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Networks in financial markets based on the mutual information rate
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In the last few years there have been many efforts in econophysics studying how network theory can facilitate
understanding of complex financial markets. These efforts consist mainly of the study of correlation-based
hierarchical networks. This is somewhat surprising as the underlying assumptions of research looking at financial
markets are that they are complex systems and thus behave in a nonlinear manner, which is confirmed by numerous
studies, making the use of correlations which are inherently dealing with linear dependencies only baffling. In
this paper we introduce a way to incorporate nonlinear dynamics and dependencies into hierarchical networks to
study financial markets using mutual information and its dynamical extension: the mutual information rate. We
show that this approach leads to different results than the correlation-based approach used in most studies, on
the basis of 91 companies listed on the New York Stock Exchange 100 between 2003 and 2013, using minimal
spanning trees and planar maximally filtered graphs.
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I. INTRODUCTION

Financial markets are studied in econophysics as complex
systems, partly due to the lack of fundamental theory behind
their behavior in economics. In particular, network theory is
helpful in characterizing the interdependencies of different
financial instruments [1–3] or classifying the financial instru-
ments according to their interdependencies. Studies in finan-
cial markets use exclusive unsupervised classifications [4–6],
which are obtained in clustering. Based on single linkage
clustering analysis econophysicists have developed a popular
method for creating correlation networks of financial markets.

The crucial problem in any clustering procedure is the
choice of the measure of proximity between objects. In
analyzing the financial markets researchers are persistently
using only Pearson’s correlation coefficient and its derivatives.
The correlation structure of log returns of financial instruments
contains key information for many practical applications
such as portfolio optimization, risk management, and option
pricing [7,8]. Such correlation structures have been investi-
gated for time series describing stock returns [7–11], market
index returns [12–19], and currency exchange rates [20].
The tools for analyzing such correlation structures contain
spectral density analysis of the eigenvalues of the correlation
matrix, tools of multivariate analysis, and random matrix
theory [9–11]. Similarity-based graphs, or in other words
networks associated with the similarity matrices [7,8,21–24],
are also used.

The insistence of researchers in using Pearson’s correlation
coefficient is troubling and surprising however. It is well known
that financial markets involve terms that are not of the first
degree. There is now overwhelming evidence of nonlinear dy-
namics in stock returns [25–30], market index returns [31–36],
and currency exchange rate changes [26,37–40]. Therefore
the assumptions that only linear dependencies are relevant in
financial markets found in hierarchical clustering methodology
used in econophysics is baffling. In this paper we propose to
amend the methodology of clustering for financial data so that
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the measure of similarity takes nonlinear dependencies into
account.

Strictly linear correlation analysis can potentially miss
important features of any dynamical system, particularly
financial systems. Correlation coefficient is then contrasted by
the measure of mutual information (MI, IS), which differs from
correlation due to its information theoretic background [41],
which makes it a much more general measure. In fact,
IS = 0 if and only if the two studied random variables are
strictly (statistically) independent. Mutual information is then
a natural measure which can be used to extend the similarity
measure to make it sensitive to nonlinear dependencies,
and has indeed been successfully used in some applications
[42–44]. Mutual information can be interpreted as a measure
of how much information two studied systems exchange or
two studied stochastic processes or data sets share. Mutual
information is suitable for many applications [45–54]. The
estimation of mutual information in dynamical systems faces
some difficulties, however. These need to be understood in
practical applications but are not severe [49,55–60].

In this study we propose to use mutual information and
the mutual information rate as measures of similarity between
financial instruments. MI presents a good extension to the
correlation-based studies, while the mutual information rate
(MIR, IR) can be used in a more dynamic analysis as it can
be understood as a measurement of all the interdependencies
between the spatiotemporal organization of the observed
sequences. Mutual information is based on the Shannon’s
concept of entropy, and consequently the dynamical extension
of mutual information, that is the mutual information rate, is
in turn based on the dynamical extension of entropy or the
entropy rate [61,62]. We will use the concept of Lempel-Ziv
complexity [41,63] to obtain accurate estimates of the entropy
rate. It has been in many other fields [64–68] and recently
also in econophysics [69,70]. Most of these studies use
one-dimensional analysis. In this paper we use an extension of
Lempel-Ziv complexity to multidimensional signals [71,72] to
study the estimate of higher order correlations between pairs
of financial instruments. The validity of estimating mutual
information using Lempel-Ziv complexity for nonlinear time
series has been confirmed in earlier studies [64,73]. The mutual
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information rate and mutual Lempel-Ziv complexity provide a
good account of the spatiotemporal structure of the sequences,
as these sequences are then not only joint realizations of two
random variables, but instead a joint realization of one random
process, rendering the mutual Lempel-Ziv complexity much
more meaningful than a collection of quantities computed for
singular random variables [72].

The complexity of the financial markets and their behavior
in the recent years, together with the very fast dynamics
(e.g., the so-called flash crash), means that we no longer can
ignore the nonlinearity of financial markets without any loss
of important information. Therefore in this paper we extend
the known methodology of hierarchical clustering of financial
data and creating dependency networks by exchanging the
similarity measure from the Pearson’s correlation coefficient to
the information-theoretic approach using mutual information
and mutual information rate. We then apply it to log returns on
the New York Stock Exchange in order to show the validity of
this approach.

II. SIMILARITY MEASURE

The topological arrangement of the nodes in network-
based financial models is most often based on the Pearson’s
correlation coefficient ρ [74] for a studied period. A metric is
necessary to find an approximate distance between the nodes
in a network. Usually an Euclidean metric is used [75]:

δ(X,Y ) = √
2(1 − ρX,Y ). (1)

To extend such a measure to include nonlinear dependencies
we propose to base the topological arrangement of the nodes in
a network on the mutual information and mutual information
rate rate between closing prices for two consecutive days for
two financial assets. These are built on Shannon’s formulation
of entropy, entropy rate, and mutual information [61]. The
entropy rate is a term derivative to the notion of entropy, which
measures the amount of uncertainty in a random variable. We
denote Shannon’s entropy of a single random variable X as
H (X) [61]. Shannon also introduced the entropy rate, which
generalizes the notion of entropy for sequences of dependent
random variables. We denote it as h(X) and interpret it as
a measure of the average uncertainty left in the generation
of information in a process at time n having observed the
complete history up to that point [41]. For two discrete random
variables X and Y we can also find mutual between them,
which is defined as

IS(X,Y ) = H (X) + H (Y ) − H (X,Y ), (2)

where H (X) and H (Y ) are the marginal entropies and H (X,Y )
is the joint entropy of X and Y . Mutual information measures
the amount of information shared by X and Y , or in other
words how much the information about one stochastic process
reduces uncertainty about the other. Mutual information is
non-negative and IS(X,X) = H (X).

The mutual information rate (MIR) was also first introduced
by Shannon [61] as the rate of actual transmission [76]
and was consequently more rigorously defined by other
researchers [77,78]. Just as the entropy rate represents entropy
per unit of time, the mutual information rate represents
the mutual information exchanged between two dynamical

variables per unit of time. To simplify the calculation of the
MIR, if we have two continuous dynamical variables, we
transform them into two discrete symbolic sequences X and
Y . For such sequences the mutual information rate is defined
by

IR = lim
n→∞

IS(n)

n
, (3)

where IS(n) represents mutual information between the two
sequences X and Y calculated by considering words of length
n. It has been showed that it can be reliably estimated with
no need for stationarity, statistical stability, or a memoryless
source [79].

The above definitions do not actually present an obvious
way to calculate the mutual information or mutual information
rate in practice. To estimate MI we need an estimator of Shan-
non’s entropy. There is an abundance of estimators [55,80–84],
and in this study we use the Schurmann-Grassberger estimate
of the entropy of a Dirichlet probability distribution [85],
which is thought to be the best choice outside very specific
conditions (particularly small samples) [86].

One of the ways to estimate MIR is to use the Lempel-Ziv
complexity, which can be used to estimate both entropy rate
and mutual information rate. Lempel-Ziv is a data compression
algorithm [87], on which basis a number of estimators of
entropy rate have been created. In this article we follow
Ref. [69] and use the estimator created by Kontoyiannis in
1998 (estimator a) [88]. This estimator is widely used [69,89]
and has good statistical properties [88]. For other variants see
Ref. [62].

Formally to calculate the entropy rate of a random variable
X, the probability of each possible outcome p(xi) must be
known. When these probabilities are not known, entropy
can be estimated by replacing the probabilities with relative
frequencies from observed data. The mentioned estimator is
defined as

ĥlz = n log2 n
∑

i �i

, (4)

where n denotes the length of the time series, and �i denotes
the length of the shortest substring starting from time i that
has not yet been observed prior to time i, i.e., from time 1 to
i − 1. It is known that for stationary ergodic processes, ĥlz(X)
converges to the entropy rate h(X) with a probability of 1 as n

approaches infinity [88].
It is important that in cases where the original data points are

continuous (which is the case for financial markets) we need
to discretize the data points for the purpose of the Lempel-Ziv
complexity estimator. This procedure can be performed in
many ways; the number of bins into which the data is assigned
is a matter of convention and researchers’ choice, but it is
advised that it should not be larger than square root of the
sample size, and in fact should presumably be much smaller.
In the case of financial markets we propose that the number of
bins should be between 4 [70] and 8 [69]; see also comments
in the empirical part of this study. It is important, however, that
the states represent quartiles or other equal divisions; therefore
each state is assigned the same number of data points. This
design means that the model has no unnecessary parameters,
which could affect the results and conclusions reached while
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using the data. This experimental setup also proved to be very
efficient at revealing the randomness of the original data [90].

Based on this we can also define Lempel-Ziv complexity for
multidimensional sequences [91]. Extending the Lempel-Ziv
complexity for vectorial data has been proposed in Ref. [71],
and here we follow this method. Within this methodology the
joint Lempel-Ziv complexity of sequences X0, . . . ,Xk−1 is
defined as

hlz(X0, . . . ,Xk−1) = hlz(Z), (5)

where Z is a sequence of n k-uplets zj = (x0,j , . . . ,xk−1,j ).
Then Lempel-Ziv complexity of multidimensional sequences
can then be viewed as a joint Lempel-Ziv complexity.

Therefore, analogous with the Shannon information the-
ory [61], mutual Lempel-Ziv complexity can be defined using
the joint Lempel-Ziv complexity defined for two sequences X

and Y . Then mutual Lempel-Ziv complexity is defined as [72]

hm,lz(X,Y ) = hlz(X) + hlz(Y ) − hlz(X,Y ). (6)

The mutual Lempel-Ziv complexity (MLZC) can be inter-
preted as a convergence measure between two sequences.
Mutual Lempel-Ziv complexity can be negative transiently for
finite N , but for N → ∞ the asymptotic quantity hm,lz(X,Y ) is
always positive. In fact, the MLZC converges asymptotically
to a dynamic extension of the mutual information: the mutual
information rate [92,93].

We now know what mutual information rate is and how
to estimate it asymptotically using Lempel-Ziv complexity
for multidimensional data. But in order to create a topology
of the dependence network we would prefer to have an
Euclidean metric, which neither the mutual information nor
mutual information rate are. Here we will use the mutual
information-based metric proposed in Ref. [6]. Since mutual
information and the mutual information rate share most of their
properties it is therefore possible to use this metric directly
exchanging mutual information with mutual information rate.
The first such metric is well known [41]. The quantity

d(X,Y ) = H (X|Y ) + H (Y |X) = H (X,Y ) − IS(X,Y ), (7)

d(X,Y ) = H (X) + H (Y ) − 2IS(X,Y ) (8)

satisfies the triangle inequality, is non-negative and symmetric,
and satisfies d(X,X) = 0. This has been proved in Ref. [6].
Here we note that this metric may be normalized [94]
since mutual information depends on the size of the studied
sequence, so that the normalized version is defined as

D(X,Y ) = 1 − IS(X,Y )

H (X,Y )
= d(X,Y )

H (X,Y )
, (9)

but this is not necessary in our case since we use the same
sample size for all studied instruments.

Let us once again define D, this time in terms of the mutual
information rate:

D(X,Y ) = d(X,Y )

h(X,Y )
, (10)

where

d(X,Y ) = h(X,Y ) − IR(X,Y ), (11)

d(X,Y ) = h(X) + h(Y ) − 2IR(X,Y ). (12)

We now have a metric allowing us to quantify distance
between nodes in hierarchical networks describing interdepen-
dencies on financial markets. Therefore we can turn briefly to
summarizing the procedures used for creating such networks.

III. HIERARCHICAL NETWORKS

Having defined the distance measure we now briefly turn to
the construction methods for filtered graphs. Networks can
be constructed by either topological restraints or setting a
threshold on the similarity measure. We are using the first
approach to create minimal spanning trees (MSTs) and planar
maximally filtered graphs (PMFGs). These methods are well
known in literature; hence we will only briefly define them.
The distance matrix D containing d(X,Y ) for all studied
pairs is used to determine the minimal spanning tree and
planar maximally filtered graph [95] connecting n financial
instruments in the studied set. On the basis of the distance
matrixD we create an ordered listS, in which the distances are
listed in decreasing order. Then, to create a minimal spanning
tree, starting from the first element of the list the corresponding
link is added to the network if and only if the resulting graph
is still a forest or a tree [23]. Similarly a planar maximally
filtered graph can be constructed in the same way by adding
the corresponding link if and only if the resulting graph is still
a planar graph (with genus equal 0). For a detailed description
see Refs. [23,96].

IV. EMPIRICAL APPLICATION

To apply mutual information and mutual information
rate-based networks in practice and find out their properties
we have taken log returns for 91 stocks belonging to the
New York Stock Exchange 100 index which were traded
continuously between 11 November 2003 and 7 November
2013. The data are transformed in the standard way for
analyzing price movements, that is, so that the data points are
the log ratios between consecutive daily closing prices, rt =
ln(pt/pt−1), and those data points are, for the purpose of the
mutual information and Lempel-Ziv complexity estimators,
discretized into four distinct states. Here we need to briefly
discuss the choice of four bins for the discretization stage.
In general the number of bins should be chosen according
to how granular patterns the researcher want to study; we
believe that since financial markets on a daily scale are almost
random [97] a large number of bins would not be a good
choice as even in granular price changes there are not many
patterns to be found. In other studies four or eight have been
chosen though in those applications this is irrelevant [69,97],
but networks are sensitive to even small changes. So to our first
mentioned reason we also add a second, pragmatic one, as we
have observed that a larger number of bins provides us with
networks of worse characteristics; thus we have settled with
quartiles. A further study should nonetheless be performed to
scrutinize this choice and compare it with an approach based
on differential entropy.

In Figs. 1 and 2 we have presented PMFGs for mutual
information and the mutual information rate, respectively.
These are illustrative, and we will now turn to the analysis
of these networks and corresponding MSTs.
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FIG. 1. (Color online) PMFG based on IS .

As economics has no theory of financial markets behavior
there is no frame of reference to definitely state whether
moving from correlation to mutual information and mutual
information rate is rendering the networks closer to reality. In
this sense we can only analyze the resulting networks and find
out if they are significantly different. If they are indeed, then we
can find out some of their characteristics and add an educated
guess based on the properties of the used metrics (MI being a
more general measure). In particular we will look at whether
the stocks are clustered by economic sectors in all cases. We
also note that we produce networks based on daily prices, while
this may be even more important for intraday price changes,
where nonlinearity is significantly more prevalent [97].

FIG. 2. (Color online) PMFG based on MIR.
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FIG. 3. (Color online) Correlations for average shortest path.

We will compare the networks on the node level, cluster
level, and network level. First, on the node level we calculate
average shortest path (ASP), betweenness centrality, node
degree, and Markov centrality (MC) for each node in all those
networks and compare them between networks, obtaining
correlations presented in Figs. 3 (for average shortest path)
and 4 (for Markov centrality). We note that the results for
Markov centrality, node degree, and betweenness centrality are
virtually identical; thus the redundant ones have been ignored.
In Fig. 5 we present node degree distributions (with fitted
power laws) for the created networks.
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FIG. 4. (Color online) Correlations for Markov centrality.
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FIG. 5. (Color online) Degree distributions for (a) MST based on correlation; (b) PMFG based on correlation; (c) MST based on mutual
information; (d) PMFG based on MI; (e) MST based on mutual information rate; and (f) PMFG based on MIR.

For ASP the correlation between networks based on
correlation and mutual information is equal to 42% for MST
and 68% for PMFG. Same correlations for MC (and node
degree, betweenness) are equal to 69% and 67%, respectively
(thus it appears that a third of the relationships on the New York
stock market is not linear). The degree distribution is different
for these networks as well, as networks based on mutual
information contain nodes with much larger degrees. Thus we
can conclude that these networks are significantly statistically
different. Any well-defined test of their equality would give
us a p value of 0, and we have performed permutation tests
with such results; thus we have ignored formal testing here due
to the obvious nature of the results. The correlations between
these two networks and networks based on MIR are equal
to about 20% for ASP and around 0 for MC. The degree
distribution of an MIR-based network is closer to this of a
correlation-based one. Again we can obviously see that these
networks are statistically different from the previous ones; thus
a formal test is not needed.

We have confirmed that the differences between studied
networks are statistically significant. Now we need to see if
they contain valuable information. On a cluster level we look
at whether the clusters have been aligned largely according
to economic sectors. We want to preserve this characteristic
as it is important and cannot be reproduced by simulating a
virtual market [98]. This can be shown numerically as the
ratio of arcs between stocks of the same sector to all nodes as

presented in Table I. As can be seen without any topological
restraints the full market has 11.58% links within sectors, but
for our networks it is 49%–62% (correlation), 55%–67% (MI),
and 24%–25% (MIR). We see that this important feature is
preserved and even enhanced for networks based on MI, but is
not well-preserved in networks based on MIR, but even these
have a substantially higher ratio than unconstrained networks.

On a network level there is a limited possibility of investi-
gation as most network-wide measures would be constrained
by the common topological restraints we are using. We have
calculated clustering coefficients (the ratio of the number
of triangles observed to the number of possible triangles in
the network) for the planar graphs, however, which are also

TABLE I. Network comparison for MSTs and PMFGs based on
Pearson’s correlation, mutual information, and mutual information
rate.

Network Clustering Sector ratio

MST ρ – 62.22%
PMFG ρ 17.60% 49.06%
MST IS – 66.67%
PMFG IS 20.80% 55.81%
MST IR – 24.44%
PMFG IR 5.60% 25.09%
Reference 50.00% 11.28%
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presented in Table I. We can see that mutual information pro-
duces more clustering than correlation, but MIR creates signif-
icantly less clustered networks. The reference values in Table I
are calculated for a network with no topological restraints.

On this basis we can conclude that mutual information
is a better metric for the construction of financial networks
than correlation. The resulting networks are statistically
significantly, but not completely, different, and they show even
stronger dependence on sector- than correlation-based ones.
We also observe more clustering in those, and necessarily those
networks contain information about nonlinear relationships the
correlation-based networks ignore. We are therefore strongly
suggest using this approach for evaluation of market structure.
The conclusion is less clear with networks based on MIR.
These are not similar to networks presented above and are
also less clustered, and depend on sectors to a much lesser
degree. We could therefore find them useless. But since MIR
is a measure of market dynamics rather than market structure
we are not necessarily expecting results similar to those
based on correlation. Additionally these networks show strong
dominance of the financial sector, which corroborates a similar
result obtained using partial correlation [99]; thus we conclude
that these networks contain useful information, but it may be
necessary to see if other measures (e.g. partial mutual infor-
mation or transfer entropy [100]) produce a more appropriate
structures describing the dynamic side of the markets.

V. CONCLUSIONS

In this paper we have presented a methodology for cre-
ating hierarchical networks studying financial markets using
mutual information and its dynamic extension: the mutual
information rate. We have applied this methodology to the
New York Stock Exchange. The resulting minimal spanning
tress and planar maximally filtered graphs are significantly
different from those obtained using Pearson’s correlation as a
similarity measure; therefore we conclude that the nonlinear
dependencies not captured by Pearson’s correlation coefficient
but captured by mutual information are indeed relevant to
the hierarchical structure of the financial markets. We find
that mutual information is a good way of extending the
correlation-based networks, while the mutual information rate
presents a different side of the markets but produces networks
with troubling characteristics. Further research should look
into other measures which can find the dynamic structure of the
markets while producing networks with better characteristics.
The proposed methodology is sensitive to the choice of the
number of bins into which the log returns are discretized and
requires large sample sizes. Further research should look into
the discretization step and the possibility of using differential
entropy. Further studies based on other stock markets, market
indexes, and currency exchange markets should also be
performed to further analyze the usefulness of this approach.
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