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A number of biological processes, such as invasive plant species and cell migration, are composed of two key
mechanisms: motility and reproduction. Due to the spatially exclusive interacting behavior of these processes a
cellular automata (CA) model is specified to simulate a one-dimensional invasion process. Three (independence,
Poisson, and 2D-Markov chain) approximations are considered that attempt to capture the average behavior of
the CA. We show that our 2D-Markov chain approximation accurately predicts the state of the CA for a wide
range of motility and reproduction rates.
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I. INTRODUCTION

Spatially exclusive invasion processes are commonly found
in biological systems, including invasive plant species [1–6]
and tissue growth and cell migrations [7–12]. The two main
mechanisms that primarily drive the evolution of these physical
systems are motility and reproduction. For example, seed
dispersal and cell movement are motility mechanisms, and
clonal root propagation and cell proliferation are reproduction
mechanisms. Developing mathematical models incorporating
motility and reproduction mechanisms provides a means to
understand and predict important invasion processes, such as
the threat to biodiversity by invasive plant species and the
growth of cancerous tumors.

Cellular automata (CA) or agent-based models have been
implemented to simulate plant invasion and monolayer cell
processes [1,5–8,11,12], and in this work we focus on
modeling an invasion front propagating in just a single
spatial direction. One example of where unidirectional inva-
sion fronts occur is in scratch assays [13–15], a cell-based
experiment often used to estimate the rates of cell motility
and proliferation (see Fig. 1). Another example is the agent-
based modeling of invasive pine trees from commercial
plantations into natural habitats [6]. The CA framework
consists of occupied sites on a lattice (agents) that represent
individuals (e.g., plants or cells), and at any given time each
site can only be occupied by a single agent, which is a
spatial exclusion process [16,17]. We specify continuous-time
and one-dimensional discrete space CA rules to simulate
the motility and reproduction mechanisms in the invasion
process [18].

The CA model simulates the spatially exclusive and
stochastic interactive behavior of individuals within the inva-
sion process, allowing for the effect of spatial structuring to be
explicitly accounted for in the system. In contrast, the deriva-
tion of classical continuum models that predict the collective
dynamics of the evolving population [19–23] assume spatial
homogeneity or the mean-field assumption [24–26]. It is well
known that in a one-dimensional Cartesian geometry the clas-
sical continuum model is a reaction-diffusion equation, with
diffusivity D (motility coefficient) and reproduction rate λ,
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and under certain conditions the invasion front advances with
speed s = √

2Dλ [21]. However, many choices of D and
λ give the same wave speed and even matching the wave
front to experimental or simulation data does not uniquely
determine the rates of motility and reproduction in the system
[8]. This motivates us to derive approximations for averaged
CA properties to predict the collective motion of the invasion
process.

We consider two existing approximations (called the in-
dependence approximation and the Poisson approximation,
respectively), and a third new approximation (called the 2D-
Markov chain approximation) is introduced to approximate
the averaged CA behavior.

The first approximation—the independence
approximation—assumes independence (i.e., the mean-field
assumption) between the occupancy of sites in the CA model.
It has been shown that in the absence of reproduction this
approximation provides the exact marginal probabilities of
occupancy [18]. Numerous approximations which have been
considered in the literature, mostly of the partial differential
equation continuum type, are further approximations to this
model [17,18,27–30]. Consistent with the findings of these
studies, the independence approximation is shown to be
accurate only when the rate of reproduction is at least two
orders of magnitude smaller than the rate of motility.

By considering the case of reproduction in the absence
of motility, the occupancy can be described explicitly by
the Poisson process [31,32]. This forms the basis of the
second approximation—the Poisson approximation—when
both reproduction and motility mechanisms are present in
the system, and we show that the approximation becomes
increasingly inaccurate as the rate of motility increases for a
fixed rate of reproduction.

We derive an approximation—the 2D-Markov chain
approximation—which is a Markov chain of much lower
dimension than the original CA exclusion process. We
find that this last approximation accurately predicts the state
of the invasion process provided the motility rate is less than
two orders of magnitude of that of the reproduction rate.
This 2D-Markov chain approximation provides an accurate
approximation in systems with moderate to high rates of
reproduction, for example as is the case for breast cancer
cell migrations where cell motility and cell proliferation rates
are estimated to be of the same order [7], and invasive plant
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FIG. 1. (Color online) Cell invasion assay. Top: Modified images of an experiment (reprinted from PLoS ONE, Yu and Machesky [14],
under the terms of the Creative Commons Attribution License). The time t∗ is in hours. Bottom: Thirty CA simulations, with reproduction rate
λr = 1, motility rate λm = 1, initial condition x0 = 10 (black line), and lattice length L = 250. The blue (gray) squares illustrate the sites that
are occupied.

species (e.g., Carpobrotus affine acinaciformis) that reproduce
primarily through clonal root propagation [5].

II. CELLULAR AUTOMATA MODEL

We specify a continuous-time, discrete space CA model
to simulate the motility and reproduction mechanisms in a
spatially exclusive invasion process evolving in one spatial
dimension [18]. We consider a nondimensional single row
lattice of unit spacing with L sites, each of which may be
occupied by an agent (e.g., plant or cell). Each agent or site that
is occupied attempts to move at rate λm; the direction of this
movement—left or right—is chosen with equal probability,
and the move only proceeds if the site in the chosen direction
is unoccupied. A successful motility event results in the agent
moving site. Similarly, each agent attempts to proliferate at
rate λr ; the direction of reproduction—left or right—is chosen
with equal probability, and the event only proceeds if the site in
the chosen direction is unoccupied. A successful reproduction
event results in an extra site, in the chosen direction, becoming
occupied. For all the simulations we initially populate all
the sites with agents to the left of and including x0, where
1 � x0 � L. Thirty CA simulations are illustrated with blue
(gray) squares for occupied sites in Fig. 1 (bottom).

This spatially exclusive invasion process is a continuous-
time Markov chain [33]. We denote the random state of
the chain at time t by X(t), which is a binary vector of
length L, the maximum number of agents possible, where
the ith element of the vector is zero if site i is not occupied by

a cell, and is one if site i is occupied by a cell. The process has
the transition rates shown in Table I where xi(t) is the state of
site i at time t and ei is a vector of length L with a one in the
ith position and zeros elsewhere. The size of the state space
of this Markov chain is then

∑L
x=x0

(Lx) where x0 is the initial
number of agents.

The distribution of the state of the exclusion process at any
time t may be evaluated by solving the forward equation [33].
However, this is practically infeasible for anything other than
systems with small x0 and L. Realizations of the exclusion
process are generated by exploiting the sample path behavior
of the process [34–36] (last row, Fig. 1). We now consider the

TABLE I. The transitions and associated rates which define the
stochastic exclusion process of the CA model.

Transition
Event x(t) → Rate

Motility right x(t) + ei − ei−1
λm

2 xi−1(t)[1 − xi(t)]

i = 2, . . . ,L

Motility left x(t) + ei − ei+1
λm

2 xi+1(t)[1 − xi(t)]

i = 1, . . . ,L − 1

Reproduction x(t) + ei
λr

2 [1 − xi(t)] [xi−1(t) + xi+1(t)]

i = 2, . . . ,L − 1

Reproduction site 1 x(t) + e1
λr

2 [1 − x1(t)]x2(t)

Reproduction site L x(t) + eL
λr

2 [1 − xL(t)]xL−1(t)
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three approximations to this stochastic process. The aim is to
evaluate the probabilities pi(t), being the marginal probability
that site i is occupied at time t , for i = 1, . . . ,L.

III. INDEPENDENCE APPROXIMATION

Assuming independence between occupied sites gives rise
to the system of L ordinary differential equations (ODEs):

dpi

dt
= λm

2
(pi−1 − 2pi + pi+1) + λr

2
(1 − pi)(pi−1 + pi+1),

for i = 2, . . . ,L − 1,

dp1

dt
= −λm

2
p1 + λm

2
p2 + λr

2
p2(1 − p1),

and
dpL

dt
= −λm

2
pL + λm

2
pL−1 + λr

2
pL−1(1 − pL),

for the marginal probabilities of occupancy. This is called the
independence approximation. Note that in the case of motility
only with λr = 0 it has been shown that the approximation
gives the true marginal probabilities of occupancy [18]. Several
approximations appearing in the literature are based upon this
approximation [17,18,27–30].

IV. POISSON APPROXIMATION

For the second approximation we begin by considering
the case of reproduction only with λm = 0. The distribution
of the exclusion process may be found explicitly. This is
because the agent initially at site x0 moves to the right at
constant rate λr/2, and all cells to the left of the rightmost
occupied site must be occupied [32]. Hence, the probability
of the rightmost site occupied at time t being site i, qi(t), is
given by the system of ODEs ([31,32]) (corresponding to the
Poisson process in the limit L → ∞):

dqi(t)

dt
= λr

2
qi−1(t) − λr

2
qi(t), i = x0, . . . ,L − 1,

with qi(t) = 0 for i = 1, . . . ,x0 − 1 and

dqL(t)

dt
= λr

2
qL−1(t).

The marginal probabilities of occupancy are then given exactly
by

pi(t) =
L∑

j=i

qj (t) = 1 −
i−1∑

j=1

qj (t), i = 1, . . . ,L,

since site i is occupied if the rightmost occupied site is position
i or to the right of position i.

We replace λr/2 in the above with (λr + λm)/2 to provide
an approximation to the combined motility and reproduction
exclusion process.

V. 2D-MARKOV CHAIN APPROXIMATION

The 2D-Markov chain approximation builds upon the exact
correspondence between the CA process and the Poisson
process in the absence of motility. In the case of reproduction
only, knowledge of the rightmost site occupied is sufficient

TABLE II. The transitions and associated rates which define the
2D-Markov chain approximation.

Transition
Event (r(t),g(t)) → Rate

Motility right (r(t) + 1,g(t) + 1) λm

2 1r(t)<L

Motility left (r(t) − 1,g(t) − 1) λm

2 g(t)b(0,r(t),λr ,λm)

Reproduction right (r(t) + 1,g(t)) λr

2 1r(t)<L

Reproduction other (r(t),g(t) − 1) λr

2

[
2g(t) [r(t)−g(t)−1]

[r(t)+g(t)−1] +
b(0,r(t),λr ,λm)1g(t)>0

]

to fully characterize the system. Once motility is present,
this is not the case as gaps (i.e., unoccupied sites between
occupied sites) are likely to appear, and hence there is the
possibility of movement or reproduction into these vacant sites.
We approximate the position of the rightmost site occupied and
the number of gaps at time t and use ansatze for how the gaps
are spread between site 1 and the rightmost occupied site.

Consider a bivariate continuous-time Markov chain X(t) =
(R(t),G(t)), where R(t) is the position of the rightmost
occupied site and G(t) is the number of unoccupied sites to
the left of the rightmost occupied site at time t . The number of
occupied sites is therefore R(t) − G(t). We use (r(t),g(t)) to
denote the realized state of this chain at time t . The 2D-Markov
chain approximation has the transition rates shown in Table II.

The first event type which changes the state of the chain is
motility to the right by the rightmost occupied site—labeled
Motility right in Table II. This increases the rightmost occupied
site by one and also increases the number of gaps by one as
there is now an additional gap to the left of the rightmost
occupied site. The rate of this event is λm/2 provided the
rightmost occupied site is not in position L (in Table II, 1c is
the indicator function which equals one if c is true and is equal
to zero otherwise).

Similarly, reproduction to the right by the rightmost occu-
pied site—labeled Reproduction right in Table II—increases
the rightmost occupied site by one but does not result in an
increase in the number of gaps. The rate of this event is λr/2,
once again provided that the rightmost occupied site is not in
position L.

The only way the rightmost occupied site can decrease is
by a motility event of the rightmost occupied site into a gap to
its immediate left—labeled Motility left in Table II. Hence, the
rate of this event in our approximate model is λm/2 multiplied
by the probability that the site immediately to the left of
the rightmost occupied site is vacant. If gaps were uniformly
distributed between site 1 and the rightmost occupied site, then
the required probability would be g(t)/(r(t) − 1). However, as
motility is required to produce gaps, and in turn a motility event
requires a gap to occur, it is consequently more likely that such
events occur at occupied sites closer to site r(t) than site 1; to be
emphatic, the rightmost occupied site always has a vacant site
to its right unless it is in site L. With the same reasoning, it can
be seen that the probability of site [r(t) − 1] being vacant will
be more likely when reproduction is large relative to motility
for a fixed number of gaps, whereas when motility becomes
very large the occupied sites (and hence gaps) will be close to
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uniformly spread between site 1 and site r(t). To account for
this higher probability of vacancy in the position immediately
to the left of the rightmost occupied site and its dependence on
reproduction rate relative to motility rate, we use the ansatz

b(0,r(t),λr ,λm) =
f

(
0, λr

λr+λm

)

F
(
r(t) − 1, λr

λr+λm

) ,

where f (0,p) is the geometric probability mass function
of no failures with probability of failure p, and F (x,p)
is the corresponding cumulative distribution function of x

failures. The resulting rate of this event is therefore denoted
(λm/2)g(t)b(0,r(t),λr ,λm), being the rate of migration to the
left multiplied by our approximation for the probability of site
r(t) − 1 being unoccupied at time t .

The final event which changes the state of the chain is
when reproduction results in the removal of a gap—labeled
Reproduction other in Table II. This occurs if the rightmost
occupied site reproduces into a vacant site to its immediate
left, or if any other site reproduces into any of their vacant
neighboring sites. We decompose this rate into these types of
“events”; the former is specified in an identical way to the
Motility left rate just described and hence occurs with rate
(λr/2)g(t)b(0,r(t),λr ,λm), while the latter requires another
ansatz as we will now derive. The rate of the second group of
events—reproduction into any neighboring vacant site by all of
the r(t) − g(t) sites excluding the rightmost occupied site—is
λr/2 times the number of unoccupied-occupied pairs that exist,
excluding any involving the rightmost site. We use the ansatz
2g(t) {[r(t) − g(t) − 1]/[r(t) + g(t) − 1]} to approximate the
number of such pairs. To assist in understanding this ansatz,
consider the case r(t) = 6, at some arbitrary time t , with
different numbers of gaps, g(t): if g(t) = 0, then the number of
unoccupied-occupied pairs is zero, as reflected in our ansatz; if
g(t) = r(t) − 1, the maximum possible number of gaps under
any scenario, then the number of unoccupied-occupied pairs
excluding the rightmost occupied site is once again zero, which
is also reflected in our ansatz. Now consider a case with a small
number of gaps, say g(t) = 1; then if this gap was allocated
uniformly at random, there exists two realizations giving rise
to one unoccupied-occupied pair and three realizations giving
rise to two unoccupied-occupied pairs, and hence under this
assumption the average number of unoccupied-occupied pairs
is 8/5 ≈ 1.6; using our ansatz, the number of unoccupied-
occupied pairs is evaluated as 8/6 ≈ 1.33. The lower value
used here accounts for the earlier noted property that the gap is
more likely to be at site r(t) − 1 and hence reduces the average
number of unoccupied-occupied pairs. As g(t) increases, the
above considerations also motivate and support the chosen
ansatz.

It can be seen that the approximation just described
is a Markov chain with only two dimensions, being the
position of the rightmost occupied site and the number
of gaps, respectively. Here, the state space is {(r,g) : x0 �
r � L,0 � g � r − x0}. This should be compared with the
original Markov chain exclusion process, where the number
of states is

∑L
x=x0

(Lx). Hence, the 2D-Markov chain is much
simpler to handle. To evaluate the marginal probabilities
of occupancy, we use the mexpv.m function in the EX-
POKIT package for MATLABTM. Given the probability of

each state pr,g(t)—the probability the rightmost agent at
time t is in position r and there exist g unoccupied sites to
the right of this agent at time t—we may approximate the
marginal probability of occupancy by

pi(t) = 1 −
i−1∑

r=x0

r−x0∑

g=0

pr,g(t) −
L∑

r=i+1

r−x0∑

g=0

pr,g(t) × g

× b(r − i − 1,r,λr ,λm),

for i = 1, . . . ,L, where

b(r(t) − i − 1,r(t),λr ,λm) =
f

(
r − i − 1, λr

λr+λm

)

F
(
r(t) − 1, λr

λr+λm

)

for i = 1, . . . ,r(t) − 1 is the earlier used ansatz extended to the
other sites in the lattice. The equation for pi(t) may be read
as one minus the probability of not being occupied, where
site i is not occupied if either the rightmost cell is to the left
of site i or if the rightmost cell is to the right of site i but site
i is unoccupied.

We note that the 2D-Markov chain approximation reduces
to the Poisson process in the case of reproduction only
(i.e., when λm = 0). Also, our 2D-Markov chain approx-
imation shares some common features with the one-hole
approximation [31,32,37]. In the one-hole approximation it
is assumed that only a single unoccupied site exists behind
the rightmost occupied site, and via a particular ansatz a
one-dimensional approximation can be derived [31,32,37].
While weakening slightly the assumptions of the Poisson
process approximation, this one-hole approximation obviously
still requires reproduction to be much larger than motility to
provide an accurate approximation [37]. In comparison, our
approximation, while requiring two dimensions, allows for
any number of gaps to emerge and instead uses ansatze for
how these gaps are distributed behind the rightmost occupied
site.

VI. DISCUSSION

Shown in Fig. 2 is the average invasion wave profile
or estimate of marginal probabilities (solid black curves)
from 10 000 CA simulations, and the three approximations:
independence approximation (broken black curves), Poisson
approximation (solid gray curves), and 2D-Markov chain
approximation (broken gray curves). All the results are for
the same initial condition x0 = 2 and reproduction rate λr = 1.
The effect of increasing both the motility rate λm (top–bottom)
and time t (left–right) is shown in the panels. As expected, we
see (top row) that in the case of reproduction only when λm = 0
the Poisson and 2D-Markov chain approximation are an
excellent match to the averaged CA data, but the independence
approximation increasingly overestimates advancement of the
CA wave profile with time (left–right). For increasing rate of
motility (top–bottom) we find that the Poisson approximation
increasingly deviates from the CA data, while the 2D-Markov
chain approximation still accurately predicts the collective
motion of the system for moderate values of λm (second and
third row). The independence approximation provides the best
estimate of the invasion process for the largest value of the
motility rate (last row).
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FIG. 2. Comparison of the three approximations to averaged CA data from 10 000 simulations (solid black curves), with reproduction
rate λr = 1, initial condition x0 = 2, and domain length L = 250. Independence approximation (broken black curves), Poisson approximation
(solid gray curves), and 2D-Markov chain approximation (broken gray curves). Note that the curves are indistinguishable in some of the panels,
and in the last row the values for the Poisson approximation (solid gray curves) are close to unity. The results illustrate the differences between
the approximations and averaged CA data for both increasing time t (left–right) and motility rate λm (top–bottom).
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FIG. 3. Accuracy of the three approximations as measured by the sum of squared errors of marginal probabilities in comparison to
averaged CA data evaluated from 100 000 simulations, with reproduction rate λr = 1, initial condition x0 = 2, domain length L = 250, and
λm = {0,0.1,1,10}. The results illustrate that the Markov chain approximation is more accurate than the other two approximations, for nearly
all integer values of the time t .

In Fig. 3 we present the sum of squared errors in
marginal probabilities of occupancy for the independence
approximation (top), the Poisson approximation (middle), and
the 2D-Markov chain approximation (bottom) across a wider
range of times, t = 1 to 10 in units of one, for motility
rates λm = 0,0.1,1, and 10. The true marginal probability
was estimated based upon 100 000 simulations. It can be
seen that for all motility rates less than the reproduction
rate the 2D-Markov chain approximation provides the best
approximation uniformly with respect to time and that this
approximation is highly accurate. When the motility rate
is equal to or exceeds the reproduction rate, the indepen-
dence approximation is better for earlier times, with the
2D-Markov chain still being the best approximation for later
times.

The accuracy can be easily inferred for other motility and
reproduction rates, as the behavior and hence accuracy are only
dependent upon the ratio (with appropriate scaling of time)
and the accuracy is monotonically decreasing with increasing
motility rate. We also investigated a range of initial conditions,
x0, which did not affect the accuracy of the 2D-Markov chain
approximation.

In this work we have developed a 2D-Markov chain
approximation to a spatially exclusive invasion process, which

is accurate over several different orders of magnitude of
motility rate to reproduction rate. We have demonstrated that
it provides an excellent prediction of the collective motion of
individuals when the reproduction rate is of the same order as
the motility rate, as observed, for example, in breast cancer
cell migrations [7]. Approximations proposed hitherto that
have assumed the spatial independence between individuals
in the process require the rate of reproduction to be at least
two orders of magnitude smaller than the rate of motility
to accurately predict the frontal expansion of the invading
population [17,18,27–30]. This Markov chain representation
of the exclusion system, which is much lower dimensional than
the original description, opens up the opportunity to increase
the efficiency of statistical estimation procedures, which aim to
estimate motility and reproduction rates based upon time-lapse
image data [7,8].

However, a challenge still remains, as the approximation
does break down once the motility rate is at least one order
of magnitude larger than the reproduction rate (fourth and
fifth row, Fig. 2; bottom of Fig. 3). It is known that the
independence approximation will become accurate, at least
for sufficiently early times, as the motility rate becomes much
larger than the reproduction rate, as it is exact in the case
where there is motility only [18]. An approximation which
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fills the void between these cases is now the main focus
of research in this area. The extension of the 2D-Markov
chain approximation to handle both higher-dimensional
spaces and multispecies dynamics is also left to future
research.
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