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Traffic jams and shocks of molecular motors inside cellular protrusions
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Molecular motors are involved in key transport processes inside actin-based cellular protrusions. The motors
carry cargo proteins to the protrusion tip which participate in regulating the actin polymerization and play a key
role in facilitating the growth and formation of such protrusions. It is observed that the motors accumulate at
the tips of cellular protrusions and form aggregates that are found to drift towards the protrusion base at the
rate of actin treadmilling. We present a one-dimensional driven lattice model, where motors become inactive
after delivering their cargo at the tip, or by loosing their cargo to a cargoless neighbor. The results suggest
that the experimental observations may be explained by the formation of traffic jams that form at the tip. The
model is solved using a novel application of mean-field and shock analysis. We find a new class of shocks that
undergo intermittent collapses. Extensions with attachment and detachment events and relevance to experiments
are briefly described.
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I. INTRODUCTION

The traffic of molecular motors is an example of a
nonequilibrium process [1–3]. A molecular motor convert the
energy released from ATP hydrolysis into mechanical work.
In this work we focus on the traffic of many molecular motors
inside actin-based cellular protrusions, such as filopodia and
stereocilia. These protrusions are of a few microns in length
and fractions of microns in diameter, and contain a polarized
bundle of actin filaments [4]. The actin polymerizes at the
protrusion tip, such that it provides the force for the protrusion
initiation, and treadmills at a constant rate when the protrusion
reaches a steady-state shape. The motors move towards the tip
and the actin treadmilling results in a motion towards the base
[see Fig. 1(a) for an illustration].

Unconventional myosins bind and move processively
toward the protrusion tip on these filaments (except for
myosin-VI), as shown in Fig. 1(a). Experiments analyzing
myosin traffic revealed that motors accumulate over a finite
length scale at the tips of protrusions of different lengths [5].
A striking phenomenon is seen in a variety of experiments with
different types of myosin motors [6–8]: The traffic of motors
exhibit wave-trains, or “pulses” of aggregates of motors, that
originate at the tip and move towards the base of the protrusion
(opposite to the motors’ active motion). The velocity of these
aggregates is found to be close to that of the actin treadmilling,
suggesting that these are inactive or jammed motors. The
theoretical challenge for a successful model is to explain both
the finite length of the accumulation of motors at the tips and
to provide a mechanism for the counterpropagating aggregates
of motors.

The simplest description of motors along a single linear
track is in terms of a total asymmetric exclusion process
(TASEP) [3]. We can model a protrusion as a half closed
tube, open at its base to the cell cytoplasm [Fig. 1(a)]. Several
works have dealt with this boundary condition together with
attachment and detachment kinetics of the motors to the
tracks [9–11]. These models find that at steady state the
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tubes are practically all jammed, and longer tubes have longer
jammed regions, in contrast with the observations for cellular
protrusions. In Ref. [12] it was shown that a track coupled
to an infinite reservoir [illustrated in Fig. 2(a)] produces an
accumulation with a fixed length for different system sizes
[see Fig. 2(b)]. This is implemented by coupling TASEP
with Langmiur kinetics (LK). However, it is unlikely that the
confined volume of a cellular protrusion can serve as an infinite
reservoir.

Similarly, the properties of the observed aggregates of
motors do not fit the traffic jams arising in TASEP. For
example, it seems from experiments that the aggregates
originate only at the protrusion tips, are rather stable while
propagating, and have low-density regions between them. This
is not what happens in TASEP where jams appear at the
high-density (HD) phase [13], and jams appear everywhere.
Sparse jams between free-flow regions appear in models of
vehicular traffic [14], but they result from the combination
of synchronous update and several particle velocities. There
is no obvious reason why this should apply for molecular
motors traffic. Therefore, we present a new model, based on a
generalization of TASEP with half closed boundary conditions,
that may explain the observed phenomena of motor aggregates.

The paper plan is as follows. In the next section we present
the model. In Sec. III we present the calculation for the
simplified model, while in Sec. IV we present the results
for this model. Section V is dedicated to describing briefly
the results of incorporating attachment and detachment events
to the simplified model. Finally we conclude the paper in
Sec. VI.

II. MODEL

To explain the observed phenomena we consider a general-
ization of TASEP as described in Fig. 1(b). While the core of
cellular protrusions contain a bundle of actin filaments, we use
a coarse-grained description of a single track for simplicity.
Each particle correspond to a molecular motor and can be
in one of two states: “inactive” where it is immobile on the
actin track, and “active” where it can hop unidirectionally only
when the next site is empty. We note that internal degree of
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FIG. 1. (Color online) (a) An illustration of a cellular protrusion.
Myosin motors enter with probability αdt from the cell’s cytoplasm.
They move on the actin track. Green ellipses are cargoes, and without
it the tail folds to inhibit the motor domain. (b) The model. Particles
enter the first site with probability αdt and “switch off” only at the last
site; there is no exit from the right. The track itself moves backward
with probability vrdt . Particles can exchange their mobility state with
rate β̃ in a process that can be mapped to a unidirectional process with
rate β.

freedom was considered in the past [15–19]. Motivated by
experiments and theoretical models, we propose the following
properties for the dynamics of the activity state of the motors:
It was found that several types of molecular motors become
processive only when they are bound to a cargo molecule
[20,21]. Since in many cases the cargo is involved in regulating
the actin polymerization at the protrusion tip [8,22,23], we
assume that the cargo can only detach from the motor there,
due to a competing binding site for the cargo at the tip. Upon
release of the cargo the motor becomes inactive. Note that the
reverse process of releasing the cargo from the tip is neglected
here since the cargo participates in chemical reactions related
to the actin polymerization and is considered to be “consumed”
in this process.

When inactive, motors may detach from the actin filament,
or stay attached [20] and drift towards the protrusion base due
to the actin treadmilling. Furthermore, neighboring motors can
“steal” the cargo from each other [21], and this introduces a
conservation of the activity whereby an inactive motor can
only become active at the expense of an adjacent motor
[Fig. 1(b)]. Since the cargo carried by the myosin motors is
of single-molecule nature [8,20,23], it is unlikely that a single
cargo can be bound simultaneously to several motors. Note
that the cargo-swapping process is reversible (bidirectional)
and does not involve the consumption of ATP (cargo swapping
was previously considered in Ref. [24]). However, due to the
underlying asymmetrical motion of the active motors, we find
that this process is effectively rectified and can be mapped to
a unidirectional process where the cargo is only transferred
backwards between the motors [see Appendix A for details;
Fig. 1(b)]. All the simulations in the paper were carried out
with the bidirectional reactions and rates, while the analytical

FIG. 2. (Color online) TASEP with Langmuir kinetics (LK):
(a) Illustration of the process. Particles attach with a rate ωA and
detach with a rate ωD . The entrance rate is α, and the exit rate
on the right is zero. The track itself is moving backwards with a
new site created on the right with a rate vr . (b) Density profiles
for α = 0.1,vr = 0.1,ωA = 5 × 10−4,ωD = 2 × 10−3, the size of
a site l = 30 nm. System sizes (�z0 = Ll): L = 200,�z0 = 6 μm
(blue leftmost curve), L = 400,�z0 = 12 μm (red middle curve),
L = 800,�z0 = 24 μm (green rightmost curve).

treatment is carried out with the unidirectional reaction. Such
a unidirectional interaction is known to produce a robust traffic
jam (condensate) [25].

We next extend our model to include attachment and detach-
ment kinetics, in two forms. For completeness, and simplicity,
we first extend the model to include LK. However, as noted
above, the confined volume between the actin core and the
surrounding membrane of the protrusion is very different from
the infinite reservoir considered in LK [12]. We therefore also
treat the case of exchange of motors between the actin track
and a free diffusive space, which we implement as a symmetric
random walk on a one-dimensional lattice without exclusion.
We begin by considering the simplified model, which does not
take into account attachment and detachment kinetics.

The parameters in the simplified model are the following:
(1) Kf dt is the probability for a particle to switch from
active (+) to an inactive (−) state at the last site. (2) αdt

is the probability that a particle enters the system at the left
boundary. (3) β̃dt is the probability that the cargo is swapped
between adjacent inactive and active motors [Fig. 1(b)]. (4) vr

is the rate at which a new site (actin monomer) is added at the
right end, and simultaneously a site is removed at the left end.
The actin treadmilling velocity is therefore vr , and we maintain
a constant overall length of the track. The treadmilling moves
the track and all the motors towards the protrusion base with
velocity vr . (5) We normalize the probabilities such that
dt is the hopping probability of an active particle to a free
site.

We show an example kymograph of the dynamics arising
in our model in Fig. 3(a). We find that near the tip there is a
region of accumulation of motors, and large traffic jams are
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FIG. 3. (Color online) (a) Kymograph. Green (bright) points are
active particles, while dark blue is the empty space. (b) Density
profiles for systems of lengths z = 6, 12, and 24 μm. Data are for
α = β = 0.05,vr = 0.1, and Kf = 0.002. The dashed purple curve is
the theoretical bulk density cb [Eq. (10)]. The spatial extent of each site
corresponds to a motor step (i.e., 30 nm), therefore z = i × 0.03 μm,
where i is the site number.

initiated there. Each traffic jam corresponds to an inactivation
event of a motor at the tip. When a jam is formed, it transiently
depletes the tip region, which gets refilled shortly afterwards.
These properties of robust aggregates that form near the
tip and deplete it correspond qualitatively with the experi-
mental observations of myosin-X [6] and myosin-XV [7] in
filopodia.

We find in Fig. 3(b) that the accumulation length of the
motors near the tip is independent of the system size (as in
the case with LK alone; Fig. 2). We stress that without the
switching mechanism the track would be uniformly occupied
with density 1 − vr except for a shock at the left end. The jams
initiated by the inactive particles determine a finite length of
the accumulation region and do not let it grow to the system
size. Such localized accumulations of motors are observed near
the tips of stereocilia of different lengths [5], and our model
suggests that this arises from the turnover of motors through
the formation of jams.

The model with LK includes particle detachment with
rate ωD and particle attachment with rate ωA (given that site i is
empty); see Fig. 4(a). To take into account the free diffusion in
the tube we present the simplified model coupled to a diffusive
track with symmetric hopping rate D and without exclusion,
as depicted in Fig. 4(b). Since a single myosin-X can walk
the entire filopodium [26] we will consider the attachment and
detachment probabilities to be small. Moreover, we do not take

FIG. 4. (Color online) (a) Model with LK. The same interactions
as in the simplified model. Particles can disappear with probability
ωDdt and appear with ωAdt . (b) Model with coupling to a diffusive
track. Since there is no exclusion in the diffusive track the detachment
kinetics from the active track are the same as in (a). The attachment
probabilities to the active track are proportional to the occupancy in
the diffusive track. The occupancies at the diffusive track sites are
unlimited. At both processes described in (a) and (b) particles switch
off at the tip and participate in cargo swapping with rate β̃.

into account detachment events of the inactive motors as it was
suggested that these motors are at the prestroke conformation
[20], which binds strongly to actin [27].

III. CALCULATIONS IN THE SIMPLIFIED MODEL

We now turn to analyze the simplified model in detail,
in steady state. The interesting behavior arises in the regime
where the inactivation rate Kf is small, and significant
accumulation of motors occurs at the tip. In order to allow
for analytic solutions, it is useful to choose the “mesoscopic
scaling” Kf = �f

L
[16] in the thermodynamic limit, and to

use a spatial coordinate x = i
L
,0 � x � 1, where L is the

number of sites in the system. Furthermore, the reversible
cargo-swapping process with rate β̃ is mapped to an ef-
fective unidirectional process with rate β = β̃/(1 + β̃) [see
Appendix A; Fig. 1(b)], which we then use in the analytic
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FIG. 5. (Color online) Deviation of MF approximation. Data are
for α = β = 0.05,vr = 0.1, and Kf = 0.002.
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FIG. 6. (Color online) (a) An example of a parallelogram (or
slice) for α = 0.2,β̃ = 0.0523,vr = 0.1, and �f = 0.2. (b) A de-
scription of a slice with the different density regions and the slopes
connecting them. In both figures we see xw [Eq. (4)] where the
densities [c−,β,1 − vr ] meet.

analysis. The average time between two successive switching
off events is 〈tf 〉 = L

�f (1−vr ) (where we take into account
the density 1 − vr at the tip); therefore, in the following we
renormalize tf by L so 〈tf 〉 = 1

�f (1−vr ) .
We start by comparing the numerical simulations to a

naive mean-field approximation (MFA) [28], which fails,
as demonstrated in Fig. 5. The reason for this deviation
lies in the fact that the system separates into regions of
different mean densities and currents. We therefore proceed
with a detailed calculation of the average concentration
profiles of the motors in our model, which is based on
using a MFA within each distinct region. We divide the
space-time evolution of the system into parallelogram slices
as shown in Fig. 6(a). The ith parallelogram is defined by
tf i , the time between two successive inactivation events at the
tip.

We find four regions of different average concentrations
[Fig. 6(b)]: (1) HD region near the tip, with density 1 − vr ,
(2) jammed regions of density 1, (3) free-flow regions with
density β, and (4) the entrance region near the base with density
c− = min(α, 1−vr

2 ) as the system cannot transmit a density
greater than the density of maximal current in the periodic
system. Therefore, to get the density profile we need to average
over the contributions of the different regions. Summing the
density contributions from each slice and dividing it by the
total time Ttot = ∑

tf i , we get

c(x) = (1 − vr )
∑

tvr i(x) + β
∑

tβi(x) + c−
∑

tc−i(x) + ∑
tJ i(x)∑

tf i

, (1)

where tvr i is the time a region with density 1 − vr have spent in
x in the ith slice, tβi is for density β, tc−i is for density c−, tJ i

is for density 1, and the summation is over all parallelograms.
The lines separating these different regions have slopes that

can be calculated according to the shock velocities [29]:

vs = jr − jl

cr − cl

, (2)

where jr,l,cr,l denote the current and density on the right
and left side of the shock, respectively. The right direction
is defined as the positive x direction. In the following we take
the currents for the different density regions to be given by the
mean-field current: j = c(x)[1 − c(x) − vr ]. For example, the
slope between the 1 − vr and β densities is (see Fig. 7)

jl = β(1 − β − vr ),

jr = (1 − vr )[1 − (1 − vr ) − vr ] = 0, (3)

vs = 0 − β(1 − β − vr )

1 − vr − β
= −β.

Using these slopes, we calculate the time duration that each
spatial point spends in a region of certain density and the
locations where different densities meet.

One such important meeting point is between the regions of
densities [1 − vr,β,c−], which if it exists defines the meeting
between the regions influenced by both boundaries (Fig. 6).
This point defines the location of the matching between the

left and right solutions, given by

xw = vr (1 − vr − β − c−)

vr (1 − vr − β − c−) + β(1 − c−)
. (4)

The second length scale is xvr i , which is the distance from
x = 1 to the “triple” point where the 1 − vr,β,1 regions meet.
If xvr

exist, xw does not. Again, by examining the geometry of
the slice we get for the ith slice [see Fig. 7(b)]

xvr i = β

1 − β
tf i, (5)

where x1i is the distance from x = 1 to the point where c−,1 −
vr,1 meet. The length for the ith parallelogram is [see Fig. 8(b)]

x1i = c−
1 − c−

tf i + β − c−
β(1 − c−)

(1 − xw). (6)

Another important length is xαi , which is the distance from
x = 0 to the point where the densities c−,1,β meet [this is
described in Fig. 8(c)]:

xαi = vr (1 − vr − β − c−)

β(1 − c−)
xvr i . (7)

We stress that all the lengths, except xw, depend on the
specific realization of the parallelogram; i.e., they depend
on tf i .

The calculation proceeds as follows. Let i be an index
of a parallelogram, and say we have a spatial point x. First,
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FIG. 7. (Color online) Contributions of parallelograms for x >

xw . The density of each region is shown. (a) 1 − x < xvr i (b) 1 − x >

xvr i . The black horizontal dashed line marks the size of the jammed
area.

consider x > xw. Each slice will have different contribution
to the density. As seen from Fig. 7 the contribution depend on
whether 1 − x is greater than xvr i or not. Therefore, we divide
the set of slices into two subsets (see Fig. 7):

a = {
i
∣∣xvr i > 1 − x

}
b = {

i
∣∣xvr i < 1 − x

}
and then divide the sum on parallelograms to two sums:

∑
i

=
∑
i∈a

+
∑
i∈b

, (8)

where at each sum we consider only parallelograms in the
relevant subset.

Consider now x < xw. We can now divide the set of all
parallelograms into four subsets:

A = {i|x1i > 1 − x},
B = {

i
∣∣x1i < 1 − x,xvr i > 1 − xw

}
,

C1 =
{
i| β(1 − c−)

vr (1 − vr − β − c−)
x < xvr i < 1 − xw

}
,

C2 =
{
i|xvr i <

β(1 − c−)

vr (1 − vr − β − c−)
x

}
.

FIG. 8. (Color online) Contributions of parallelograms for x <

xw . (a) Slices that are in subset A. (b) The subset B. (c) The subsets
C1,C2.

The contributions of slices of each subset are described in
Fig. 8. For each spatial point x we divide the parallelograms
to four sums:

∑
i

=
∑
i∈A

+
∑
i∈B

+
∑
i∈C1

+
∑
i∈C2

. (9)
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We denote conditional mean of a random variable V on the
subset � (i.e., not averaging over all space but only on the
given subset) as 〈V |�〉. Mathematically, it is defined as

〈V |�〉 =
∫

�

V P (V |�) dV,

where P (V |�) is the conditional probability distribution
function. We give the expressions for the conditional means
〈xvr i |a〉,〈xvr i |b〉,〈tf |A〉,〈x1i |B〉,〈xvr i |C1〉, and 〈xvr i |C2〉 in
Appendix B.

We give the details of the calculation in Appendix C.
The general scheme is as follows. We calculate the sums
in the numerator of Eq. (1). The time interval of a given

density depend on x as given by the shock velocities (which
are the slopes between the different regions). We divide the
sums to sums over different subsets [as in Eqs. (8) and (9)].
At each subset we have information on the inactivation time
difference for the parallelogram. Therefore, the averages that
appear in the expression should be conditioned with respect to
the subset (expressions are found in Appendix B).

IV. RESULTS FOR THE SIMPLIFIED MODEL

A. Density profile

The density profile that we get from Sec. III and Appendix C
is

x > xw : c(x) = β

β + vr

+
(

1 − vr − β

β + vr

)
exp

(
x − 1

ξr

)
;

x < xw : c(x) = β

β + vr

+ vr (c− − β)

(c− + vr )(β + vr )
exp

(
− x

ξl

)
+

(
1 − c− − c−

c− + vr

)
(10)

× exp

[
�f (1 − vr )(c− − β)

c−β
(xw − 1)

]
exp

[
�f (1 − vr )(1 − c−)

c−
(x − 1)

]
,

where

ξr = β

�f (1 − β)(1 − vr )
, ξl = vr (1 − vr − β − c−)

�f (1 − c−)(1−vr )(1−β)
,

(11)

where ξl,ξr are the “healing” lengths of the left and right
exponentials, respectively, as shown in Figs. 9(b)–9(d). We
see that the solution is composed of two parts, the “right”
solution controlled by the right boundary condition and the
“left” solution controlled by the left boundary condition.

The agreement between the simulations and the calculated
density profile [Eq. (10)] is very good and improves for
large systems L → ∞. For comparison, we also denote the
bulk density predicted from the periodic model [25] with
treadmilling: cb = β/(β + vr ), as seen in Eq. (10).

B. Jam size distribution

The black horizontal dashed line in Fig. 7(b) represents the
jam size in a time slice. From considering the geometry of a
slice we see that the jam size is an exponential random variable
with mean value

〈	〉 = L
β

�f

1 − vr − β

(1 − vr )(1 − β)
. (12)

We compare this result with simulation results in Fig. 10, and
we see that the two agree very well.

C. Phase diagram

The phase diagram of the system is shown in Fig. 9. We first
note that for β = 1 − vr , both the mean jam size [Eq. (12)] and
the exponential accumulation at the tip [Eq. (10)] vanish. For
β > 1 − vr we indeed find that the system exhibit only regular
TASEP jams, and it behaves as TASEP with treadmilling
velocity vr and zero current [Fig. 9(a)].

This transition can be understood in terms of the velocities
of the holes entering the system at the tip. This is the same
condition as in the periodic system [25] where instead of global
density, 1 − vr is the local density at the tip. If 1 − vr is the
local density at the right end, it is also the average velocity of
the holes. Now, consider the impurity particle as a defect hole.
This defect hole has a velocity β. If the average hole velocity
is greater than the defect velocity, i.e., 1 − vr > β, the motion
of the holes is limited by this defect. This limitation forms a
region with no holes (as holes cannot pass the defect hole);
i.e., it forms a condensate which is the traffic jam.

Next, we note that xw becomes negative when 1 − vr −
c− < β, which corresponds to a vanishing of the left expo-
nential in c(x), and therefore this phase is denoted as Jams-R
[Fig. 9, and profile (b)]. Finally for positive xw (denoted as the
Jams-LR phase in Fig. 9) we find that for α > β jams grow
as they approach the base [near the left end, Fig. 9(c)], while
for α < β they shrink [Fig. 9(d)]. This means that for α < β

there is a profile with a step located at xw.

D. Shocks

Taking the limit of α → 0 by using the scaling α ∼ 1/L

and L → ∞ we get from Eq. (10)

x > xw :

c(x) = β

β + vr

+
(

1 − vr − β

β + vr

)

× exp

[
�f (1 − vr )(1 − β)

β
(x − 1)

]
;

(13)
x < xw :

c(x) = β

β + vr

− β

β + vr

× exp

[
−�f (1 − β)(1 − vr )

vr (1 − vr − β)
x

]
;
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FIG. 9. (Color online) Phase diagram in (α,vr ) space and typical density profiles, using β̃ = 0.1,β = 0.0909. vr > 1 − β: Uniform
density phase (no jams), with density profile (1). 1 − β > vr > 1 − β − c−: Jams-R phase where the behavior is dominated by the right
boundary alone (density profile b). 1 − β − c− > vr : Jams-LR phase where the behavior is influenced by both boundaries. The dashed
vertical line separates this phase into two regions: (c) α > β and (d) α < β. The inactivations rates were chosen as (a) �f = 0.5,
(b) �f = 1, (c) �f = 0.5, (d) �f = 0.5. Density profiles: Blue curves = simulation results; green dashed curves = theoretical result of
Eq. (10); horizontal dashed purple curves = bulk density cb.

we see that the density profile is discontinuous at x = xw,
therefore it exhibit a localized shock. The discontinuity
magnitude is

�c = c(x+
w ) − c(x−

w )

= (1 − vr ) exp

[
�f (1 − vr )(1 − β)

β
(xw − 1)

]

= (1 − vr ) exp

[
− �f (1 − vr )(1 − c−)(1 − β)

vr (1 − vr − β − c−) + β(1 − c−)

]
.

(14)
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FIG. 10. (Color online) Jam size distribution for α = β = 0.05,

vr = 0.1,�f = 1. Blue curve is Eq. (12), while red light points are
simulation data points.

We give an example for this kind of density profile in Fig. 11.
We find that the location of the shock in the system has a
reentrant behavior as a function of vr (Fig. 11), while the
amplitude of the density discontinuity [�c, Eq. (14)] is also
nonmonotonic (Fig. 11).

Unlike previous shocks found in TASEP-like models
[12,16,30,31] the shock we find is only defined for the
average concentration, while it maintains a dynamic nature:
it undergoes intermittent collapses (kymograph in Fig. 11).
Furthermore, these shocks do not obey the usual Rankine-
Hugoniot relation that follows from a naive MFA: c(x−

w ) =
1 − c(x+

w ) − vr . During the time that no motor is switched
off at the tip, there is an accumulation of particles, and
a domain wall fulfilling the shock relation is established:
c(x−

w ) = 0,c(x+
w ) = 1 − vr , so that �c|xw

= 1 − vr .
The probability that such a domain wall exists at any given

time can be calculated by writing

�c = (1 − vr )Pw, (15)

and comparing it with Eq. (14) we get

Pw = c(x+
w ) − c(x−

w )

1 − vr

= exp

[
− �f (1 − vr )(1 − c−)(1 − β)

vr (1 − vr − β − c−) + β(1 − c−)

]
, (16)
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FIG. 11. (Color online) System exhibiting a shock: Density pro-
file for α = 1/L,vr = 0.1,�f = 0.1, and β̃ = 0.1,β = 0.0909 with
L = 103 (dashed dark blue curve) and L = 104 (red solid curve).
Green dashed line is the theoretical result of Eq. (10). Vertical
dashed line is xw . Inset: Kymogrpah of the system. Bottom, left: The
shock location xw from Eq. (4); right: the density jump at the shock
[�c, Eq. (S48)].

which is also the fraction of time duration that no jam is
initiated at the tip.

V. RESULTS FOR LANGMUIR KINETICS
AND DIFFUSIVE TRACK

A. Langmuir kinetics

We begin by incorporating Langmuir kinetics to the
simplified model. As we noted in the introduction, this is not a
realistic description of the system, yet it is the first step toward a
more realistic description. This model is depicted in Fig. 4(a).
We take the LK rates to be ωD/A = 	D/A/L,	D/A ∼ O(1)
such that a single motor is probable to have a run length of the
entire system [26]. We show a kymograph and a density profile
in Fig. 12(b). As in the simplified model, the system separates
into jammed and free-flow regions, with the jams moving left
while particles accumulate at the right end until a particle is
switched off.

We can still describe the system as being composed of
parallelograms. These slices in turn are composed of regions
with different densities connected through shocks. Note,
however, that now the shocks can be localized (i.e., vs = 0)
[12]. Furthermore, the system can exhibit two localized
domain walls: one controlled by the entrance rate α and the
other by β. The effective swapping rate can be considered
as a second entrance rate as it induces a region with density
β. To get the locations of the shocks one needs to repeat the

FIG. 12. (Color online) System with two LK shocks. (a) Density
profiles for a system with LK but without switching off. Curves are
for 	A = 0.2,ωD = 0.8,vr = 0.1 with α = 0.2 (red left curve) and
α = 0.02 (blue right curve). Dashed vertical lines mark the locations
of the shocks, corresponding to the two values of α, as shown also in
the inset. Inset: Location of the shock as a function of the entrance
rate. Dashed lines correspond to the rates that match α and β in
(b). (b) Density profile for a system with �f = 0.1,β = 0.02 (β̃ =
0.020408),α = 0.2,	A = 0.2,	D = 0.8,vr = 0.1. Dashed vertical
lines mark the locations of the shocks, as in (a). Inset: A kymograph
demonstrating the two shocks.

calculation described in Ref. [32] with retrograde velocity vr

and exit rate equal to zero. We describe the results briefly, as a
similar calculation was carried out in detail in Ref. [32].

The locations of the shocks are given by

cleft(xw) = 1 − vr − cright(xw); (17)

c(x) is the solution of

dc

dx
[1 − vr − 2c(x)] = 	D(K + 1)

[
K

K + 1
− c(x)

]
, (18)

where K = 	A/	D . It is convenient to transform to a new
variable σ (x):

σ (x) = 1

vr + K−1
K+1

[
2c(x) − 1 − K − 1

K + 1

]
. (19)
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With σ as the new variable the solution to Eq. (18) takes the
form of

|σ (x)|eσ (x) = Y (x), (20)

where Y (x) = |σ (x0)| exp{	D
K+1

vr− 1−K
1+K

(x − x0) + σ (x0)}. A

convenient way to write the solution is

σ (x) = W [Y (x)], σ (x) > 0,
(21)

σ (x) = W [−Y (x)], σ (x) < 0,

where W is the Lambert W function [33]. The W function
is a multivalued function. We need to choose the two
real branches [W0(z),W−1(z)] and to choose the correct
branch according to the value of σ (x). The condition in
Eq. (17) becomes

W0[Yright(xw)] + W−1[−Yleft(xw)] + 2 = 0. (22)

Solving this equation with Yleft(xw) = Yα(xw) or Yβ(xw) (i.e.,
with the left boundary controlled either by the entrance rate
α or by the cargo-swapping rate β) yields the corresponding
location of the shock.

We show an example of a density profile and kymograph
for a system with two shocks in Fig. 12(b). We plot a solution
for Eq. (22) in the inset of Fig. 12(a). The plateau in the
shock location is reached when the entrance rate (α) is equal
to the density with maximum current in the periodic system
[(1 − vr )/2]. As we take ωA,D ∼ 1/L there is a single event
(on average) at each time step. Therefore this mechanism has
∼O(1) events after we sample L sites. The mechanism for
shocks in the simplified model had ∼O(1/L) events after
sampling L sites. Therefore, the shocks are dominated by the
LK mechanism even when α → 0.

B. Diffusive track

We now consider a coupling to a diffusive track, where
particles hop symmetrically and do not feel exclusion [see
Fig. 4(b) for illustration]. Finite system containing such a
diffusive track have been shown to exhibit coexistence of
low-density and high-density regions [9,34]. We consider
no influx to the diffusive track at the protrusion base (only
out-flux), so particles enter this track only by its coupling to
the active track. As before we choose the scaling ωA/D ∼ 1/L

and the hopping rate in the diffusive track is D.
We show kymographs and density profiles of this process

in Fig. 13. As we see the system still separates to different
parallelograms with different density regions. In Fig. 13(a) we
see a behavior similar to the simplified model [compare to
Fig. 9 case (c)], where we expect no shock to appear and we
find that the diffusive track induces only a small modification.
In Fig. 13(b) we present a case where the simplified model
still does not exhibit a shock, but the diffusive track is now
dominating the dynamics and a discontinuity in the density
profile appears. This shock is located between the shocks of
a system without inactive particles and entrance rates that
correspond to α and β in our model [see dashed curves in
Fig. 13(b)]. In general the shock location increase as we
increase the ratio 	D/	A or the diffusive hopping rate D.
Calculations of the density profiles and the resulting phase

FIG. 13. (Color online) Density profiles and kymographs (insets)
for a track coupled to a diffusive track with (a) α = 0.1,β =
0.05,	A = 0.2,	D = 0.1,vr = 0.1,D = 0.5,�f = 0.5; (b) α =
0.1,β = 0.05,	A = 0.1,	D = 0.4,vr = 0.1,D = 2,�f = 0.1.
Right and left dashed curves correspond to a system without inactive
particles with entrance rates α and β, respectively. In both figures
there is only out-flux from the diffusive track at the protrusion base.

diagrams for this and the LK models are beyond the scope of
this paper.

VI. DISCUSSION AND CONCLUSIONS

Our model is able to reproduce two experimental observa-
tions of molecular motors in actin-based cellular protrusions,
namely, the finite accumulation length of the motors at the
protrusions’ tips, and the formation of backward-moving
aggregates of motors from the tip to the base. In our model
these two phenomena are linked, and both arise from the
random process of traffic-jam initiation at the tip, followed
by the “relay-race” -like transport of the cargo between the
motors. Note, however, that this mechanism is maintaining
individual motors near the tip, since only one motor is
recycled back to the cytoplasm per traffic jam. Since there
are multiple parallel actin tracks inside a real protrusion,
we expect the turnover of motors to be more efficient than
our one-dimensional model suggests. The effects of such
parallel tracks will be explored in a future elaboration of
this work.

Since the cargo carried by the motors is often involved
in enhancing the actin polymerization at the tip, the length of
system may depend on the density at the tip [8,22,23]. While in
the current work we considered a fixed geometry, we propose
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to investigate the feedback between motors and protrusion
length in the future, similar to Refs. [35–37].

From the theoretical point of view we introduce here a
model that has several unique features, compared to previous
models of molecular motors traffic [34–36,38]: (1) We find
that the MFA fails, while it works well in separated domains
of the system that are connected through shocks, and (2) we
find that while there is a steady-state average density, the
spatiotemporal behavior of the system is inherently dynamic:
a shock can appear in the average steady-state density profile,
but it undergoes intermittent collapses. We presented a method
to calculate the density profiles and phase diagram of a
simplified model without attachment and detachment events.
Extending the simplified model to include attachment and
detachment events, both to an infinite reservoir (LK) and to
a diffusive track, we find the same qualitative spatiotemporal
structure; i.e., the system evolution separates into well-defined
time slices due to the jams. Therefore, we believe that the
same calculation method can be applied to the two other
models. However, we find that the attachment and detachment
processes can dominate and control the position of the shock
in the system.

Finally, we can make several qualitative predictions related
to the phenomena observed in cellular protrusions. Both the
actin polymerization rate (vr ) and the influx of motors (α)
may be modified in experiments, and therefore the phase
diagram of Fig. 9 can be explored. We predict that increasing
the treadmilling will result in a decrease of the average
jam size [Eq. (12)]. The parameters Kf ,β are controlled
by the cargo affinity to the motors: By modifying β the
system will change its phase according to Fig. 9(a), and
through Kf the average size of the jams can be manipulated
[Eq. (12)]. The basic mechanism which allows the formation
of jams in the model (cargo swapping) implies that motors
that have become inactive at the protrusion tip can be
reactivated inside the protrusion and not only at the cell
cytoplasm [39].
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APPENDIX A: RATE OF EFFECTIVE PROCESS

In this section we show that the bidirectional cargo
swapping with symmetric rates β̃ is equivalent to au-
nidirectional process with rate β = β̃

1+β̃
as depicted in

Fig. 1(b).
Effectively particles are getting released from the jam with

a rate r = β̃p0 where p0 is the probability there are no particles
on the right side of the defect. By writing the probability for n

FIG. 14. (Color online) A state with probability pn has n particles
from the right of the defect.

particles on the right side of the defect as pn (see Fig. 14 for
illustration), we have the following equations:

ṗ0 = (1 + β̃)p1 − β̃p0,
(A1)

ṗn = β̃pn−1 + (1 + β̃)pn+1 − (1 + 2β̃)pn; n > 0.

Solving these equations at steady state yields

pn = β̃n

(1 + β̃)n
p0. (A2)

Combining the result with the normalization
∑

pn = 1 we get
p0 = 1/(1 + β̃), and

β = r = β̃p0 = β̃

1 + β̃
. (A3)

Since the system is at steady state the current is spatially
constant in the free flow region, and therefore the average
density in the HD region is β. We conclude that

cf = β = β̃

1 + β̃
. (A4)

We stress that if we would assume unidirectional reaction,
i.e., only the right particle can swap a cargo at a rate β, we
would get the same result [25]. The last important note is that
if the system is blocked, such that no motor motion is possible,
the cargo would perform a symmetric random walk among the
stationary motors.

APPENDIX B: CONDITIONAL MEANS

We present the results for the conditional means presented
in Sec. III. For x > xw:

〈
xvr i

∣∣a〉 = β

�f (1 − vr )(1 − β)
+ 1 − x,

〈
xvr i

∣∣b〉 = β

�f (1 − vr )(1 − β)
(B1)

−
exp

[�f (1−vr )(1−β)
β

(x − 1)
]

1 − exp
[�f (1−vr )(1−β)

β
(x − 1)

] (1 − x).
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For x < xw:

〈tf |A〉

= L

[
1

�f (1 − vr )
+ 1 − β

β
− 1 − c−

c−
x − c− − β

c−β
xw

]
,

〈x1i |B〉
= c−

�f (1 − vr )(1 − c−)
− c− − β

β(1 − c−)
(1 − xw)

+
c−(1−β)(1−xw)

β(1−c−) exp
[�f (1−vr )(1−β)

β
(xw − 1)

] − β(1−c−)(1−x)+(c−−β)(1−xw)
β(1−c−) exp

[�f (1−vr )(c−−β)
c−β

(xw − 1) + �f (1−vr )(1−c−)
c−

(x − 1)
]

exp
[�f (1−vr )(1−β)

β
(xw − 1)

] − exp
[�f (1−vr )(c−−β)

c−β
(xw − 1)

]
exp

[�f (1−vr )(1−c−)
c−

(x − 1)
] ,

〈
xvr i

∣∣C1
〉

(B2)

= β

�f (1 − vr )(1 − β)
+

β(1−c−)
vr (1−vr−β−c−)x exp

[−�f (1−c)(1−vr )(1−β)
vr (1−vr−β−c)

] − (1 − xw) exp
[�f (1−vr )(1−β)

β
(xw − 1)

]
exp

[−�f (1−c)(1−vr )(1−β)
vr (1−vr−β−c)

] − exp
[�f (1−vr )(1−β)

β
(xw − 1)

] ,

〈
xvr i

∣∣C2
〉

= β

�f (1 − vr )(1 − β)
− β(1 − c−)

vr (1 − vr − β − c−)

exp
[�f (1−vr )(1−c−)

c−
(x − 1)

]
1 − exp

[�f (1−vr )(1−c−)
c−

(x − 1)
] .

APPENDIX C: CALCULATION DETAILS FOR DENSITY PROFILES

1. Calculation for x > xw

Here we show the details of the density profile calculation. We begin with for x > xw by calculating the different contributions
in Eq. (1). The first contribution is of the 1 − vr region, which only arise due to subset a, as can be seen in Fig. 7(a):

∑
i

tvri
=

∑
i∈a

tvri
=

∑
i∈a

[
tfi

− (1 − x)

β
+ (1 − x)

]
= N1−x<xvr

[
1 − β

β

〈
xvr i

∣∣a〉 − 1 − β

β
(1 − x)

]
, (C1)

where we used result 5 to get from the first to the second row. N1−x<xvr
denote the number of parallelograms with

1 − x < xvr
. Plugging Eq. (B1) we get

∑
i

tvri
= N1−x<xvr

1

�f (1 − vr )
. (C2)

We now turn to calculate ∑
i

tβi
=

∑
i∈a

tβi
+

∑
i∈b

tβi
. (C3)

Calculating each term separately:

∑
i∈a

tβi
=

∑
i∈a

(
1

β
− 1

β + vr

)
(1 − x) =

∑
i∈a

vr

β(β + vr )
(1 − x) = N1−x<xvr

vr

β(β + vr )
(1 − x), (C4)

and ∑
i∈b

tβi
=

∑
i∈a

vr

β(β + vr )
xvr i = N1−x>xvr

vr

β(β + vr )

〈
xvr

∣∣b〉
. (C5)

Plugging the conditional mean in the second term and summing the two terms we get
∑

i

tβi
= N1−x<xvr

vr

β(β + vr )
(1 − x) + N1−x>xvr

vr

�f (1 − vr )(1 − β)(β + vr )

−N1−x>xvr

vr

β(β + vr )

exp
[�f (1−vr )(1−β)

β
(x − 1)

]
1 − exp

[�f (1−vr )(1−β)
β

(x − 1)
] (1 − x). (C6)
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The final term (which is due to the jams) is ∑
i

tJi
=

∑
i∈a

tJi
+

∑
i∈b

tJi
, (C7)

and we use the same steps as before to get∑
i

tJi
= N1−x<xvr

1 − β − vr

(β + vr )
(1 − x) + N1−x>xvr

β(1 − β − vr )

�f (1 − vr )(1 − β)(β + vr )

−N1−x>xvr

1 − β − vr

(β + vr )

exp
[�f (1−vr )(1−β)

β
(x − 1)

]
1 − exp

[�f (1−vr )(1−β)
β

(x − 1)
] (1 − x). (C8)

Notice that

N1−x<xvr

N
= P

(
1 − x < xvr

)

= exp

[
�f (1 − vr )(1 − β)

β
(x − 1)

]
,

(C9)
N1−x>xvr

N
= P

(
1 − x > xvr

)

= 1 − exp

[
�f (1 − vr )(1 − β)

β
(x − 1)

]
,

where N is total number of parallelograms. Relations (C9) are
the result of dividing the number of slices where 1 − x >

xvr
,<xvr

with the total number of slices; thus we get the
cumulative distribution function of the exponential distribution
of xvr

. Result (C6) simplifies to

∑
i

tβi
= N1−x>xvr

vr

�f (1 − vr )(1 − β)(β + vr )
, (C10)

and result (C8) simplifies to
∑

i

tJi
= N1−x>xvr

β(1 − β − vr )

�f (1 − vr )(1 − β)(β + vr )
. (C11)

The denominator in Eq. (1) is
∑

tfi
= N〈tf 〉 = N 1

�f (1−vr ) .
Dividing Eqs. (C2), (C10), and (C11) with this result, summing
them and using relations (C9) we get

c(x) = β

β + vr

+
(

1 − vr − β

β + vr

)

× exp

[
�f (1 − vr )(1 − β)

β
(x − 1)

]
. (C12)

2. Calculation for x < xw

We now consider x < xw. As before we average over
different times slices. The contribution of the c− density region
is ∑

i

tci =
∑
i∈A

tci +
∑
i∈B

tci +
∑
i∈C1

tci . (C13)

Writing the different terms explicitly we get

∑
i∈A

tci = NA

1 − vr − β

c−(1 − vr − β − c−)
(xw − x),

∑
i∈B

tci = NB

[
vr

c−(c− + vr )
〈x1i |B〉 − vr

c−(c− + vr )
− 1 − β

(c− + vr )(1 − vr − β − c−)
x + 1 − vr − β

c−(1 − vr − β − c−)
xw

]
, (C14)

∑
i∈C1

tci = NC1

vr (1 − β)

β(1 − c−)(c− + vr )

〈
xvr i

∣∣C1
〉 − NC1

1 − β

(c− + vr )(1 − v−β − c−)
x.

NA,NB,NC1 denote the number of parallelograms in subsets A,B,C1, respectively. The jam regions give∑
i

tJ i =
∑
i∈A

tJ i +
∑
i∈B

tJ i +
∑
i∈C1

tJ i +
∑
i∈C2

tJ i , (C15)

where
∑
i∈A

tJ i = NA

1 − vr − β

β + vr

(1 − x),
∑
i∈B

tJ i = NB

[
1 − vr − c−

c− + vr

〈x1i |B〉 + c− − β

(β + vr )(c− + vr )
(1 − x)

]
,

∑
i∈C1

tJ i = NC1

[
c−(1 − β)(1 − vr − c−)

β(1 − c−)(c− + vr )

〈
xvr i

∣∣C1
〉 − c− − β

(c− + vr )(β + vr )
x

]
, (C16)

∑
i∈C2

tJ i = NC2

1 − vr − β

β + vr

〈
xvr i

∣∣C2
〉
.

Getting the contributions also from β and 1 − vr regions and using the conditional means lead to Eq. (10).
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