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Approximate von Neumann entropy for directed graphs
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In this paper, we develop an entropy measure for assessing the structural complexity of directed graphs.
Although there are many existing alternative measures for quantifying the structural properties of undirected
graphs, there are relatively few corresponding measures for directed graphs. To fill this gap in the literature,
we explore an alternative technique that is applicable to directed graphs. We commence by using Chung’s
generalization of the Laplacian of a directed graph to extend the computation of von Neumann entropy from
undirected to directed graphs. We provide a simplified form of the entropy which can be expressed in terms
of simple node in-degree and out-degree statistics. Moreover, we find approximate forms of the von Neumann
entropy that apply to both weakly and strongly directed graphs, and that can be used to characterize network
structure. We illustrate the usefulness of these simplified entropy forms defined in this paper on both artificial
and real-world data sets, including structures from protein databases and high energy physics theory citation
networks.
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I. INTRODUCTION

Recently, there has been considerable interest in analyzing
the properties of complex networks since they play a significant
role in modeling large-scale systems in biology, physics,
and the social sciences [1–4]. In fact, complex networks
provide convenient models for complex systems. Specifically,
a complex network is a diagrammatic representation of a
complex system. It consists of nodes, which represent the
components of the system, and links that connect pairs
of nodes, which represent the interconnection between the
components. One of the salient characteristics of complex
systems is their network structure, i.e., the way in which nodes
and links are arranged or organized in a network [5].

To render the analysis of such networks tractable, it is
essential to have methods for characterizing their salient
properties. One way of viewing complex networks is as graphs
whose connectivity properties deviate from those of regular
graphs [6]. Whereas regular graphs can be thought of as
simple, complex networks are highly nonregular in structure.
Structural complexity is therefore perhaps the most important
property of a complex network. Computationally efficient
measures for quantifying structural complexity are therefore
an imperative tool in the analysis of complex networks.

Graph theory offers an attractive route to such methods
since it provides effective tools for characterizing network
structure together with their intrinsic complexity. This ap-
proach has led to the design of several practical methods
for characterizing the global and local structure of undirected
graphs [7,8]. Unfortunately, there is relatively little literature
aimed at studying the structural features of directed graphs.
One of the reasons for this is that the graph theory underpinning
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directed graphs is less developed than that for undirected
graphs. In fact, in the real world, those complex networks
represented by directed graphs are perhaps even more common
than those represented by undirected graphs. For instance,
the World Wide Web is a directed network in which nodes
represent web pages and links are the hyperlinks between
pages. Another common example is furnished by citation
networks in which the nodes are scholarly papers while the
links are the citations between them.

This paper is motivated by the need to fill this important
gap in the literature, and to establish effective methods for
measuring the structural properties of directed graphs. In
particular, we aim to explore whether the von Neumann
entropy previously defined only on undirected graphs [9] can
be extended to the domain of directed graphs. To do this, we
make use of some recent results from spectral graph theory
concerning the construction of the normalized Laplacian
matrix for directed graphs [10].

A. Related literature

Quantifying the intrinsic complexity of undirected graphs
and networks is a problem of fundamental practical impor-
tance, not only in network analysis [11], but also in other
areas such as pattern recognition and control theory. Existing
approaches are based either on randomness complexity or
statistical complexity. The former aims to quantify the degree
of randomness or disorganization of a combinatorial structure,
while the latter aims to characterize an observed graph
structure probabilistically and compute its associated Shannon
entropy. Historically, most early work in this area falls into
the randomness class, while recent work is statistically based
and aims to compute entropic measures of complexity. The
reason for this is that randomness complexity does not capture
properly the correlations between nodes [12]. Statistical
complexity measures regularity and does not necessarily grow
monotonically with randomness. A good recent review of the
state of the art can be found in the collection of papers edited
by Dehmer and Mowshowitz [13].
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However, while the problem of computing the entropy of
undirected graphs is well studied, the literature on directed
graphs is rather limited. One recent exception is the work of
Riis [14] who has extended the computation of entropy to
directed graphs, using the concepts of guessing number and
shortest index code. He shows that the entropy is the same
as the guessing number and can be bounded by the graph
size and shortest index code length. Berwanger et al. [15]
have proposed a new parameter for the complexity of infinite
directed graphs by measuring the extent to which cycles in
graphs are intertwined. Recently, Escolano et al. [16] have
extended the heat diffusion-thermodynamic depth approach
for undirected networks to directed networks and thus obtain
a means to quantify the complexity of structural patterns
encoded by directed graphs.

For undirected graphs, the normalized Laplacian has proved
to be a convenient way to represent graph structure that
is both linked to the continuous time random walk on a
graph and the notion of heat flow on a graph. In fact,
thermodynamic depth has proved to provide a powerful means
of characterizing a graph in terms of statistical complexity [17].
Recently, the normalized Laplacian spectrum has been shown
to provide a complexity level characterization via definition
of the von Neumann entropy (or quantum entropy) associated
with a density matrix [9,18]. By mapping between discrete
Laplacians and quantum states [19], provided that the discrete
Laplacian [20] is scaled by the inverse of the volume of
the graph, a density matrix is obtained whose entropy can
be computed using the spectrum of the discrete Laplacian.
For instance, the measure can distinguish between different
structures in extremal graph theory. The entropy obtained is
maximal for random graphs and is minimal for regular graphs.
Han et al. [21] have taken this work further and have shown
how to approximate the calculation of von Neumann entropy
in terms of simple degree statistics rather than the normalized
Laplacian eigenvalues. The resulting expression is quadratic
in the number of nodes in a graph.

B. Paper outline

The aim in this paper is to explore whether this work on
using the von Neumann entropy to characterize the complexity
of a graph can be extended from undirected to directed graphs.

One natural way of capturing the structural complexity
of directed graphs is to use simple statistics that quantify
the balance of in-degree and out-degree at different nodes.
A similar but largely heuristic approach has been used to
characterize undirected graphs in terms of node degree. In fact,
the work of Han et al. [21] puts this work on a firmer footing
by showing how simple node degree statistics can be used to
approximate the von Neumann entropy for undirected graphs.
This is a natural step since in information theory, entropy
is a measure of unpredictability or information content in a
random variable [22]. By extending this definition to graphs,
we arrive at a natural way of characterizing their structural
complexity. In particular, we can use ideas related to random
walks on directed graphs to compute their entropy, and these
lead naturally to a characterization in terms of node in-degree
and out-degree statistics.

We commence from the work of Passerini and Severini [9],
which interprets the normalized Laplacian as a density matrix
for an undirected graph, and this in turn allows the graph
to be characterized in terms of the von Neumann entropy
associated with the density matrix. We extend this work to
directed graphs, using Chung’s definition of the normalized
Laplacian of a directed graph [10]. According to this definition,
the directed normalized Laplacian matrix is Hermitian, so the
density matrix interpretation of Passerini and Severini still
holds in the domain of directed graphs. Furthermore, the von
Neumann entropy is essentially the Shannon entropy associ-
ated with the normalized Laplacian eigenvalues. Following
Han et al. [21] we again approximate the Shannon entropy by
its quadratic counterpart, with the result that the von Neumann
entropy can be simplified in terms of simple in-degree and out-
degree statistics. Specifically, the resulting entropy expression
depends on the in-degree and out-degree of pairs of nodes
connected by links. To further simplify this expression, we
consider graphs that are either weakly or strongly directed,
i.e., those in which there are large or small proportions of
bidirectional links, and develop corresponding approximations
of the von Neumann entropy. The approximations accord with
our physical intuition concerning in-degree and out-degree on
nodes and connecting links.

The outline of this paper is as follows. In Sec. II, we
give the detailed development of the simplified forms of von
Neumann entropy for directed graphs. In Sec. III, we analyze
our theoretical result by undertaking experiments on both
artificial and real-world network data. Finally, we conclude the
paper with a conclusion of our contribution and suggestions
for future work.

II. VON NEUMANN ENTROPY OF DIRECTED GRAPHS

In this section, we propose an entropy measure for char-
acterizing the complexity of directed graphs. Our method is
based on extending the definition of von Neumann entropy
from undirected to directed graphs. To do this, we commence
from Chung’s definition of the Laplacian for directed graphs.
This leads to an expression for the von Neumann entropy in
terms of the in-degree and out-degree statistics of nodes. We
then provide approximations of the von Neumann entropy for
both strongly directed graphs where there are few bidirectional
links and weakly directed graphs where there are few links that
are unidirectional.

A. Initial considerations

Suppose G(V,E) is a directed graph with node set V and
link set E ⊆ V × V , then the adjacency matrix A is defined
as follows:

Auv =
{

1 if (u,v) ∈ E ,

0 otherwise.
(1)

The in-degree and out-degree of node u are

d in
u =

∑
v∈V

Avu, dout
u =

∑
v∈V

Auv. (2)
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With these ingredients, the transition matrix P for the directed
graph G is defined as

Puv =
{

Auv

dout
u

if (u,v) ∈ E,

0 otherwise.
(3)

According to the Perron-Frobenius theorem, for a strongly
connected directed graph, the transition matrix P has a unique
left eigenvector φ with φ(u) > 0, ∀ u ∈ V , which satisfies
φP = ρφ where ρ denotes the eigenvalue of P . The theorem
also implies that if P is aperiodic, the eigenvalues of P

have absolute values smaller than the leading eigenvalue
ρ = 1. Thus, any random walk on a directed graph will
converge to a unique stationary distribution if the graph
satisfies the properties of strong connection and aperiodicity.
We normalize φ s.t.

∑|V |
i=1 φ(i) = 1, this normalized vector

corresponds to the unique stationary distribution. Therefore,
the probability of a random walker being at node u is the sum
of all incoming probabilities of nodes v satisfying (v,u) ∈ E,
i.e., φ(u) = ∑

v,(v,u)∈E φ(v)Pvu. Based on the properties of
the random walk on a directed graph, we assume that the
eigenvector component φ(u) is proportional to the in-degree
of the corresponding node d in

u , i.e.,

φ(u)

φ(v)
≈ d in

u

d in
v

. (4)

From this, we derive

φ(u)

d in
u

≈ φ(v)

d in
v

= φ(1) + φ(2) + . . . + φ(|V |)
d in

1 + d in
2 + . . . + d in

|V |

= 1

vol(G)
, (5)

where vol(G) is the volume of graph G, defined as the sum of
all node in-degree or out-degree. To illustrate the plausibility
of the above assumption, we note that

φ(u) =
∑

v,(v,u)∈E

φ(v)Pvu =
∑

v,(v,u)∈E

d in
v

vol(G)

Avu

dout
v

= 1

vol(G)

∑
v,(v,u)∈E

d in
v

dout
v

= d in
u

vol(G)

〈
d in

v

dout
v

〉
v,(v,u)∈E

. (6)

This implies that the approximation in Eq. (4) holds only
when the neighborhood of node u has similar out-degree and
in-degree. Although this condition may seem to be a strong
requirement, we will undertake experiments in Sec. III to
analyze how the local average node degree ratio

ru =
〈

d in
v

dout
v

〉
v,(v,u)∈E

(7)

of u affects the accuracy of our suggested approximate von
Neumann entropy (provided later), and the result reveals that
this ratio indeed does not cause a significant error.

As stated in Chung [10], if we let � = diag[φ(1),φ(2), . . .],
then the normalized Laplacian matrix of a directed graph can
be defined as

L̃ = I − �1/2P�−1/2 + �−1/2P T �1/2

2
. (8)

Clearly, the normalized matrix is Hermitian, i.e., L̃ = L̃T

where L̃T denotes the conjugated transpose of L̃.

B. Von Neumann entropy of undirected graphs

Passerini and Severini [9] have argued that the combinato-
rial Laplacian can be interpreted as the density matrix of an
undirected graph G(V,E). Therefore, it is possible to define
the von Neumann entropy of a graph and calculate it from the
eigenvalues of the associated combinatorial Laplacian. In order
to gain new insights about the meaning of the von Neumann
entropy of a graph, we now show how to obtain a simplified
expression for this entropy that can be written in terms of
the degrees of the nodes. We commence by summarizing the
approximation of the undirected graph von Neumann entropy
presented by Han et al. [21], and then develop this further to
illustrate the limitations of the approximations used.

Although Passerini and Severini have used the traditional
Laplacian in their calculations, in order to simplify matters
we use the normalized Laplacian L = D−1/2(D − A)D−1/2

(where A is the adjacency matrix and D is the degree
matrix with the degrees of the nodes of the undirected graph
along the diagonal and zeros elsewhere). In our analysis,
the choice of normalization is not an important detail since
both Laplacian and normalized Laplacian matrices make valid
density matrices. Furthermore, the scaling of the eigenvalues
does not affect the functional dependence of the entropy with
the degree. In particular, the largest eigenvalue of the Laplacian
matrix is bounded by twice the largest node degree in a
graph, while the normalized Laplacian matrix has eigenvalues
between 0 and 2. With this choice of density matrix, the von
Neumann entropy of the undirected graph is the Shannon
entropy associated with the normalized Laplacian eigenvalues,
i.e.,

HU
VN = −

|V |∑
i=1

λ̃i

|V | ln
λ̃i

|V | , (9)

where λ̃i , i = 1, . . . ,|V |, are the eigenvalues of the normalized
Laplacian matrix L. Commencing from this definition and
making use of the quadratic approximation to the Shannon
entropy [i.e., −x ln x ≈ x(1 − x), which holds well when x is
close to 0 or 1], Han et al. [21] approximate the von Neumann
entropy by

HU
Q =

|V |∑
i=1

λ̃i

|V |
(

1 − λ̃i

|V |
)

. (10)

For undirected graphs, this quadratic approximation allows
the von Neumann entropy to be expressed in terms of the trace
of the normalized Laplacian (which is equal to the sum of the
normalized Laplacian eigenvalues) and the trace of the squared
normalized Laplacian (which is equal to the sum of the squares
of the normalized Laplacian eigenvalues), with the result that

HU
VN = Tr[L]

|V | − Tr[L2]

|V |2 . (11)

For undirected graphs, the two traces appearing in the above
expression are given in terms of statistics for the degrees of

052804-3



YE, WILSON, COMIN, COSTA, AND HANCOCK PHYSICAL REVIEW E 89, 052804 (2014)

nodes in the graph [21], with the result that

HU
VN = 1 − 1

|V | − 1

|V |2
∑

(u,v)∈E

1

dudv

. (12)

This formula contains two measures of graph structure: the first
one is the number of nodes of graph, while the second one is
based on degree statistics for pairs of nodes connected by links.
Moreover, the computational complexity of this expression is
quadratic in graph size, which is much simpler than that of the
original entropy.

The accuracy of the above expression depends on the
veracity of the quadratic approximation to the Shannon entropy
x ln x ≈ −x(1 − x). This approximation is known to hold well
when either x → 0 or x → 1, which guarantees the accuracy
of the quadratic entropy since λ̃i

|V | → 0 when the graph size is
very large.

A more precise expression for the von Neumann entropy
can be obtained by making a second-order Taylor series
approximation for the Shannon entropy with expansion point
x0 at the mean value of λ̃

|V | , i.e.,

x0 =
∑|V |

i=1
λ̃i

|V |
|V | = Tr[L]

|V |2 .

The second-order Taylor expansion for x ln x about the
expansion point x0 is

x ln x ≈ −x

(
− ln x0 − x

2x0

)
− x0

2
.

Substituting this series approximation for the Shannon entropy
with expansion point

x0 = Tr[L]

|V |2 = 1

|V |
into the expression for the von Neumann entropy [Eq. (8)], we
obtain

HU
T = ln |V | − 1

2|V |
∑

(u,v)∈E

1

dudv

.

As a result, the Taylor series approximation to the von
Neumann entropy at the expansion point x0 = 1

|V | and the
quadratic approximation are related by

HU
T = |V |

2
HU

Q + ln |V | + 1 − |V |
2

.

In other words, the two entropies are related by an offset and
a scale, which are related to the number of nodes in the graph.
Since we are concerned in applying the von Neumann entropy
for characterizing the structure of graphs, the differences
caused by the influence of graph size do not matter in our
analysis. Therefore, both expressions can be used. Throughout
the paper, we use the simpler expression given by HU

Q .

C. Von Neumann entropy of directed graphs

The true von Neumann entropy for a directed graph can
be computed using the Shannon entropy associated with the
eigenvalues of its normalized Laplacian matrix. Unfortunately,
for large graphs this is not a viable proposition since the time

required to solve the eigensystem is cubic in the number of
nodes. To overcome this problem, we aim to extend the analysis
of Han et al. [21] from undirected to directed graphs. To do
this, we again make use of the quadratic approximation to the
Shannon entropy in order to obtain a simplified expression
for the von Neumann entropy of a directed graph, which can
be computed in a time that is quadratic in the number of
nodes. Our starting point is the quadratic approximation to the
von Neumann entropy in terms of the traces of normalized
Laplacian and the squared normalized Laplacian, i.e.,

HD
TVN = Tr[L̃]

|V | − Tr[L̃2]

|V |2 . (13)

To simplify this expression a step further, we repeat the
computation of traces for the case of a directed graph. This is
not a straightforward task, and requires that we distinguish
between the in-degree and out-degree of nodes. We first
consider Chung’s expression for the normalized Laplacian of
directed graphs and write

Tr[L̃] = Tr

[
I − �1/2P�−1/2 + �−1/2P T �1/2

2

]

= Tr[I ] − 1

2
Tr[�1/2P�−1/2]

− 1

2
Tr[�−1/2P T �1/2]. (14)

Since the trace is invariant under cyclic permutations, i.e.,
Tr[ABC] = Tr[BCA] = Tr[CAB], we have

Tr[L̃] = Tr[I ] − 1
2 Tr[P�−1/2�1/2] − 1

2 Tr[P T �1/2�−1/2]

= Tr[I ] − 1
2 Tr[P ] − 1

2 Tr[P T ]. (15)

The diagonal elements of the transition matrix P are all zeros,
hence we obtain

Tr[L̃] = Tr[I ] = |V |, (16)

which is exactly the same as in the case of undirected graphs.
Next, we turn our attention to Tr[L̃2]:

Tr[L̃2] = Tr
[
I 2 − (�1/2P�−1/2 + �−1/2P T �1/2)

+ 1
4 (�1/2P�−1/2�1/2P�−1/2

+�1/2P�−1/2�−1/2P T �1/2

+�−1/2P T �1/2�1/2P�−1/2

+�−1/2P T �1/2�−1/2P T �1/2)
]

= Tr[I 2] − Tr[P ] − Tr[P T ] + 1
4

(
Tr [P 2]

+ Tr[P�−1P T �] + Tr[P T �P�−1] + Tr
[
P T 2])

= |V | + 1
2 (Tr[P 2] + Tr[P�−1P T �]), (17)

which is different to the result obtained in the case of
undirected graphs.

To continue the development, we first partition the
link set E into two disjoint subsets E1 and E2, where
E1 = {(u,v)|(u,v) ∈ E and (v,u) /∈ E}, E2 = {(u,v)|(u,v) ∈
E and (v,u) ∈ E} that satisfy the conditions E1

⋃
E2 =

E, E1
⋂

E2 = ∅. Then, according to the definition of the
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transition matrix, we find

Tr[P 2] =
∑
u∈V

∑
v∈V

PuvPvu =
∑

(u,v)∈E2

1

dout
u dout

v

. (18)

Using the fact that � = diag[φ(1),(2), . . .], we have

Tr[P�−1P T �] =
∑
u∈V

∑
v∈V

P 2
uv

φ(u)

φ(v)
=

∑
(u,v)∈E

φ(u)

φ(v)dout2
u

.

(19)

Using Eq. (4), we can approximate the von Neumann entropy
of a directed graph in terms of the in-degree and out-degree of
the nodes as follows:

HD
VN = 1 − 1

|V | − 1

2|V |2

⎧⎨
⎩

∑
(u,v)∈E

(
1

dout
u dout

v

+ d in
u

d in
v dout2

u

)

−
∑

(u,v)∈E1

1

dout
u dout

v

⎫⎬
⎭ (20)

or, equivalently,

HD
VN = 1 − 1

|V | − 1

2|V |2

⎧⎨
⎩

∑
(u,v)∈E

d in
u

d in
v dout2

u

+
∑

(u,v)∈E2

1

dout
u dout

v

⎫⎬
⎭ . (21)

To take our analysis one step further, it is interesting to
explore how the entropy is bounded for graphs of a particular
size, and in particular which topologies give the maximum and
minimum entropies. From Eq. (21) it is clear that when the
terms in the curly brackets reach their largest value, the von
Neumann entropy takes on its minimum value. This occurs
when the structure is a circle graph, in which each node has
only one outgoing link and one incoming link. On the other
hand, when the terms in the curly braces take on their smallest
value, the entropy is maximum. This occurs when there are
no bidirectional links in the graph. Nodes that have outgoing
links have no incoming links. A typical example of this type
of structure is a star graph.

The maximum and minimum von Neumann entropies
corresponding to these cases are as follows. For a circle
directed graph G(V,E), all nodes have the same out-degree
and in-degree equal to 1, then

HD
VN = 1 − 1

|V | − 1

2|V |2 |V | = 1 − 1

|V | − 1

2|V | .

Turning attention to the case of a star graph, the center node
has out-degree (in-degree) |V | − 1, and the remaining nodes
have in-degree (out-degree) 1. In this case,

HD
VN = 1 − 1

|V | − 1

2|V |2 × 0 = 1 − 1

|V | .

As a result, the approximate von Neumann entropy suggested
in Eq. (21) gives the minimum value for the ring graph, which
is the simplest regular graph. It takes on its maximum value
for star graphs. This latter structure can be viewed as the most

complex since it has the greatest difference in node out-degree
and in-degree.

To continue the development a step further, we can simplify
the approximate von Neumann entropy expression according
to the relative sizes of the sets E1 and E2, to provide
approximations to the von Neumann entropy which are specific
to weakly and strongly directed graphs.

For weakly directed graphs, |E1| � |E2|, i.e., few of the
links are not bidirectional, and we can ignore the summation
over E1 in Eq. (20). Rewriting the remaining terms in curly
braces in terms of a common denominator and then dividing
numerator and denominator by dout

u dout
v we obtain

H WD
VN = 1 − 1

|V | − 1

2|V |2
∑

(u,v)∈E

⎧⎨
⎩

d in
u

dout
u

+ d in
v

dout
v

dout
u d in

v

⎫⎬
⎭ . (22)

The term 1 − 1
|V | tends to unity as the graph size becomes

large. In the summation, the numerator is given in terms of
the sum of the ratios of in-degree and out-degree of the nodes.
Since the directed links can not start at a sink (a node of zero
out-degree), the ratios do not become infinite.

On the other hand, for strongly directed graphs, there are
few bidirectional links, i.e., |E2| � |E1|, and we can ignore
the summation over E2 in Eq. (21), giving the approximate
entropy for strongly directed graphs

H SD
VN = 1 − 1

|V | − 1

2|V |2
∑

(u,v)∈E

{
d in

u

d in
v dout2

u

}
. (23)

Both the weakly and strongly directed forms of the von
Neumann entropy (H WD

VN and H SD
VN) contain two terms. The

first is the graph size, while the second one depends on the in-
degree and out-degree statistics of each pair of nodes connected
by a link. Moreover, the computational complexity of these
expressions is quadratic in the graph size.

There are a number of points to note concerning the
development above. First, the normalized Laplacian matrix of
directed graphs denoted by L̃ in Eq. (8) satisfies the conditions
of Passerini and Severini [9] for the density matrix. Moreover,
we have shown that L̃ is Hermitian, so its eigenvalues are all
real. Hence, theoretically, the density matrix interpretation of
Passerini and Severini [9] can be extended to directed graphs.
Second, when the out-degree and in-degree are the same at all
nodes, the von Neumann entropy for directed and undirected
graphs is identical.

To conclude this section, it is worth discussing the role of
sinks in our analysis. A sink is a node with several incident
links, but no outgoing links. Hence, they are characterized by
zero out-degree. One obvious problem with our formulation is
that our expression for the von Neumann entropy of a weakly
directed graph will become singular when node v is a sink,
i.e., dout

v = 0. However, in the case of weakly directed graphs,
the likelihood of sink nodes is small since the probability of
bidirectional links is large. We can reach the same conclusion
by recalling that the graph represents a Markov chain with
equal transition probabilities on the nodes. If the chain is
irreducible and aperiodic, then convergence to a stationary
distribution is guaranteed. Otherwise, the final distribution
may not be stable or may depend on the initial conditions.
In particular, if the irreducibility condition is not true, then
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the Perron-Frobenius theorem does not hold and we can not
construct the Laplacian in that case, or at least it is not clear if
the theorems in Chung’s paper hold. So, if we demand that the
Markov chain is irreducible, this means the graph is strongly
connected and so there are no sinks in the graph.

III. EXPERIMENTS AND EVALUATIONS

We have derived an expression for the von Neumann
entropy of a directed graph, and have provided approximations
that apply to both weakly and strongly directed graphs. In this
section, we aim to explore whether these entropy measures
can be used to determine changes in the structure of directed
graphs. We confine our attention to two principal tasks. The
first one is to explore whether the entropy measures can
be used to distinguish different types of directed graphs.
The second is to use the entropy measures to detect abrupt
changes in the structure of networks that evolve with time. For
most experiments, we normalize the entropy measures studied
[including the approximate von Neumann entropy in Eq. (21)
together with its approximations for both weakly and strongly
directed graphs given in Eqs. (22) and (23), respectively].
The normalization is with respect to the graph size, and
this removes some of the size dependence. Specifically, we
compute the quantity

JD
VN = |V |

∣∣∣∣HD
VN −

(
1 − 1

|V |
)∣∣∣∣

= 1

2|V |

⎧⎨
⎩

∑
(u,v)∈E

d in
u

d in
v dout2

u

+
∑

(u,v)∈E2

1

dout
u dout

v

⎫⎬
⎭ (24)

as a normalized quantity which captures variations in the
in-degree and out-degree statistics in the same manner as the
approximate von Neumann entropy HD

VN. Similarly, the cor-
responding normalized quantities for the weakly and strongly
directed approximations H WD

VN and H SD
VN are as follows:

J WD
VN = 1

2|V |
∑

(u,v)∈E

{ d in
u

dout
u

+ d in
v

dout
v

dout
u d in

v

}
, (25)

J SD
VN = 1

2|V |
∑

(u,v)∈E

{
d in

u

d in
v dout2

u

}
. (26)

It is important to note that these normalized quantities and
the original entropy measures have opposite monotonicity
properties. In other words, when the normalized entropy
JD

VN decreases, the approximate von Neumann entropy HD
VN

increases.

A. Datasets used

We commence by giving a brief overview of the datasets
used for experiments in this paper. We use four different
datasets: the first two are synthetically generated artificial
networks, while the other two are extracted from real-world
systems.

Dataset 1. Consists of 10 directed networks evolved under
preferential attachment. Each network starts from a fully
connected seed network of five nodes. At each time step, a

new node is added to the network. This node connects with
nodes already in the network with a probability proportional
to the steady state probability of a random walk taking place
in the network. See Antiqueira et al. [23] for details about the
model.

Dataset 2. Contains a large number of directed graphs
which are randomly generated according to one of three
different directed random graph models, namely, (a) the
classical Erdős-Rényi model, (b) the “small-world” model,
introduced by Watts and Strogatz [24], and (c) the “scale-
free” model, developed by Barabási and Albert [25]. The
different directed graphs in the database are created using
a variety of model parameters, e.g., the graph size and the
connection probability in the Erdős-Rényi model, the link
rewiring probability [5] in the “small-world” model, and the
number of added connections at each time step [5] in the
“scale-free” model.

Dataset 3. It is extracted from the protein database previ-
ously used by Riesen and Bunke [26]. It consists of over 200
graphs, representing proteins from the Protein Data Bank [27],
labeled with their corresponding enzyme class labels from the
BRENDA enzyme database [28]. The database consists of six
classes (labeled EC 1, . . . , EC 6), which represent proteins out
of the six enzyme commission top level hierarchy (EC classes).
The proteins are converted into graphs by first replacing the
secondary structure elements of a protein with nodes, and then
constructing a three-nearest-neighbor graph for the secondary
structure elements. The graphs are thus directed.

Dataset 4. The arXiv HEP-TH (high energy physics theory)
citation network. This is an evolving citation graph (Gehrke
et al. [29]) extracted from the e-print arXiv. The directed
network represents the citations within a data set of 27 770
papers by 352 807 directed links. If a paper u cites paper
v, then the graph contains a directed link from node u to
node v. Since there is no information about papers that are not
included in the database, we do not consider such papers in
the network. The data cover papers in the period from January
1993 to April 2003 (124 months). It begins within a few months
of the inception of the arXiv, and thus represents essentially
the complete history of its HEP-TH section [30].

An important point to note concerning these datasets
is that in Sec. II, to keep our development simple and
straightforward, we require the directed graph under study be
strongly connected, but here the graphs used for experiments
do not always guarantee the strong connectivity, which implies
that the graphs may have more than one strongly connected
component. In fact, by simply summing up the entropy for
each strongly connected component in a graph, our suggested
approximate von Neumann entropy can also apply to directed
graphs that are not strongly connected.

Moreover, it is also worth noting that in Dataset 4, citation
networks do not contain bidirectional links (a paper can not cite
any paper that has not yet been written). As a result, they are
strongly directed graphs that contain a number of sink nodes.
According to our previous analysis, these sink nodes may lead
to situations where the directed graph von Neumann entropy
is not well defined. However, from the strongly directed von
Neumann entropy approximation obtained in Eq. (23), we find
for a directed link (u,v) ∈ E the denominator term d in

v dout2
u is

only related to the out-degree of the starting node u and the
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FIG. 1. (Color online) Comparing approximate von Neumann
entropy for directed graphs J D

VN [Eq. (24)] with approximate von
Neumann entropy for undirected graphs J U

VN [Eq. (27)]. Blue solid
line: directed von Neumann entropy; red dotted line: undirected von
Neumann entropy; green dashed line: absolute difference.

in-degree of the end node v. This means that the sink nodes
do not make the expression singular, so the strongly directed
von Neumann entropy approximation can still be computed in
a valid manner on citation networks.

B. Von Neumann entropy of directed and undirected graphs

We first investigate the difference between the previously
defined undirected graph von Neumann entropy and its
directed analog in order to analyze how these entropies
correlate. To do this, we select the directed graphs in Dataset
1 and compute their normalized entropies using Eq. (24), we
then drop all the link directions to make the graphs undirected
and compute their corresponding entropies using the following
normalized quantity:

JU
VN = 1

|V |2
∑

(u,v)∈E

1

dudv

. (27)

Figure 1 shows the mean of the normalized entropies
and their difference versus graph size for both directed and
the corresponding undirected graphs. The main feature to
note is that as time evolves, the difference between the two
normalized entropies maintains small, which suggests that the
directed and undirected graph von Neumann entropies have
consistence on graphs that are well correlated. Moreover, it is
clear from the plot that at some particular time, the directed

entropy (blue solid line) fluctuates significantly while the
corresponding undirected one (red dotted line) does not; as
a result, the difference between them becomes particularly
large. This implies that by dropping the link directions,
the undirected graph obtained loses some of the structural
information residing in the directed graph. Thus, the undirected
graph von Neumann entropy also fails to capture this structure.

In Sec. II, we made use of the assumption that the
local average node degree ratio ru [Eq. (7)] is close to
unity in order to develop our approximate expression for
the von Neumann entropy. In order to explore whether this
assumption is empirically valid, we explore the dependence
of the approximate entropy on the average value of the node
degree ratio. To this end, we compute the average of the local
degree ratios over all nodes in a graph, i.e.,

r = 1

|V |
∑
u∈V

ru, (28)

where ru is the degree ratio for node u. We investigate
empirically how this global ratio affects the accuracy of the
approximate von Neumann entropy.

We commence by studying some real-world directed
networks and compare their normalized approximate von
Neumann entropies [Eq. (24)] with normalized true entropies,
which are computed using the formula

JD
TVN = |V |

∣∣∣∣HD
TVN −

(
1 − 1

|V |
)∣∣∣∣. (29)

The networks under study include the Wikipedia vote network,
provided by Leskovec et al. [31], the Gnutella peer-to-peer
networks from August 5 to 9, 2002, which are a sequence
of snapshots of the Gnutella peer-to-peer file sharing net-
work [32] and the arXiv HEP-TH citation network in Dataset 4.
Table I gives the network size, the minimum and maximum
values of the local degree ratio, and the average degree ratio.
The table also lists the values of both the true entropy and
approximate entropy. For each network studied, the average
node degree ratio is always between 0 and 1, although locally
the degree ratio differs significantly. The main feature to note
is that the difference between the true and approximate entropy
is relatively small, even though we are dealing with large
networks.

To take this analysis a step further, we use the random
directed graphs in Dataset 2. These graphs are generated
according to three different models, and we use them to
investigate the degree to which the approximate entropy
deviates from the true value for different types of structure.
We generate 1000 graphs for each model. For each graph,

TABLE I. Average node degree ratio and relative error for real-world network data.

Datasets Wiki-Vote p2p-G05 p2p-G06 p2p-G08 p2p-G09 ArXiv HEP-TH

Graph size 8297 8846 8717 6301 8114 27751
Min. ratio 0.0213 0.0303 0.0177 0.0208 0.0182 0.0035
Max. ratio 24.7500 22.4583 12.0000 9.2222 19.7000 46.6667
Average ratio 0.1984 0.4663 0.4501 0.4335 0.4196 0.4874
True entropy 0.0128 0.0343 0.0361 0.0374 0.0357 0.0430
Approx. entropy 0.0142 0.0489 0.0412 0.0387 0.0419 0.0585
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FIG. 2. (Color online) Mean and standard deviations of relative
error of normalized approximate von Neumann entropy J D

VN given
in Eq. (24) for graphs with different average (global) node in-degree
and out-degree ratios defined in Eq. (28).

we compute the relative error in the normalized approximate

entropy, i.e., |JD
VN−JD

TVN|
JD

TVN
. We then calculate the mean and

standard deviations of the relative error, and explore the
dependence on the global node degree ratio defined in Eq. (28).
Figure 2 shows the mean and standard deviations (standard
deviation shown as an error bar) of the relative error as a
function of the global node degree ratio. The statistics needed
for this plot are accumulated over graphs whose average node
degree ratio falls into a fixed interval. From the plot it is clear
the relative error is negligible (less than 0.2%) for graphs
with global node degree ratios ranging between 0.4 and 1.1.
Moreover, it takes on its minimum value when the ratio is
equal to unity. This is as expected since our development of
approximate von Neumann entropy expression is based on
the assumption [Eq. (4)] that local nodes have the similar
in-degree and out-degree. Therefore, the experimental results
demonstrate that the approximate von Neumann entropy does
not deviate too far from the true value even when the global
node degree ratio is not close to unity and thus our assumption
appears empirically valid.

C. Weakly and strongly von Neumann entropy
of directed graphs

In this section, we aim to use Dataset 1 to examine the
accuracy of the approximations of the entropy for weakly and
strongly directed graphs. In other words, we verify that the
simplified expressions approximate well the true values of
von Neumann entropy. In fact, the evolving directed graphs in
Dataset 1 are strongly directed as the number of unidirectional
links is significantly greater than that of bidirectional links.
To obtain weakly directed graphs, we choose a large number
of pairs of nodes that are connected by unidirectional links in
these strongly directed graphs, and change the unidirectional
connections to bidirectional ones.

In Figs. 3(a) and 3(b), we show the mean of the normalized
entropies versus graph size for the directed graphs in Dataset 1.
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FIG. 3. (Color online) Approximations to the von Neumann en-
tropy: (a) comparing the weakly directed approximation J WD

VN given
in Eq. (25) to the values of J D

TVN in Eq. (29) and J D
VN in Eq. (24);

(b) comparing the strongly directed approximation J SD
VN given in

Eq. (26) to the values of J D
TVN in Eq. (29) and J D

VN in Eq. (24). Blue
solid line: true von Neumann entropy; red dashed line: approximate
von Neumann entropy; black dotted line: weakly and strongly directed
approximations.

Here, we have computed the approximate entropies for weakly
and strongly directed graphs J WD

VN and J SD
VN using Eqs. (25)

and (26), respectively. We compare their values with the
normalized approximate entropy JD

VN given in Eq. (24) and
the normalized true entropy JD

TVN defined in Eq. (29).
From both plots, as the network evolves, all these quantities

decrease gradually to a value close to zero, which implies
that the true von Neumann entropy and its approximations
increase monotonically until a plateau value of unity is
reached. It is also worth noting that the difference between
these entropies is negligible, thus we can deduce that the
approximate von Neumann entropy we suggested (red dashed
line) approximates the true von Neumann entropy (blue solid
line) very well.
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FIG. 4. (Color online) Comparing approximate entropies for
weakly directed (WD) graphs J WD

VN [Eq. (25)] and strongly directed
(SD) graphs J SD

VN [Eq. (26)] with approximate entropy J D
VN [Eq. (24)].

Top left: J WD
VN vs J D

VN for weakly directed graphs; top-right: J WD
VN vs

J D
VN for strongly directed graphs; bottom left: J SD

VN vs J D
VN for weakly

directed graphs; bottom right: J SD
VN vs J D

VN for strongly directed graphs.

Figure 4 shows scatter plots of the weakly and strongly
directed approximations J WD

VN and J SD
VN versus the approximate

entropy JD
VN for sets of weakly directed and strongly directed

graphs. We select the relevant sets of graphs from Dataset 1
using a fixed time interval, which gives 50 samples for strongly
and weakly directed graphs respectively.

It is clear from Fig. 4 that the scatter plots of the weakly
(strongly) directed approximations J WD

VN (J SD
VN) are much closer

to the true values for the weakly (strongly) directed graphs
JD

VN. Thus, we conclude that the true value of von Neumann
entropy and the simplified weakly (strongly) directed form we
suggested are approximately equivalent on weakly (strongly)
directed graphs.

D. Von Neumann entropy for distinguishing directed graphs

We aim to explore whether the von Neumann entropy can
be used to distinguish directed graphs with different structural
properties. To this end, we have generated graphs with different
parameter settings and explored the dependence of the von
Neumann entropy on these parameters.

We commence by considering the Erdős-Rényi model,
where the two parameters are the graph size n (or number
of nodes) and the node link probability p. We vary these
parameters and randomly generate a number of directed graphs
at each setting. We compute the mean and standard deviations
of the normalized approximate von Neumann entropy JD

VN
[Eq. (24)] over samples with the same parameter settings.

Figure 5(a) shows the normalized approximate von Neu-
mann entropy (mean and standard deviations as an error
bar) for the Erdős-Rényi model, with n = 20,30,50,100 as
a function of p varying from 0.1 to 0.9. Figure 5(b) plots the
same data for p = 0.1,0.2,0.3,0.9 as a function of n varying
from 20 to 100. From the plots it is clear that the mean value of
the normalized entropy decreases gradually, which implies that
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FIG. 5. (Color online) Mean and standard deviations of the nor-
malized approximate von Neumann entropy J D

VN computed using
Eq. (24) as a function of (a) node link probability p and (b) graph
size n for Erdős-Rényi graphs. Red square solid line: (a) n = 20,
(b) p = 0.1; blue circle solid line: (a) n = 30, (b) p = 0.2; black
square dotted line: (a) n = 50, (b) p = 0.3; magenta circle dotted
line: (a) n = 100, (b) p = 0.9.

the von Neumann entropy increases with both the graph size
and the node link probability. This result is as expected since in
an Erdős-Rényi network, the structure becomes more complex
when there are both a large number of nodes in the network
(n is large) and there are a large number of random links in
the network (p is large). When the probability p is small,
the standard deviation of entropy is particularly large. This is
because for a network with a fixed size, a smaller number of
directed links in the network leads to a greater uncertainty of
how these links are connected. As a result, there is significant
variance in the network entropy.

To take this analysis a step further, we apply the von
Neumann entropy to the directed graphs in the artificial
network data (Dataset 2) to investigate whether different
topologies can be distinguished.
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FIG. 6. (Color online) Mean and standard deviations of the ap-
proximate von Neumann entropy quantity J D

VN [Eq. (24)] for different
models of directed graphs versus graph size. Red square solid line:
Erdős-Rényi; blue circle solid line: “small-world”; black square
dotted line: “scale-free.”

Figure 6 shows the mean value of the normalized approxi-
mate von Neumann entropy as a function of graph size (again,
standard deviation as an error bar). For a given graph size, the
difference in mean entropy for different models is much larger
than the standard deviation of the entropy within each model.
This suggests that the variance in von Neumann entropy due
to different parameter settings is much smaller than that due
to differences in structure, which means that different network
models have different values of von Neumann entropy for a
given size.

Finally, we aim to verify whether the von Neumann
entropy can be used to determine the enzyme class of the
protein graphs. Here, in order to obtain a more visual-friendly
plot, we use the original approximate von Neumann entropy
expression (21) instead of the normalized entropy (24). In
Fig. 7, we show a histogram of the von Neumann entropy for
the graphs in the database. The different line styles represent
different enzyme classes in the database. Four classes of
proteins (EC 3, EC 4, EC 5, and EC 6) show some separation.
Another interesting feature is that class EC 1 is located between
and is also overlapped with classes EC 3 and EC 6. Because of
the larger population of EC 1, the overlap is in fact relatively
small. Unfortunately, class EC 2, on the other hand, can not be
easily separated as it is mixed with classes EC 3 and EC 5.

The experiments in this section show that the directed
von Neumann entropy can be efficiently used to distinguish
different types of directed graphs from both artificial and
real-world data since it captures differences in structural
features of directed networks.

E. Von Neumann entropy for analyzing citation networks

Next, we explore whether the von Neumann entropy and
its simplifications for strongly and weakly directed graphs can
be used to detect changes in the structure of a citation network
that evolves over time. In this context, it is important to note
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FIG. 7. (Color online) Histograms of von Neumann entropy HD
VN

[Eq. (21)] for different enzyme classes. Blue square solid line: EC 1;
green circle solid line: EC 2; red square dotted line: EC 3; cyan circle
dotted line: EC 4; purple square dash-dot line: EC 5; Khaki circle
dashed-dotted line: EC 6.

that a high impact (or highly cited) paper may cause a much
more significant change in the network structure than a paper
with an average citation profile since such a paper usually
represents a paradigm change in the subject it concerns.

We convert the arXiv HEP-TH citation network to an
evolving directed graph and explore whether the directed
von Neumann entropy can be used to detect changes in
graph structure caused by the publication of high impact
papers.

As noted earlier, Dataset 4 is hermetic in the sense that it
does not contain any citation information related to papers that
fall outside its coverage. Thus, the citation graph grows from a
single node to a graph consisting of 27 770 nodes with 352 807
directed links. Occasionally, a newly published paper may cite
a number of papers that are not in the current citation network,
i.e., these papers do not cite any papers in the dataset and are
only cited by other papers in it. In this case, we regard the
newly published paper as a primary paper and the cited papers
as its secondary papers. The primary paper and the secondary
papers are thus introduced into the network at the same time
epoch.

There are 25 001 primary papers in the dataset, and we label
them from 1 to 25 001 according to the time at which they
first appear in the citation network. Hence, these ordinal labels
index the epoch at which papers appear in the database and can
be viewed as a time sequence, i.e., the citation network begins
at t = 1 (January 1993) and ends at t = 25 001 (April 2003).

The impact of a paper on a citation network is not reflected
immediately after it is published. Instead, the influence
develops and is sustained for a period of time. This is because
after the publication of a high impact paper, a large number
of subsequent papers will cite it (in the citation graph, the
corresponding node will have a large in-degree). As a result,
its influence will be sustained until the most recent paper has
cited it. In order to capture the impact of a paper, we use the
rate of change of the directed von Neumann entropy.
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FIG. 8. (Color online) Citational influence factor σu in Eq. (30)
and average node in-degree versus time for the arXiv HEP-TH
citation network. Red solid line: influence factor; magenta dashed
line: average node in-degree.

To use this quantity to measure the citational influence of a
paper, suppose a primary paper u is published at time t0, and
its impact is sustained for a period of length N , which means
the impact ends at time tN . We define the citational influence
factor σu of paper u as the mean value of the relative change in
the normalized strongly directed approximation J SD

VN [Eq. (26)]
over the relevant influence period t0,t1, . . . ,tN , i.e.,

σu �
∑N

i=1

(
J SD

VN(ti) − J SD
VN(t0)

)
NJ SD

VN(t0)
. (30)

From the dataset, we find that most papers have an influence
period between 5000 to 6000 (measured in terms of change
in sequence number). Thus, we take the average and fix N =
5500. At the beginning of the citation sequence, the volume
of data is not sufficient for reliable analysis. We thus start
the analysis at t = 5000 instead of t = 1 and terminate at
t = 24 000 which gives a sequence length of 19 000.

In Fig. 8, we plot both the influence factor and the in-
degree distribution for primary papers against time. The main
feature to note is that although the influence factor fluctuates,
it decreases gradually to a value close to zero. This is because
as time evolves, the citation network size increases rapidly,
reducing the potential relative impact of more recent papers.

Another important feature of this figure is that our influ-
ence factor can be used to reveal the changes in structure
caused by influential papers. In the plot at epochs close to
t = 2000,4500,14 000, we see some significant fluctuations
in the influence factor curve, which represent significant
changes in network structure. Turning our attention to the
in-degree distribution, there are peaks at epochs around t =
2000,4500,14 000, which means that papers published at these
times are cited heavily. Thus, we combine these observations
and suggest that the influential papers can create significant
changes in the structure of the evolving citation network.

To take this analysis a step further, we modify the original
citation data and explore how the influence factors change.
To this end, we select papers from a period of time and
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FIG. 9. (Color online) Paper impact measures versus time for
modified citation networks when citation data are deleted (a) between
4000 and 6000 and (b) between 8000 and 12 000. Red solid line:
original citational influence factor; magenta dashed line: original
average node in-degree; blue dotted line: citational influence factor
after modification; black dashed-dotted line: average node in-degree
after modification.

delete most of their citation connections. Figure 9 shows the
analysis before and after modifying the data if we delete
connections in the time interval (a) t ∈ [4000,6000] and
(b) t ∈ [8000,12 000]. As a result, the revised influence factors
show a sharp drop in values, but after a transient time return to
the behavior of the original curve. Thus, there are significant
differences in the network structure when high impact papers
are published, and the directed graph von Neumann entropy
can capture such differences.

IV. CONCLUSIONS

This paper is motivated by the aim of developing a
an effective entropy measure for quantifying the structural
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complexity of directed graphs. We have made a number of
contributions. First, we have shown how to compute the
von Neumann entropy of a directed graph using Chung’s
definition of the normalized Laplacian matrix. We simplify
the calculation of von Neumann entropy by replacing the
Shannon entropy by the quadratic entropy. From this starting
point, we have developed approximations to the entropy that
can be computed using in-degree and out-degree statistics.
Moreover, we present specific approximations of the von
Neumann entropy that apply to both strongly and weakly
directed graphs, according to whether or not the majority of
links are unidirectional links.

To evaluate these methods and analyze their properties,
we have undertaken experiments on both artificial and real-
world network data. These experiments demonstrate that the
suggested von Neumann entropy for directed graphs can be
used to characterize different classes of proteins and analyze
the structural properties of an evolving citation network.
Moreover, we show that the entropy characterization is not
unduly limited by the approximations made in deriving it.

The work reported in this paper can clearly be extended
in a number of different ways. First, we acknowledge that
we have explored a relatively limited quantity of real-world
data. It would, for example, be interesting to see if the method
can be used to detect network anomalies and disturbances.
Another interesting line of investigation would be to explore
whether the method can be used to analyze page rank matrices
since these too are based on random walks on directed graphs.
Finally, we plan to explore whether this work can be extended
to edge-weighted graphs, labeled graphs, and hypergraphs.
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