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Low-dimensional functionality of complex network dynamics:
Neurosensory integration in the Caenorhabditis elegans connectome
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We develop a biophysical model of neurosensory integration in the model organism Caenorhabditis elegans.
Building on experimental findings on the neuron conductances and their resolved connectome, we posit the first
full dynamic model of the neural voltage excitations that allows for a characterization of network structures which
link input stimuli to neural proxies of behavioral responses. Full connectome simulations of neural responses to
prescribed inputs show that robust, low-dimensional bifurcation structures drive neural voltage activity modes.
Comparison of these modes with experimental studies allows us to link these network structures to behavioral
responses. Thus the underlying bifurcation structures discovered, i.e., induced Hopf bifurcations, are critical in
explaining behavioral responses such as swimming and crawling.
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I. INTRODUCTION

Complex physical systems comprised of a network of
nonlinear dynamical components of voltage activity are capa-
ble of producing robust functionality and/or low-dimensional
patterns of coherent activity. The coherent swing instability
in power grid networks [1], for instance, is an example of
these phenomena which have been observed in experiments
and computational studies, yet are difficult to characterize
with theoretical techniques. Other examples of interacting
dynamical systems that are well known in physics, and that
produce functional behavior or coherent patterns, include
coupled oscillators (e.g., Kuramoto oscillators), analog cir-
cuits, coupled lasers, and many-particle systems. Biophysical
systems, whose interactions are often driven by chemical
reactions, voltage activity, and/or ion exchange, produce a
similar functionality and structured activity.

Neurosensory networks, which are an important subclass
of biophysical systems, are ideal for characterizing the role
of seemingly complex network interactions for producing
robust functionality and can motivate bioinspired engineering
principles. Neurosensory integration, which attempts to under-
stand the neural pathways from input stimuli to motor-neuron-
driven behavioral responses and low-dimensional movements,
is one of the most challenging and open problems in the
field of neuroscience today. The primary challenge lies in
understanding how large networks of different classes of
neurons (e.g., sensory, inter-, and motor neurons which can
be either inhibitory or excitatory) interact to produce the
observed robust behavioral responses to stimuli. Ultimately,
the biophysical processes produce a large, nonlinear network
of electronic conductances that dynamically decode input
stimulus and drive downstream neuronal function and behavior
(see, for instance, Fig. 1).

The nematode Caenorhabditis elegans is a perfect model
organism to consider in the context of neurosensory in-
tegration, as it is comprised of only 302 sensory, motor,
and interneurons whose electrophysical connections (i.e., its
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connectome) are known from serial section electron mi-
croscopy [4,5]. By combining the known connectome data
[6] with a physiologically appropriate neuron model [7,8],
we are able to model the full neural network dynamics
in response to time-dependent stimuli. Such efforts allow
for a theoretical characterization of the network biophysics
and voltage activity that drives the neurosensory integration
process in C. elegans and determination of its ability to elicit
behavioral responses [3,9,10]. Our studies show that input
stimuli can produce bifurcations in the neuronal network that
drive low-dimensional responses associated with behavioral
activity. Specifically, we show that stimulation of PLM
neurons, for instance, induces a Hopf bifurcation that leads to
the onset of a robust two-mode oscillatory behavior associated
with crawling. This is the first study of its kind computationally
relating the sensory input with the resultant full-connectome
dynamical behavior of inter- and motor neurons.

C. elegans is an important model organism due to the
fact that (i) it possesses only a small number of sensory
neurons, often linked to specific stimuli [11], and (ii) its
range of behavioral responses is varied yet limited, confined
to swimming, crawling, turning, and performing chemotaxis,
for instance. Thus it is reasonable to posit a complete model of
its neurosensory integration capabilities. Aiding in this effort
is the near-complete connectivity data for the gap junctions
and chemical synapses connecting the sensory neurons to the
inter- and motor neurons [6]. Moreover, current experiments
measure the response of various neurons to input stimuli
since a description of these responses cannot be drawn from
the static connectivity data alone. These studies suggest
that computational modeling can assist in describing neural
dynamics and their relation to the connectome.

II. NEURON DYNAMICS

Simulations of C. elegans neural dynamics are challenging
since (i) it it difficult to measure electrical parameters which
characterize precisely the directionality and conductance of
each connection, and (ii) the single-neuron dynamics do
not appear to be characterized by standard spiking neuron
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FIG. 1. (Color online) In our full network simulations, neurons
receive a physically realistic stimulus (input current) which varies
in amplitude for different trials. For the example illustrated, PLM
neurons are stimulated, leading to signal propagation through a
network of densely connected interneurons which activate the motor-
neuron subcircuits and low-dimensional neural response modes [2]
that control forward locomotion [3].

models. Indeed, genomic sequencing and electrophysiological
studies have consistently failed to observe classical Na+ action
potentials in C. elegans neurons [12]. The failure to produce
the stereotypical spike train dynamics normally associated
with neuronal activity actually allow our model with graded
electrical interaction to be more analogous to the observed
activity in physical systems such as power grids [1], thus
broadening the scope of the work and its potential for impact
in the physical sciences.

A. Single-compartment membrane model

A model must be constructed for the graded response of
neurons. Fortunately, it has been observed that many neurons in
C. elegans are effectively isopotential, such that we can use the
membrane voltage as a state variable for network simulations
[12]. The time evolution of neuron i’s membrane potential,
Vi , is therefore given by the single-compartment membrane
equation [7]:

CV̇i = −Gc(Vi − Ecell) − I
Gap
i ( �V) − I

Syn
i ( �V) + IExt

i . (1)

C is the whole-cell membrane capacitance, Gc is the mem-
brane leakage conductance, and Ecell is the leakage potential.
The external input current is given by IExt

i , while neural
interaction via gap junctions and synapses is modeled by input
currents I

Gap
i ( �V) (gap) and I

Syn
i ( �V) (synaptic). Their equations

are

I
Gap
i =

∑
j

G
g

ij (Vi − Vj ), (2)

I
Syn
i =

∑
j

Gs
ij sj (Vi − Ej ). (3)

Gap junctions are taken as ohmic resistances connecting each
neuron, where G

g

ij is the total conductivity of the gap junctions
between i and j . The synaptic current is proportional to the
displacement from reversal potentials Ej . Gs

ij is the maximum
total conductivity of synapses to i from j , modulated by the

synaptic activity variable si , which is governed by

ṡi = arφ(Vi ; β,Vth)(1 − si) − adsi, (4)

where ar and ad correspond to the synaptic activity’s rise
and decay time, and φ is the sigmoid function φ(vi ; β,Vth) =
1/(1 + exp(−β(Vi − Vth))).

B. Parameters

While the precise parameter values of each connection
are unknown, we assume reasonable values as previously
considered in the literature [6,7]. We assume that each in-
dividual gap junction and synapse has approximately the same
conductance, roughly g = 100 pS [6]. Each cell has a smaller
membrane conductance (taken as 10 pS) and a membrane
capacitance of about Ci = 1 pF [6]. Leakage potentials are all
taken as Ec = −35 mV [7]. Reversal potentials Ej are 0 mV
for excitatory synapses and −45 mV for inhibitory synapses
[7]. For the synaptic variable, we choose ar = 1, ad = 5 and
define the width of the sigmoid by β = 0.125 mV−1 [7]. Vth

is found by imposing that the synaptic activation φ = 1/2 at
equilibrium [7].

The directionality of the connections (i.e., inhibitory or
excitatory) is estimated by the rough approximation that
putative GABAergic neurons are inhibitory, while cholinergic
and glutamatergic neurons are excitatory (as in [6]). This
estimation of parameter values captures robust responses
in the network dynamics and excludes from the simulation
any responses which depend on more precise details of the
network. The network that we simulate consists of 279 somatic
neurons, where we exclude the 20 pharyngeal neurons and 3
additional neurons which make no synaptic connections, as in
[6]. To validate the simulation and the choice of parameters
we tested for robustness by perturbing (±20%) individual
connection strengths and each neuron’s parameters, showing
that dynamic functionality persists.

C. Simulated steady-state neuron responses

In situ whole-cell voltage patch-clamp recordings have
shown that the steady-state relationship between net membrane
current and voltage is nonlinear [12]. Specifically, the steady-
state I-V (current-voltage) curves of several C. elegans neurons
were shown to have flat regions of high” phenomenological
impedance.” These experimentally obtained I-V curves, from
Goodman et al. [12], are reproduced in Fig. 2(d).

We investigated the ability of our model to produce similar
nonlinearity in steady-state I-V relationships by performing
simulated versions of these measurements. This was done by
setting the membrane voltage of a neuron, then measuring that
neuron’s input current after allowing the system to equilibrate.
This was repeated for several voltages to construct steady-state
I-V curves.

We first considered a network of two neurons, named A
and B, as illustrated in Fig. 2(a). The parameter values in the
previous subsection were used, and the connectivity consisted
solely of Nab synapses from A onto B and Nba synapses from
B onto A (with no gap junction connections). The resulting I-V
curves for various values of Nab are shown in Fig. 2(b) (with
fixed Nba = 1). This shows that the connectivity of a neuron
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affects strongly the shape of its steady-state I-V curve and that
the model is capable of producing nonlinear I-V curves which
include relatively flat central regions.

A more direct comparison with the experimentally obtained
curves comes from the same simulation performed with
neurons in the full connectome. A population of I-V curves
from neurons in the full network is shown in Fig. 2(c).
We observe from this qualitative comparison (subject to
different normalizations and uncertainty of which neurons
were measured experimentally) that our neuron model, within
a connected network, is indeed capable of producing nontrivial
nonlinearities in neural steady-state I-V relationships.

III. ANALYSIS OF SIMULATED DYNAMICS

There are many ways to test the validity of the C. elegans
model. Given the numerous stimulus response experiments
[3,9,10], we can simply select a neuron of interest and examine
the downstream neuronal response. For instance, the PLM
neurons (PLML/R) are posterior touch mechanoreceptors.
Activation of PLM neurons by tail-touch causes a worm
to move forward or, if it is already moving forward, to
accelerate [13]. Thus stimulating these neurons should produce
a downstream time-dependent neural response resulting in
a motorneuron response consistent with forward motion.
Figure 1 illustrates a schematic for this neurosensory cascade
from sensory activation by stimulation of the sensory PLM
neuron that excites the motor neurons associated with forward
motion [10]. Characterizing such neural pathways is the key
objective of this study.

A characteristic example of simulated full-network dynam-
ics is shown in Fig. 3, in which the polymodal nociceptive
ASHR neuron [11] is stimulated with a constant periodic input
current. The system starts out in equilibrium before excitation,
and the voltages plotted are neuronal displacements from their
equilibrium values. Figure 3(b) shows the response of an
unconnected neuron, whereas Fig. 3(c) shows the response
of an ASHR neuron when connected to the network. Note that
the characteristic time scale of the response changes due to the
presence of connections. In Fig. 3(d), the voltage responses
are plotted for the five neurons which respond most strongly
when input current is present and for the five which respond
most strongly when it is not. This illustrates that downstream
neuron responses are not necessarily entrained to the stimulus
but may respond through different temporal modes.

A. Low-dimensional bifurcations

Behaviorally, crawling is known to be dominated by a
two-mode stroke motion [2], i.e., the so-called eigenworm
motion. Thus the motor-neuron response to PLM stimulation
should produce a two-mode dominance in accordance with the
eigenworm behavior given that the motor responses control
muscle contraction [10]. We therefore intuitively anticipate
that a constant input of sufficient strength, corresponding to a
sensory stimulus, should be able to drive two-mode oscillatory
behavior in the forward-motion motor neurons. To test if this
is qualitatively captured by our model, we first seek oscillatory
solutions by calculating the Jacobian matrix at equilibrium and
looking for eigenvalues with positive real parts.
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FIG. 2. (Color online) (a) A two-neuron network, consisting of
Nab synaptic connections from A onto B and Nba synapses from
B onto A. (b) I-V curves for neuron A in this simple network.
Colors represent different values of Nab, with fixed Nba = 1. (c) A
population of simulated I-V curves using the full connectome. Each
curve corresponds to a different neuron. Note that the more elaborate
connectivity and presence of gap junction connections can lead to
more complicated nonlinearities. (d) Experimental C. elegans I-V
curves, reproduced from Goodman et al. [12]. Obtained by in situ
whole-cell patch-clamp recordings for various (mostly unidentified)
neurons.

With zero external input, all Jacobian eigenvalues have
a negative real part and the system is stable. However,
eigenvalues with a positive real part are seen to exist for
sufficiently high constant-input amplitudes. Figure 4 shows the
Jacobian spectrum as a function of the PLM input amplitude.
At certain threshold values, the system goes through Hopf
bifurcations and oscillatory modes arise. The average voltage
displacement within each neuron class is shown at the right in
the figure, illustrating this.

B. Singular-value decomposition of the PLM response

To obtain the modes that the motor neurons exhibit we
collected time snapshots of motor-neuron voltages VM (t) into
a matrix and computed the singular value decomposition:

V = [VM(t0) VM (t1) . . .] = P · � · QT . (5)

The columns in matrix P (vectors Pi) are the principal
orthogonal components, which are weighted by the diagonal
elements in � (singular values σi). Decomposition of the
voltage onto these provides the dynamical coefficients ak(t):

V(t) =
N∑

k=1

ak(t)Pk.

Figure 5 shows the time dynamics of the motor neurons
given constant PLM stimulation consistent with tail-touch at
input amplitudes above the Hopf bifurcation level. As shown,
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(a) (b)

(c) (d)

FIG. 3. (Color online) (a) To demonstrate the behavior of the
model, a square-wave current input was injected into ASHR neurons
(units are pA divided by the conductance constant g = 100 pS).
Locations of PLM neurons along the body of the worm are indicated
by (blue) squares, and locations of 20 selected responding neurons
are indicated by (red) circles and (green) diamonds. (b) Resulting
membrane voltage displacement from equilibrium in ASHR neurons
when isolated (i.e., no connections). (c) Resulting membrane voltage
displacement in ASHR neurons when connected to the neuron
network. Note the two-order-of-magnitude reduction in peak voltage.
(d) Voltage responses of the five neurons most active in the presence
of input current are shown in dark gray (red), and the five neurons
most active in the absence of input current inlight gray (green). The
ASHR neuron is chosen so as to illustrate a ubiquitous phenomenon:
downstream neurons do not necessarily get entrained to the time
response of the stimulated neuron.

there are two dominant response modes that produce periodic,
laterally out-of-phase, voltage activity.

The analysis as shown in the bottom row in Fig. 5
confirms that the motor activity is dominated by two time-
dependent response modes (with the first and second modes
possessing 61.86% and 37.36% of the energy, respectively).
Their dynamics are periodic and similar to physiological [2]
and behavioral [9] studies that find a low number of modes
that determine the motion (specifically, there are two dominant
oscillatory modes which move through their phase space in a
ring around the origin). Thus the model produces a proxy for
this behavior through analyzing motor responses, although it
does not produce directly the behavioral response.

IV. ABLATION

Experimental ablation studies [13] have observed that
the ablation of the densely connected AVB interneurons
destroys the worm’s ability to perform forward motion,
whereas ablation of the similarly densely connected AVA
interneurons preserves it (affecting instead the ability of the
worm to perform backwards motion). If our model’s PLM
response modes do indeed serve as a proxy for this behavioral
response, they should be similarly affected by such network
modifications.

1.51 2   104

1043

FIG. 4. (Color online) Jacobian eigenvalue spectrum as a func-
tion of PLM input amplitude. Input units are current normalized by
conductance constant g. At inputs around 1 × 104, the system goes
through a Hopf bifurcation and oscillatory motion results. Traces of
average sensory, inter-, and motor neuron voltage displacements from
equilibrium are shown to illustrate this.

We explore the effect of ablation upon our response
modes by removing the AVA/AVB interneurons from the
network and repeating the analysis in Fig. 5. Specifically, the
neurons AVAL/AVAR (or AVBL/AVBR) were removed from
the network, the dynamics in response to an identical constant
PLM input were simulated, and the SVD was calculated. The
resultant singular value distributions for these ablations is
shown in Fig. 6, which shows that the two-mode dominance
is destroyed with the removal of AVB but remains intact with
the removal of AVA. This serves as another confirmation that
the response modes correspond to the experimental foward-
motion modes.

A. Change in response modes

The top rows in Fig. 7 show the dynamics of the first
two SVD modes (i.e., the time evolution of ak(t) · Pk for
modes k = 1,2) before any ablations (for the” healthy” system)
and after ablation of AVA, AVB, and AIZR neurons (the
latter being chosen because, experimentally, the ablation of
AIZR neurons does not inhibit forward motion[11]). The 37
neurons selected are the forward-motion motor neurons (those
belonging to classes DB, DD, VB, and VD, as in Fig. 5). A
time interval of 1 s was selected from each simulation such
that the first modes of all cases were maximally in-phase.
Note that the same observation as before can be made when
qualitatively comparing the structures of the modes of the
healthy, AVA-ablated, and AVB-ablated cases: when the AVA
interneurons are ablated, the structure of the modes appears
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V (arb. units)

FIG. 5. (Color online) Resultant dynamics for a constant input
of 2 × 104 into PLM neurons (with this input, the system is within
an oscillatory regime). Raster plots of the voltage responses within
the forward motor neurons are shown at top. The time evolutions of
the SVD modes, along with their singular values, are shown at the
bottom, establishing that the system response is indeed dominated by
two modes. The trajectory of these modes in phase space corresponds
to a two-mode swimmer.

FIG. 6. (Color online) Singular-value distributions when the
analysis in Fig. 5 is repeated with the removal of AVA or AVB
interneurons from the network. Experimental studies [13] show that
the ability to perform forward motion is destroyed with the removal
of AVB but preserved under the ablation of AVA. The second row
shows the new trajectories in phase space after these ablations (where
the dashed gray line is the healthy trajectory, for comparison). Note
that AVA ablation does distort the trajectory, but does so less than
does the ablation of AVB. Within our model, the two-mode response
in forward-motion motorneurons is affected in the same way by
these ablations (AVB ablation destroys two-mode dominance; AVA
ablation preserves it). This further suggests that the simulated neural
modes serve as proxies for forward motion.

to be slightly altered but similar, whereas ablation of AVB
interneurons destroys the dominant mode.

B. Quantification of response similarity

To quantify the effect of ablations on the response modes
and their dynamics we introduce two metrics. The first metric
measures the similarity of the singular values by computing
the l2 norm between the ablated and the healthy distributions.
For ablated singular values σa and healthy singular values σh,
we compute

||σa − σh|| =
√√√√ N∑

i=0

(
σa

i − σh
i

)
. (6)

The second metric computes the similarity between the
mode dynamics. We take the one-second dynamics segments
from Fig. 7 (labeled here as matrix H for healthy modes and
matrix A for ablated modes), and we compute the absolute
value of their Frobenius product:

|A : H| =
∣∣∣∣∣∣
∑
i,j

Aij · Hij

∣∣∣∣∣∣
(7)

where all matrices have been normalized to have a Frobenius
norm of 1.

The bottom row in Fig. 7 shows the values of these
metrics for the ablations of AVA, AVB, and AIZR neurons. By
these metrics, ablation of AIZR does not affect the network’s
response to this stimulus, ablation of AVA neurons affects
only slightly the network’s response, and ablation of AVB
neurons destroys the functionality of the network in response
to a PLM stimulus. This suggests that such analysis can be
used to computationally classify the roles played by specific
neurons in the response of the network to given stimuli. Hence
our model provides a computational framework in which to
computationally classify, from no prior knowledge, the neural
subnetworks responsible for behavioral responses to stimuli.

V. CONCLUSION

In conclusion, we have developed a neurosensory integra-
tion model of the C. elegans nematode which describes the
nonlinear, time-dependent, network voltage conductances. In
our computational model, the entire 302-neuron network of
sensory, inter-, and motor neurons is dynamically coupled
with the best available biophysical connectome data to date.
In the specific application of the tail mechanosensory PLM
neuron stimulation, a complete neurosensory integration of
this specific stimulus pathway is discovered whereby sensory
information translates to downstream motor responses that are
responsible for behavioral actions, in this case a two-mode
swimmer dynamics. In theoretical terms, the input stimulus
robustly induces a Hopf bifurcation in the network. Thus a
low-dimensional bifurcation, which is ultimately responsible
for behavior, is inscribed in the underlying network structure.

With the abundant current and ongoing biophysical experi-
ments on individual neuron stimulation in C. elegans (through
optogenetics, for instance), the current model presents a signif-
icant step forward in providing a theoretical platform to more
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FIG. 7. (Color online) Modes after ablation of neurons compared to healthy modes. The raster plots at the top show the first and second
SVD modes of forward-motion motor-neuron activity for the healthy case (full network, no ablations), along with the cases where AIZR, AVA,
and AVB neurons are ablated. Phase-matched 1-s intervals of each mode are shown. On the bottom row the metrics of Eqs. (6) and (7) are
shown for the ablation modes compared to the healthy modes.

accurately understand neurosensory encoding, processing, and
integration. Specifically, we construct a biophysically inspired
computational model and demonstrate that the underlying low-
dimensional bifurcations of the network drive neural voltage
modes which are responsible for low-dimensional movement
and behavior. These neural modes can be linked to behavioral
responses via comparison with the experimentally observed
behavioral effects of neural network modification. Thus our
model allows for the identification and characterization of be-
havioral responses which are encoded within low-dimensional
bifurcation structures in the network. The identification of such
bifurcation-encoded responses within the network allows for
computational classification of neurons into the subnetworks
responsible for those responses.

Our study thus allows one to study the structure and
robustness of networks of voltage conductances for producing
prescribed responses. More broadly, understanding the C.

elegans model organism may help produce and promote
bioinspired network designs in other fields of scientific appli-
cations given the observed robust nature of such architectures.
This study promotes a viewpoint of the broader potential
for understanding what can be gained by modeling physical
systems whose dynamics are driven by network connectivity
and nonlinear dynamical systems. This can lead to bioinspired
design, quantification, and engineering principles capable of
producing robust functionality.
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