting from induced breakdown
at the on-ramp bottleneck for (qin, �qon) = (1216, 920) (c, d) and
(1185, 980) vehicles/h (e, f); �tind = 1 min; speed data presented
by regions with variable shades of gray (in white regions the
speed is equal to or higher than 120 km/h, in black regions the
speed is zero); qon = 400 vehicles/h. Calculated minimum capacity
Cmin = 1585 vehicles/h. Calculated maximum capacity Cmax =
1810 vehicles/h. Location of the on-ramp bottleneck is xon = 15 km.

F→S transition can be induced through the application of a
time-limited disturbance in free flow at the bottleneck whose
amplitude exceeds some critical value [100]. To simulate such
a critical disturbance in free flow at the bottleneck, we have
used an on-ramp inflow impulse applied during a time interval
�tind. When the amplitude of this impulse reaches a critical
value denoted by �qon, an F→S transition occurs at the
bottleneck (Fig. 3). During the time interval �tind, the resulting
on-ramp inflow is equal to qon + �qon.

The critical amplitude of the impulse of on-ramp inflow
rate �qon(qsum) is a decreasing function of the flow rate
downstream of the bottleneck qsum [Fig. 3(a)]. Moreover, the
longer the disturbance duration �tind, the smaller the critical
amplitude of the impulse �qon is required to induce the
breakdown [curves 1 and 2 in Fig. 3(a)] [101]. Within the
flow rate range (19) there are two qualitative different flow
rate ranges within which induced traffic breakdown at the
bottleneck exhibits different statistical features.

Within the flow rate range

q
(B)
th � qsum < Cmax, (21)

both spontaneous and induced traffic breakdowns are possible.
A random time-delayed spontaneous traffic breakdown occurs
during the time interval Tob [Figs. 4(a) and 4(b)] with the
probability 0 < P (B)(qsum) < 1 [102]. Here q

(B)
th is a thresh-

old flow rate for spontaneous traffic breakdown. However,
because under conditions (21) the breakdown probability
0 < P (B)(qsum) < 1, in some of the simulation realizations no
breakdown occurs during the time interval Tob [realization 3

FIG. 4. Induced breakdown in KKSW CA model under condi-
tions (21). Speed data presented by regions with variable shades
of gray (in white regions the speed is equal to or higher than
120 km/h, in black regions the speed is zero). Three different
simulation realizations 1–3 in (a–c) are related to P

(B)
FS = 0.775

calculated at qin = 1364 vehicles/h and qon = 400 vehicles/h. In
(d), traffic breakdown has been induced in realization 3 (c) due to
the impulse of on-ramp inflow �qon = 680 vehicles/h of duration
�tind = 1 min that is applied at t = Tind = 10 min. Other parameters
are the same as those in Fig. 3.
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in Fig. 4(c)]. However, traffic breakdown can be induced in
this simulation realization [Fig. 4(d)]. We have found that
independent of whether spontaneous or induced breakdown
has occurred, in the KKSW CA model traffic breakdown is
an F→S transition [Figs. 3(c)–3(f) and 4(d)], as observed in
empirical traffic data [14,15,103].

Within the flow rate range

Cmin � qsum < q
(B)
th , (22)

only induced traffic breakdown is possible at the bottleneck.
This is because under condition

qsum < q
(B)
th (23)

the probability of spontaneous breakdown at the bottleneck is
P (B)(qsum) = 0 [Fig. 3(b)].

III. PROBABILISTIC FEATURES OF TRAFFIC
FLOW INSTABILITY IN FREE FLOW AT

ON-RAMP BOTTLENECK IN THE
NAGEL-SCHRECKENBERG CA MODEL

A. Derivation of NaSch CA model from KKSW CA model

To derive a two-phase traffic-flow model from the KKSW
CA model, we remove in the KKSW CA model the following
terms, which incorporate hypotheses of three-phase theory:
(i) 2D region of steady states for synchronized flow described
by Eqs. (1), (12), and (16); as a result, steady states of a new CA
model lie on the fundamental diagram [Figs. 2(c) and 2(d)].
(ii) “Speed adaptation within a synchronization gap” described
by Eq. (3). (iii) “Overacceleration through random acceleration
within the synchronization gap,” described by Eqs. (4), (9),
and (11). The remaining model rules of vehicle motion are as
follows:

(a) “Acceleration:”

vn+1 = min(vn + 1, vfree); (24)

(b) “Deceleration:”

vn+1 = min(vn+1, gn); (25)

(c) “Randomization” is given by the formula

with probability p, vn+1 = max(vn+1 − 1, 0); (26)

(d) “Motion” is described by the formula

xn+1 = xn + vn+1. (27)

In (26), we use for probability p formulas (13), (14), and (15).
We see that the resulting two-phase CA model is the NaSch
CA model with the slow-to-start rule [97].

B. Probability of spontaneous F→J transition at on-ramp
bottleneck in NaSch CA model

In accordance with well-known results [44,97], in the
NaSch CA model (24)–(27), (13)–(15) spontaneous instability
of free flow at the bottleneck leads to an F→J transition in
metastable free flow at the bottleneck (Fig. 5). As a result of
the F→J transition, wide-moving jams emerge in the NaSch
CA model [Figs. 5(b) and 5(c)]. We also come to another
well-known result [7,8,44,97] found first from a study of a

FIG. 5. Probabilistic features of F→J transition in the NaSch CA
model (24)–(27). (a) Dependence of probability of spontaneous F→J
transition P

(B)
GM(qsum) on the flow rate qsum at given values of on-ramp

inflow rate qon = 400 vehicles/h, time interval Tob = 30 min, and
value N = 40 [qon, Tob, and N are, respectively, the same as those in
the study of the breakdown probability in KKSW CA model shown
in Fig. 3(b)]. (b–e) Speed data presented by regions with variable
shades of gray (in white regions the speed is equal to or higher than
120 km/h, in black regions the speed is zero). In (b–d), three different
simulation realizations 1–3 related to P

(B)
GM = 0.775 calculated at

qin = 1731 vehicles/h are shown. In (e), F→J transition has been
induced in realization 3 (d) due to the impulse of on-ramp inflow
�qon = 200 vehicles/h of duration �tind = 1 min that is applied at
Tind = 3 min (marked by vertical dashed lines). (f) Comparison of
probability of F→J transition for Tob = 10 (curve 1) and 30 min [curve
2 is taken from (a)]. Calculated flow rates marked in (a) are qout =
1636, q

(B)
th, GM =1979, q (B)

cr = 2220 vehicles/h. Other parameters are
the same as those in Fig. 4.

deterministic model of the GM model class [42,43] that within
the flow rate range

qout � qsum < q(B)
cr , (28)

free flow is in a metastable state with respect to the F→J
transition. In (28), qout is the characteristic flow rate related to
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FIG. 6. Induced F→J transition in NaSch CA model (24)–(27).
(a) Dependence of the critical impulse of on-ramp inflow �qon on
the flow rate downstream of the on-ramp bottleneck qsum at qon =
400 vehicles/h. (b) Probability of spontaneous F→J transition taken
from Fig. 5(a). (c–e) Induced F→J transition under condition (31)
at (qin, �qon) = (1250, 1040) (c), (1324, 920) (d), and (1406, 860)
(e) vehicles/h; qon = 400 vehicles/h. In (c–e), left panel – speed data
presented by regions with variable shades of gray (in white regions
the speed is equal to or higher than 120 km/h, in black regions the
speed is zero); right panel – vehicle trajectories. Impulse �qon of
duration �tind = 1 min is applied at Tind = 3 min. Other parameters
are the same as those in Fig. 5.

free flow in the wide-moving jam outflow [Fig. 2(c)], and q(B)
cr

is a critical flow rate at which the instability of the GM model
class occurs at the bottleneck.

We have also found the following results (Figs. 5 and 6).
There is a flow rate range

q
(B)
th, GM � qsum < q(B)

cr (29)

within which the probability P
(B)
GM(qsum) of the occurrence of

spontaneous F→J transition during a time interval Tob satisfies
conditions 0 < P

(B)
GM(qsum) < 1; the probability P

(B)
GM(qsum) is

an increasing flow rate function [Fig. 5(a)]. The probability
P

(B)
GM(qsum) is related to the occurrence of the F→J transition

at the bottleneck during a given time interval Tob in n of N

simulation realizations (runs): P
(B)
GM(qsum) = n/N , where N is

number of realizations used for probability calculations. In this
probabilistic analysis, the critical flow rate qsum = q(B)

cr in (28)
and (29) is related to the probability P

(B)
GM(q(B)

cr ) = 1.
In (29), qsum = q

(B)
th, GM is a threshold flow rate for the F→J

transition. Under condition

qsum < q
(B)
th, GM, (30)

the probability of spontaneous F→J transition at the bottleneck
is P

(B)
GM(qsum) = 0.

C. Induced F→J transition at on-ramp bottleneck
in NaSch CA model

We have also found that although under conditions

qout � qsum < q
(B)
th, GM (31)

the probability of spontaneous F→J transition at the bottleneck
is P

(B)
GM(qsum) = 0, an F→J transition can be induced at the

bottleneck. An induced F→J transition is possible in the
whole flow rate range (28), within which free flow is in a
metastable state with respect to the F→J transition. The critical
amplitude �qon(qsum) of the on-ramp inflow impulse that
induces the F→J transition is a decreasing flow rate function
[Fig. 6(a)].

There is a value of the flow rate qsum = q
(jam)
sum that satis-

fies conditions qout < q
(jam)
sum < q

(B)
th, GM. At qout � qsum < q

(jam)
sum

[dashed part of the curve in Fig. 6(a)], a moving jam(s) that
has been induced at the bottleneck dissolves during some time
interval [Figs. 6(c) and 6(d)]; as a result, free flow recovers
at the bottleneck. The smaller the difference qsum − qout, the
shorter the time interval of jam dissolution.

IV. BASIC DIFFERENCE OF PROBABILISTIC FEATURES
OF PHASE TRANSITIONS IN THREE-PHASE AND

TWO-PHASE TRAFFIC FLOW THEORIES

In accordance with well-known results [4–15], in our
probabilistic analysis of stochastic three-phase and two-phase
traffic-flow models (Secs. II and III), we have confirmed
that both the three-phase theory and the two-phase theory
exhibit ranges of the flow rate qsum downstream of a highway
bottleneck within which free flow is in a metastable state.
This means that a transition from this free flow to congested
traffic can either occur spontaneously or be induced at the
bottleneck. Therefore a question arises: What is the basic
difference between the three-phase and two-phase theories?

To answer this question, first we discuss an important
common feature of these theories. As in the NaSch CA model
(Sec. III), in the KKSW CA model an F→J transition can be
induced at the bottleneck (Fig. 7). This is because the both
models incorporate the same overdeceleration effect of the
GM model class.

Moreover, in the KKSW and NaSch CA models there is
the same mean time delay from vehicle acceleration at the
downstream front of a wide-moving jam τ

(acc)
del, J given by the
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FIG. 7. Induced F→J transition in KKSW CA model (1)–(16) at
the same values of on-ramp inflow rate qon = 400 vehicles/h and the
same critical amplitude of impulse of on-ramp inflow �qon as those
values, respectively, used in Figs. 6(c)–6(e) for the NaSch CA model.
Left panel – speed data presented by regions with variable shades of
gray (in white regions the speed is equal to or higher than 120 km/h,
in black regions the speed is zero), right panel – vehicle trajectories.
As in Fig. 6, (qin, �qon) = (1250, 1040) (a), (1324, 920) (b), and
(1406, 860) (c) vehicles/h. Impulse �qon of duration �tind = 1 min
is applied at Tind = 3 min. Other parameters are the same as those in
Fig. 3.

well-known formula [97]

τ
(acc)
del, J = τ

1 − p
(2)
0

, (32)

where, in accordance with (14), 1 − p
(2)
0 is the probability for

vehicle acceleration from a standstill within the jam (for model
parameters used in the KKSW and NaSch CA models, τ (acc)

del, J =
2 s). This leads to the same threshold flow rate qout for the F→J
transition:

qout = 3600

τ
(acc)
del, J + d/vfree

[vehicles/h]. (33)

We have found that under conditions

qout � qsum < Cmax, (34)

an F→J transition of the GM model class can indeed be
induced in the KKSW CA model (Fig. 7). A limitation for
the flow rate qsum associated with conditions (34) is caused by
a spontaneous F→S transition that occurs in the KKSW CA
model with the probability P (B) = 1 at qsum � Cmax.

We have found the following results:
(i) At any flow rate qsum (34) at which induced F→J

transition in the KKSW CA model is possible (Fig. 7), the
critical disturbance �qon(qsum) required for induced F→J
transition in the KKSW CA model coincides with that required

FIG. 8. Comparison of flow-rate dependencies of critical distur-
bances �qon(qsum) that are required for induced F→J transition in
the KKSW and NaSch CA models (curve 1) and that are required for
induced F→S transition in the KKSW CA model (curve 2). Curves 1
and 2 are taken from Figs. 6(a) and 3(a), respectively. �tind = 1 min.

for induced F→J transition in the NaSch found in Sec. III C
(Fig. 8, curve 1). This result shows that both the three-phase
and two-phase theories under conditions (34) exhibit the same
features of induced F→J transition at highway bottlenecks.

(ii) In the KKSW CA model, under conditions (34) at
any given flow rate qsum the critical amplitude �qon = �q(FJ)

on
required for induced F→J transition (curve 1 in Fig. 8) is
considerably larger than the critical amplitude �qon = �q(FS)

on
required for induced F→S transition (curve 2 in Fig. 8):

�q(FJ)
on (qsum) > �q(FS)

on (qsum). (35)

Therefore synchronized flow patterns (SPs) occur at the
bottleneck (Fig. 9) under application of considerably smaller
disturbances in free flow at the bottleneck than disturbances
required for the occurrence of moving jams (Fig. 7). In other
words, in the three-phase theory the probability of F→S
transition at the bottleneck is considerably larger than the
probability of F→J transition.

V. DISCUSSION

A. Threshold and critical characteristics of phase transitions in
three-phase and two-phase traffic-flow theories

The basic difference between the three-phase and two-phase
traffic theories discussed above (Sec. IV) becomes more
obvious when we compare the physical sense of the minimum
highway capacity Cmin and threshold flow rate qout.

In both the three-phase and two-phase theories, the charac-
teristic flow rate qout is the minimum flow rate qsum downstream
of the bottleneck [Fig. 10(a)] at which an F→J transition is
still possible to induce (Sec. IV).

In contrast, Cmin is the minimum flow rate qsum downstream
of the bottleneck [Fig. 10(b)] at which an F→S transition, i.e.,
traffic breakdown is still possible to induce.

In contrast with the KKSW CA model, in the NaSch
CA model no F→S transition is possible. Therefore the
minimum highway capacity Cmin of the three-phase theory
has no sense for the two-phase traffic theory. This emphasizes
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FIG. 9. Induced F→S transition in KKSW CA model (1)–(16)
simulated at the same flow rates qon and qin, respectively, as those
flow rates used in Fig. 7, however, at smaller values of critical
amplitude of on-ramp inflow impulse �qon. Left panel – speed data
presented by regions with variable shades of gray (in white regions
the speed is equal to or higher than 120 km/h, in black regions
the speed is zero); right panel – vehicle trajectories. (qin, �qon) =
(1250, 920) (a), (1324, 740) (b), and (1406, 380) (c) vehicles/h,
qon = 400 vehicles/h. Dashed-dotted lines (right panel) mark the
propagation of the upstream fronts of associated WSPs (left panel).
Impulse �qon of duration �tind = 1 min is applied at Tind = 3 min.
Other parameters are the same as those in Fig. 3.

FIG. 10. Threshold and critical flow rates at the bottleneck in
three-phase and two-phase traffic-flow theories. Metastable free flow
in the GM motor class (a) and in three-phase theory (b) in the flow-
density plane. Synchronized flow (1 min averaged data measured
at location 15.32 km) is related to WSP shown in Fig. 4(a). In (a),
ρmax = 1000/d is the vehicle density within a wide-moving jam.

the fundamental physical difference between threshold values
Cmin and qout.

At model parameters chosen in Fig. 8, the condition

Cmin < qout (36)

is satisfied. In the case

Cmin � qsum < qout, (37)

no F→J transition is possible. Therefore, under condition (37),
only the F→S transition can occur at the bottleneck in the
KKSW CA model. In contrast, in the NaSch CA model at any
flow rate qsum < qout no phase transition can be induced in free
flow at the bottleneck.

We have found that the minimum capacity Cmin can depend
considerably on the value qon. In particular, at other model
parameters than those used in Fig. 8 we can also find that
Cmin > qout.

In contrast with the minimum capacity Cmin, the threshold
flow rate qout does not depend on qon [104]. This is because the
minimum capacity Cmin is associated with an S→F transition
caused by the overacceleration effect introduced in three-phase
traffic theory (Sec. I) [101]. In contrast, qout is associated with
an F→J transition caused by the overdeceleration effect of the
GM model class.

We have found that the maximum capacity Cmax of the
KKSW CA model is always smaller than the critical flow rate
q(B)

cr for spontaneous F→J transition of the NaSch CA model
(Fig. 8):

Cmax < q(B)
cr . (38)

Thus the critical flow rate q(B)
cr for spontaneous F→J transition

cannot be reached in the three-phase theory. This is because, as
shown above, in the three-phase theory at any flow rate qsum at
which either an F→J transition or F→S transition is possible,
the probability of the F→S transition at the bottleneck is
considerably larger than that for the F→J transition.

The metastability of free flow with respect to the F→J
transition caused by the traffic-flow instability of the GM
model class can be represented in the flow-density plane by
a well-known line J that intersects the curve for free flow
in the threshold point qout [Fig. 10(a)]. However, this well-
known theoretical result discovered in 1994 [42], which is the
theoretical basis of a huge number of further theoretical studies
of traffic flow (see references in [7,8,16,44]), has no relation to
the metastability of free flow observed in real measured traffic
data. This metastability of free flow simulated with the KKSW
CA model can be represented in the flow-density plane by the
minimum capacity Cmin and the maximum capacity Cmax of
free flow (F) together with synchronized flow points related
to the flow rate and density within synchronized flow at the
bottleneck [Fig. 10(b)].

B. About macroscopic and microscopic definitions of
synchronized flow and wide-moving jam traffic phases

Synchronized flow (S) is defined as congested traffic whose
downstream front is fixed at a bottleneck. In contrast, rather
than being fixed at the bottleneck, the downstream front of a
wide-moving jam (J) propagates upstream while maintaining
the mean velocity of the downstream front of the jam [14].
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These phase definitions are macroscopic ones. However, in
Figs. 5(b), 5(c), and 5(e), “dark lines” at the bottleneck
are seen. Therefore one might have an assumption that the
downstream front of congested traffic consisting of sequences
of wide-moving jams is also fixed at the bottleneck. This
assumption would contradict the macroscopic definition of
the phase S. To resolve this problem, we consider microscopic
(single-vehicle) features of congested traffic just upstream of
the on-ramp bottleneck. To distinguish the traffic phases in
microscopic data of congested traffic, we should consider a
microscopic criterion of a wide-moving jam that is as follows
[105–109]:

τmax

τ
(acc)
del, J

� 1. (39)

In (39), τmax is the maximum time headway between two
vehicles following each other within the jam, and τ

(acc)
del, J is

given by formula (32). Condition (39) determines the existence

FIG. 11. Microscopic features of widening synchronized flow
pattern (WSP) in the KKSW CA model (left panel) and wide-moving
jams in the NaSch CA model (right panel) at on-ramp bottleneck.
(a) Speed in time and space for WSP related to Fig. 4(a) (left) and for
wide-moving jams related to Fig. 5(b) (right). (b–e) Single vehicle
speed (b, d) and time headways (c, e) of vehicles measured at different
road locations 9 km (b, c, left), 13 km (b, c, right), and 14.8 km (200
m upstream of the bottleneck) (d, e).

of a flow interruption interval in congested traffic. As shown
in [105] and Sec. 2.6 of [15], microscopic definitions of the
phases J and S, which are based on condition (39), are adequate
to the macroscopic phase definitions.

In particular, microscopic characteristics of an WSP result-
ing from the breakdown [Figs. 11(b) and 11(c), left panel]
show that the microscopic criterion for the jam (39) is not
satisfied, i.e., the WSP belongs indeed to the phase S.

In contrast, as can be seen from Fig. 11(c), right, the
microscopic criterion (39) is satisfied for the moving jams
shown in Fig. 11(a), right. The microscopic criterion (39)
is also satisfied for these moving jams at road location x =
14.8 km [Fig. 11(e), right]. This road location is 200 m
upstream of the beginning of the on-ramp that is at x = 15 km.

Therefore, in contrast with above-made assumption about
the reason for “dark lines” at the bottleneck in Figs. 5(b), 5(c),
and 5(e), the sequence of these jams belongs to the phase J.
Indeed, we see that there is free flow between the formation of
moving jams at x = 14.8 km [Fig. 11(d), right]. This means
that the downstream front of congested traffic consisting of
sequences of wide-moving jams shown in Figs. 5(b), 5(c), and
5(e) is not fixed at the bottleneck.

In contrast with the sequence of wide-moving jams
[Figs. 11(d) and 11(e), right], for the WSP [Figs. 11(d) and
11(e), left] neither criterion (39) is satisfied nor there is free
flow at location x = 14.8 km. Therefore the downstream front
of the WSP is fixed at the bottleneck, as required in the
macroscopic definition of the phase S.

“Dark lines” at the bottleneck seen in Figs. 5(b), 5(c),
and 5(e) are associated with a local speed decrease occurring
when vehicles merge from the on-ramp lane to the main road.
This speed disturbance always appears in free flow within the
merging region of the on-ramp bottleneck that in the model
is between locations 15 � x � 15.3 km. However, in the CA
models, there are nonrealistic large model speed fluctuations.
These model fluctuations lead also to a nonrealistic large
speed disturbance within the on-ramp merging region 15 �
x � 15.3 km. As shown in [89], the nonrealistic large speed
disturbance influences none of the qualitative results of the
analysis of phase transitions in traffic flow.

VI. CONCLUSIONS

At given flow rates at the bottleneck, to induce an F→J
transition in a metastable free flow at the bottleneck through
the application of a time-limited on-ramp inflow impulse, in
both the KKSW and NaSch CA models, the same critical
amplitude of the impulse is required.

If a smaller on-ramp inflow impulse than this critical one is
applied, neither F→J transition nor other phase transitions
can occur in the NaSch CA model: free flow recovers
at the bottleneck. In contrast with the NaSch CA model,
in the KKSW CA model, if the same smaller impulse is
applied, then an F→S transition can be induced at the
bottleneck.

In other words, at given flow rates at the bottleneck either the
F→J transition or the F→S transition is possible in the KKSW
CA model. However, the F→S transition occurs through a
considerably smaller critical disturbance in the free flow than
that required for the F→J transition. This explains why rather
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than the F→J transition, in the three-phase theory traffic
breakdown at a highway bottleneck is governed by the F→S
transition in a metastable free flow, as observed in real
measured traffic data.

In both the three-phase and two-phase traffic-flow theories,
the threshold flow rate for the F→J transition, at which a
moving jam can still be induced, is equal to the flow rate in
free flow occurring in the outflow from a wide-moving jam qout.

In the three-phase traffic theory, the threshold flow rate
for induced F→S transition determines a minimum highway
capacity Cmin. If the flow rate is smaller than Cmin, no traffic
breakdown is possible.

The minimum capacity Cmin of the three-phase theory has
a qualitatively different physical sense as that of the outflow
rate qout from a wide-moving jam that determines the threshold
flow rate for the F→J transition. For this reason, depending
on model parameters, Cmin can be either smaller or larger
than qout. When Cmin < qout, there is a range of the flow rate
downstream of the bottleneck within which traffic breakdown
is possible to occur; however, no moving jams can persist in
traffic flow.

The explanation of traffic breakdown at a highway bot-
tleneck by an F→S transition in a metastable free flow at
the bottleneck is the basic assumption of three-phase theory
[1,2,14]. Traffic flow models of the GM model class cannot

show the F→S transition. As shown in [16], induced traffic
breakdown at the bottleneck (empirical feature 2 of traffic
breakdown of Sec. I) is not possible in the framework of the
LWR theory; this is because there is no free flow metastability
in the LWR theory.

On the one hand, neither traffic-flow models of the GM
model class nor traffic-flow models in the framework of the
LWR theory incorporate a possibility of an F→S transition
in a metastable free flow at the bottleneck introduced in
the three-phase theory. Therefore, in accordance with the
classical theory by Kuhn [110], the three-phase theory is
incommensurable with all other traffic-flow theories. On the
other hand, empirical traffic breakdown in real traffic flow is an
F→S transition in a metastable free flow at the bottleneck. For
this reason, both traffic-flow models of the GM model class
and traffic-flow models in the framework of the LWR theory
fail in the explanation of the set of fundamental features of
traffic breakdown.
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