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Residence times and boundary-following behavior in animals
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Many animals in heterogeneous environments bias their trajectories displaying a preference for the vicinity
of boundaries. Here we propose a criterion, relying on recent invariance properties of residence times for
microreversible Boltzmann’s walks, that permits detecting and quantifying boundary-following behaviors. On
this basis we introduce a boundary-following model that is a nonmicroreversible Boltzmann’s walk and that
can represent all kinds of boundary-following distributions. This allows us to perform a theoretical analysis of
field-resolved boundary following in animals. Two consequences are pointed out and are illustrated: A systematic
procedure can now be used for extraction of individual properties from experimental field measurements,
and boundary-curvature influence can be recovered as an emerging property without the need for individuals
perceiving the curvature via complex physiological mechanisms. The presented results apply to any memoryless
correlated random walk, such as the run-and-tumble models that are widely used in cell motility studies.
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I. INTRODUCTION

Animal movement has inspired numerous theoretical and
empirical papers in ecology over the past decades [1,2]. At
all scales, and most of the time, moving animals interact
with the local environment, albeit with stochasticity [3].
The ability of organisms to orientate within heterogeneous
and patchy landscapes is highly relevant for exploration and
foraging strategies [4–6]. Typical examples are when animals
display oriented movement patterns at multiple scales [7],
switch among behavioral modes in response to different
environmental conditions [8], or tend to restrain their paths
within a home range [9]. In this paper we address the case in
which animals react specifically to physical or patch bound-
aries, in particular boundary-following behaviors [10–17],
that are commonly referred to as thigmotactism in the
behavioral biology literature [18,19]. The relation between
individual trajectories and broad-scale population distributions
is still an open question for such boundary-following animals.
Understanding the residence times as well as the spatial
and angular distributions of animals moving in the vicinity
of the boundary is however a prerequisite to investigate
many processes occurring within the near-boundary zone. For
instance, these statistics determine the information that can
be sampled by an individual animal (in particular when it
has only local perception of its environment) or condition
the probability of encountering a congener. Therefore they
play an important role in foraging, settling, and information
sharing among conspecifics [6,20–22]. Finally they occur over
a large spectrum of spatial scales from the places where social
insects can drop building material when establishing a new nest
[23] to the long-distance dispersal of seeds by birds [24] and
marine landscape ecology [25–27]. Experimental data about
the spatial and directional distributions of animals moving in
the vicinity of boundaries have been scarce in the past but now

become more and more available [7,28–31] and make urgent
the need for related modeling works.

Models of boundary-following behaviors in animals usually
assume a behavioral switch between free-field movements
(within a two- or three-dimensional domain) and movements
along the boundary (which is one dimension smaller). Exact
solutions for the resulting stationary walker repartition be-
tween the boundary and the free field have been obtained,
e.g., in Refs. [10,11]. However, in these models, when
organisms follow the boundary, they are not merely influenced
by the boundary: They are modeled as located on the
boundary itself. These models (also called wall-following
models) are therefore inadequate to analyze the now available
spatial and angular statistical observations, such as those
of Fig. 1. This leads us to propose a modeling alternative
for boundary-induced behaviors where boundary followers
move in a domain of same dimension as when in free-field
mode with only their direction-change decisions influenced
by their perception of the boundary. This also means that
the effect of the boundary is no more considered to be
strictly local but extends to some distance from the boundary.
In addition to the already mentioned benefits of such fully
spatialized models of boundary following (in particular, the
possibility to infer individual behaviors from spatially resolved
experimental data), they allow for understanding different
residence-time statistics as emerging under the constraint
of different boundary geometries with behaviors otherwise
unchanged: It is not required that the behavioral model depends
on the perception of advanced geometrical features, such as
boundary curvature. Fully spatialized models are scarce in
the context of boundary-following modeling. The few related
papers are restricted to very specific situations (clusters of
interacting self-propelled rods gliding along a wall [32] or
constantly turning particles with a nonvanishing mean torque
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FIG. 1. Modeling boundary following in an experimental study
of ants Messor sancta forming cemeteries [59]. (a) Trajectory.
Typical trajectory of an ant in the vicinity of a conspecific’s
corpse. (b) Angular distribution. Considering criterion 1 (defined
in the main text) we have calculated the normalized cumulative
I (θ ) of f̃stat(d,θ )| cos(θ )| for θ ∈ [0,π ] where we used the circular
symmetry around the corpse to write the stationary distribution
function fstat(rrr,ωωω) ≡ f̃stat(d,θ ) with d being the distance to the
corpse (approximated by a disk of radius 2 mm) and θ being the
absolute angle between ωωω and radial vector ererer . The plot shows I (θ )
as a function of I (θ ) calculated for an isotropic distribution. In the
case of isotropy (dashed curve), this corresponds to a straight line
of unit slope, whereas in the case of boundary alignment [solid
curve, Eq. (2) with φ(rrr,ωωω) = 10 if ‖ωωω · ererer‖ < 0.3 and φ(rrr,ωωω) = 1
else, note that ααα(rrr) and K(rrr) > 0 do not impact I (θ )], the curve
deviates from the straight line. The experimental ant distribution
(circles, mean ± SEM for n = 625 trajectories, distance d = 5 mm) is
isotropic. This conclusion has also been confirmed for other distances
d (from 0 to 8 mm). (c) Residence time. Considering criterion 2, we
have calculated the boundary-following criterion C = 〈T 〉

〈T 〉ref
(defined

in the main text). An ant is tracked as long as its distance to the
corpse is shorter than 8 mm, and the boundary-following time T is
defined as the time spent within the band of width d around the corpse
during this track [shaded zone and thick parts of trajectory in (a)].
The presented experimental curve C(d) (circles, mean ± SEM, 507
trajectories) indicates boundary-following behavior (C ∈ [1.2,1.4]
compared to 1 expected for free-field behavior) and can be fitted with
our model for α̂αα

1−g
= 46ererer m−1 [solid curve, see Eq. (2)]. (d) Spatial

distribution. Alternatively, criterion 2 can be considered (without any
path tracking) by looking at the ant density profile around a corpse.
Here η̂(u) is the surfacic ant density at the stationary state, averaged
over the contour corresponding to the distance u to the corpse.
The figure shows the cumulative ant density c

�δ
,stat

∫ d

0 η̂(u)2πu du,

normalized by the incoming ant flux φ̂δ
,stat at d = 8 mm and by
the mean ant speed c. Thus η̂(u) is proportional to the derivatives of
the curves. The observed ant density (circles, mean ± SEM) is about
30% higher than expected for free-field behavior (dashed curve), thus
demonstrating boundary following and is again in close agreement
with our model fit (solid curve).

[33]), and the spatial and angular distributions of the particles
resulting from these models are not analytically tractable.
Some recent papers in statistical physics have considered
the motion of self-propelled particles in the presence of
many randomly distributed obstacles [34–37]. However, these
papers have focused on larger scales and have only marginally
investigated the distributions of the particles in the vicinity
of the boundary of an obstacle. Boundary following has also
been investigated in robotics, but the models considered in this
field are generally deterministic and are therefore less adequate
for describing animal behavior (see Ref. [38] and references
therein). Therefore, rather than by the boundary-following
literature, our approach is inspired by models used for studying
bacteria, cells, or animals moving up a stimulus gradient (e.g., a
chemical gradient for Escherichia coli bacteria [39], the slime
mold Dictyostelium discoideum and leukocytes [40,41], an
electrical gradient for kertinocytes involved in wound healing
[42], or a prey gradient in prey-predator models for some
protozoa [43]).

The first delicate question in this context is the criterion
to be used for the experimental detection and quantification
of boundary-following behaviors in contrast with unoriented
movements or only boundary-reflection behavior. We here
propose a criterion inspired by recently established invari-
ance properties of microreversible Boltzmann’s walks (which
have been identified in many biological contexts where
they are also referred to as run-and-tumble walks, Pearson’s
walks, or discrete correlated random walks with exponentially
distributed free paths [44–47]). Then, on the basis of this
criterion, we introduce a boundary-following model that is
a nonmicroreversible Boltzmann’s walk and that can represent
all kinds of boundary-following behaviors. Finally, we for-
mulate two inversion properties permitting to infer individual
behaviors from experimentally observed spatial and angular
distributions.

We start by restricting the scope to organisms that can
be modeled as constant-speed Boltzmann’s walkers, meaning
that their distribution function satisfies the following kinetic
equation:

∂f

∂t
+ cωωω · ∇∇∇f = −νf +

∫
ν ′f ′p(ωωω|ωωω′)dωωω′, (1)

where f ≡ f (rrr,ωωω,t) is the distribution function of location rrr

and movement direction ωωω at time t, c is the constant move-
ment speed, ν ≡ ν(rrr,ωωω) is the direction-change frequency, and
p(ωωω|ωωω′) ≡ p(ωωω|ωωω′,rrr) is the direction-change phase function,
i.e., the probability density that when changing direction an
organism picks up the new direction ωωω given the incoming
direction ωωω′. The two terms on the right-hand side of this
equation are so-called “collision” terms describing the effect
of organisms changing their direction on the population
of organisms moving in direction ωωω at location rrr: The
first term is the extinction term corresponding to organisms
departing from this population, and the second integral term
is the source term corresponding to organisms entering this
population coming from all other directions ωωω′. The notations
f ′ ≡ f (rrr,ωωω′,t) and ν ′ ≡ ν(rrr,ωωω′) are used to simplify this
integral source term. The biological meaning of such walks
is that organisms move at constant speed along straight lines
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until they perform an instantaneous direction change. Free
paths (the distances between successive direction changes)
are exponentially distributed, which is formalized in Eq. (1)
via the use of local direction-change frequencies. This means
that organisms behave statistically only as a function of their
instantaneous state, location, and direction (they make no use
of the memory they may have of their movement history).

II. BOUNDARY-FOLLOWING CRITERION

As far as the boundary-following criterion is concerned,
two definitions look straightforward: organisms follow the
boundary if (criterion 1) in the vicinity of the boundary,
they orient their movements parallelly to the boundary (or
close to the parallel), or if (criterion 2) although walking at
similar speeds, they spend more time in the vicinity of the
boundary than they would in a region of the same extension
but located far from the boundary (in the free field). Criterion
1 best refers to processes in which animals or cells adapt
their heading in reaction to a directional information, e.g., the
tangent to the limit of a geometrical domain. If such a process
is likely to make an animal also fulfill criterion 2, the reverse is
however not true. For example, Fig. 1 describes the results of an
experimental study with ants forming cemeteries, the boundary
considered here being the contour of a dead ant. According to
the first criterion, these ants do not display boundary-following
behavior since their distribution function is quasi-isotropic,
even close to the dead ant. However, their average residence
time 〈T 〉 within an 8 mm band along the boundary (defined
as the time until first return to the limit of the near-boundary
region) is significantly greater than it would be within the
same band in free field while their movement speed remains
quasi-identical. Hence, they do display boundary-following
behavior according to the second criterion. We will see that
this apparent contradiction can be solved with the physical
picture of a stationary state combining a stratified density field
with an isotropic velocity distribution (just as in a stratified
gas at equilibrium with external forces).

Because it is more general and because we want to
inquire into the determinants of residence times, we retain
the second criterion. As illustrated in Fig. 1, the strength
of boundary-following behaviors will be measured by how
much the ratio C = 〈T 〉

〈T 〉ref
exceeds unity with 〈T 〉ref = 1

c
πS
P

in the two-dimensional case (where S is the surface of the
near-boundary region and P is the length of its limit) and
〈T 〉ref = 1

c
4V
S

in the three-dimensional case (where V is the
volume of the near-boundary region and S is the surface of
its limit). This choice is motivated by invariance properties
of Boltzmann’s random walks: In the reference case where
the walkers have no orientation information (i.e., when they
display free-field behaviors) and where the boundary condi-
tions at the limit of D are compatible with a locally isotropic
stationary state, an isotropic homogeneous equilibrium is
reached and 〈T 〉 = 〈T 〉ref [48,49]. Note that this invariance
property and therefore the scope of our boundary-following
criterion also applies to all other microreversible random
walks leading to an isotropic homogeneous equilibrium (the
proof, inspired by Ref. [50], is given in the Appendix). The
reason why the assumption of unoriented biological walkers
leads to an isotropic homogeneous equilibrium is that such

walkers are assumed to display a behavioral symmetry with
the direction-change frequency ν independent of ωωω [we note
ν(rrr,ωωω) = ν∞(rrr)] and the phase function p depending on ωωω

only via any pair function of the deviation angle [we note
p(ωωω|ωωω′,rrr) = p∞(ωωω · ωωω′,rrr)]. This implies that the direction-
change statistics are microreversible [i.e., ν(rrr,ωωω)p(ωωω′|ωωω,rrr) =
ν(rrr,−ωωω′)p(−ωωω|−ωωω′,rrr)], and this microreversibility leads to
a uniform and isotropic stationary distribution fstat (which
is a consequence of Boltzmann’s H theorem). Therefore, the
wide class of Boltzmann’s walks in which the direction-change
statistics are modulated by the boundary or vary in space, but
still remain microreversible, cannot lead to boundary following
in the sense of our criterion because the average residence
times remain the same as in the free field (C = 1).

III. BOUNDARY-FOLLOWING MODEL

These invariance properties of microreversible memoryless
Boltzmann’s walks show that increasing 〈T 〉
,stat cannot be
achieved by modifying the direction-change frequency ν or the
phase function p without breaking microreversibility. Model-
ing boundary-following behaviors (preserving the constant-
speed, instantaneity, and no memory-usage assumptions)
requires therefore to work on how ν and p are influenced
by some directional perception of the boundary in such a way
that ν(rrr,ωωω)p(ωωω′|ωωω,rrr) 
= ν(rrr,−ωωω′)p(−ωωω|−ωωω′,rrr). All kinds of
combined ν and p dependencies can be explored. We here
propose a model in which only the direction-change frequency
is influenced. We therefore assume that p = p∞, where
p∞ is measured under free-field conditions. The remaining
question is then how ν depends on location and direction.
This dependency needs to break microreversibility [which
here means that ν(rrr, − ωωω) 
= ν(rrr,ωωω) because p∞ depends only
on ωωω · ωωω′], leading to a nonuniform potentially anisotropic
stationary distribution of walkers. We propose the following
formulation of the direction-change frequency:

ν(rrr,ωωω) = K(rrr)

φ(rrr,ωωω)
− c

1 − g
ααα(rrr) · ωωω, (2)

where g = ∫
S ωωω · ωωω′p∞(ωωω · ωωω′)dωωω is the asymmetry parameter

of the phase function (the average value of the deviation-
angle cosine, independent of ωωω′ by definition of p∞). φ

and ααα are adjustable functions with the only constraints
that

∫
S φ(rrr,ωωω)dωωω = 1,

∫
S φ(rrr,ωωω)ωωω dωωω = 000 (φ is a normalized

null-flux function of ωωω), and ν remains positive for all rrr and
all ωωω. K(rrr) is a free scalar field (with the only constraint that ν

remains positive) that does not impact the stationary distribu-
tion of the walkers and therefore does not modify the average
residence times (see the Appendix). This direction-change
frequency model permits obtaining all kinds of stationary
anisotropic nonuniform distributions of the walkers and all
kinds of residence times (see Fig. 1).

IV. INVERSION PROPERTIES

Reciprocally, when interpreting boundary-following exper-
iments, measuring the stationary distribution of walkers may
allow for inferring the form of the ν dependency (assuming
again that only the direction-change frequency ν, but not the
phase function p, is influenced by the boundary). Inversion
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would need to be performed numerically in most cases to
derive the φ and ααα dependencies from the observed stationary
distribution fstat, but we can formulate theoretical inversion
properties in two cases that can be used in many of the
situations encountered in experiments.

The first inversion property concerns the case when the
angular distribution of the walkers at stationary state φ̂ = fstat

η

(with η = ∫
S fstatdωωω) is observed to be independent of space

in a given geometrical domain and when this domain is
sufficiently extended (small Knudsen limit Kn � 1) so that
the walkers can be assumed to behave as their transport
equivalents [p∞ replaced by an isotropic phase function and
ν replaced by ν∗ = ν(1 − g) in the Boltzmann walk]. The
small Knudsen limit is not required if the phase function p∞
is isotropic. In this case, measuring φ̂ and α̂αα = ∇∇∇η

η
(the relative

value of the observed density gradient) allows for stating that
walkers change direction according to ν following Eq. (2)
with φ = φ̂ and ααα = α̂αα, only the K scalar field remaining
adjustable (meaning that the inversion solution is not unique).
A possible proof consists of first checking that the stationary
version of Eq. (1) with p(ωωω|ωωω′) isotropic is indeed satisfied
when replacing ν by the expression of Eq. (2). Then, assuming
that another direction-change frequency ν̃ is also compatible
with both Eq. (1) and the observed stationary distribution,
writing ν̃ = ν + ζ and replacing ν by ν + ζ in Eq. (1) leads
to

ζ (rrr,ωωω)φ̂(ωωω) =
∫
S

ζ (rrr,ωωω′)φ̂(ωωω′)p∞(ωωω · ωωω′)dωωω′, (3)

which imposes that ζ (rrr,ωωω)φ̂(ωωω) is isotropic (because of the
isotropy of p∞). Introducing the notation k(rrr) = ζ (rrr,ωωω)φ̂(ωωω),
the expression of ν̃ becomes that of Eq. (2) with only K(rrr)
replaced by K(rrr) + k(rrr). All ν solutions have therefore the
same form with only K(rrr) taking different values. We checked
numerically that the direction-change frequency model of
Eq. (2) indeed tends to create stationary distributions such
that φ̂ and α̂αα are close to φ and ααα (for large domains and
null-flux boundary conditions).

The second inversion property permits addressing some
cases in which the previous conditions are not fulfilled, i.e.,
when the transport equivalence (Kn � 1) cannot be used and
the phase function p∞ is anisotropic: If fstat is observed to be
isotropic in the vicinity of a given location rrr (as in the example
of Fig. 1), no other conditions are required, and the direction-
change frequency of our Boltzmann’s walkers at rrr is again
given by Eq. (2) with φ = φ̂ and ααα = α̂αα, but now φ̂ is constant
( 1

2π
in two dimensions and 1

4π
in three dimensions). K(rrr) is

again a free scalar field. The proof is identical to the preceding
one [51]. This property tells us that when the distribution of the
walkers is observed to be isotropic at the stationary state, then
the angular dependency of the direction-change frequency can
be fully obtained by measuring nothing more than the relative
gradient of the local density of walkers, i.e., a quantity that is

most commonly accessible via simple video analysis and does
not require any path-tracking procedure (see Fig. 1).

V. DISCUSSION

We expect the direction-change model proposed in this
paper to be used for theoretical studies of boundary following
because stationary spatial and angular distributions as well
as residence times can be exactly calculated, e.g., permitting
investigating the effect of the geometry of the boundary
[52]. Moreover, in the perspective of experimental studies,
the presented inversion properties permit directly formulating
and parametrizing a spatially resolved boundary-following
model on the basis of easily measurable fields. In many
cases, this model containing the free parameter K may be
already satisfying, and the fact that the macroscopic fields
do not depend on K (which is the direction-averaged value
of the direction-change frequency) might even be considered
as an invariance property leading to interesting biological
interpretations. Otherwise, if a unique model (i.e., without
free parameters) is required, more detailed experimental data,
such as trajectories, will be needed.

APPENDIX

The residence-time statistics of diffusion random walks
have been shown to satisfy invariance properties [48,49] that
have then been gradually enriched and applied to wider classes
of random walkers along the following line [50,53–58]: In any
stationary state within a given domain D of dimension d, the
average time 〈T 〉 spent by constant-speed walkers within a
subdomain 
, from their entry through 
’s boundary, noted
∂
, to their first return to ∂
, equals the ratio of the number
N
,stat of walkers within 
 to the incoming flux φ̂∂
,stat at ∂
,

〈T 〉 = N
,stat

φ̂∂
,stat
=

∫



drrr

∫
S

dωωω fstat∫
∂


drrr

∫
Sin

dωωω fstatcωωω · nnn
, (A1)

where S is the d-dimensional unit sphere, nnn is the inward
normal to ∂
, Sin is the corresponding inward hemisphere,
fstat ≡ fstat(rrr,ωωω,t) is the distribution function of location rrr and
movement direction ωωω at time t , and c is the movement speed
(considered to be constant in this paper). Therefore, 〈T 〉 is
invariant to any modification of the characteristics of the walk
that leaves N
,stat and φ̂∂
,stat unchanged. This is in particular
the case for the wide class of walkers that lead to an isotropic
homogeneous equilibrium. Replacing fstat by a homogeneous
isotropic field in Eq. (A1) shows that such walkers have in
common that 〈T 〉2d

ref = 1
c

πS
P

for d = 2 (where S is the surface
of 
 and P is the length of ∂
) and 〈T 〉3d

ref = 1
c

4V
S

for d = 3
(where V is the volume of 
 and S is the surface of ∂
).
The main point is that 〈T 〉ref is invariant to ν and p: The
stationary average residence-path length c〈T 〉 only depends
on the geometry of 
.
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