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Dynamics of polymer ejection from capsid
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Polymer ejection from a capsid through a nanoscale pore is an important biological process with relevance to
modern biotechnology. Here, we study generic capsid ejection using Langevin dynamics. We show that even when
the ejection takes place within the drift-dominated region there is a very high probability for the ejection process
not to be completed. Introducing a small aligning force at the pore entrance enhances ejection dramatically. Such a
pore asymmetry is a candidate for a mechanism by which viral ejection is completed. By detailed high-resolution
simulations we show that such capsid ejection is an out-of-equilibrium process that shares many common features
with the much studied driven polymer translocation through a pore in a wall or a membrane. We find that the
ejection times scale with polymer length, τ ∼ Nα . We show that for the pore without the asymmetry the previous
predictions corroborated by Monte Carlo simulations do not hold. For the pore with the asymmetry the scaling
exponent varies with the initial monomer density (monomers per capsid volume) ρ inside the capsid. For very
low densities ρ � 0.002 the polymer is only weakly confined by the capsid, and we measure α = 1.33, which
is close to α = 1.4 obtained for polymer translocation. At intermediate densities the scaling exponents α = 1.25
and 1.21 for ρ = 0.01 and 0.02, respectively. These scalings are in accord with a crude derivation for the lower
limit α = 1.2. For the asymmetrical pore precise scaling breaks down, when the density exceeds the value for
complete confinement by the capsid, ρ � 0.25. The high-resolution data show that the capsid ejection for both
pores, analogously to polymer translocation, can be characterized as a multiplicative stochastic process that is
dominated by small-scale transitions.
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I. INTRODUCTION

Polymer ejection from inside a capsid through a small
pore is an important biological process [1]. Viral packaging
in and ejection from a bacteriophage are extensively
studied processes [2–8]. It is well established that, e.g., a
double-stranded (ds) DNA assumes a spooled conformation
inside a capsid [6,9–11]. In contrast, a fully flexible polymer
assumes a random conformation. Examples of such polymers
are RNA, single-stranded (ss) DNA, and proteins. They are
flexible compared with dsDNA and can often be modeled
as freely jointed chains (FJCs) having no bending rigidity.
The ejection dynamics of a polymer starting from an initially
spooled and from a random conformation inevitably differ,
for example due to the constant rotary motion required for the
spooled polymer to eject.

Capsid ejection has sometimes been studied as a special
case of confinement-driven ejection. Experimentally, the roles
of the confinement-entropic force and entropic elasticity have
been characterized [12,13]. Polymer ejection from a long
pore or a tube has been extensively studied; see, e.g., [14],
where the long-standing problem of how the genome delivery
process is completed after the initially higher pressure drops
inside the capsid during ejection was addressed. Some exact
results were derived and obtained via Monte Carlo simulation
in [15]. Although general characteristics of capsid ejection can
to some extent be addressed by investigating ejection from,
e.g., a tube, it is evident that a detailed understanding requires
the exact geometry of the confinement. The importance of
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the shape of the confinement was shown in a computational
study comparing ejection from ellipsoid-shaped and spherical
capsids [16], which is in agreement with the notion that
the force driving the polymer out of confinement exhibits
a nontrivial dependence on geometry [17,18]. Obviously,
the solvent quality affects the ejection process. This was
investigated in [19].

In order to understand the biologically relevant process of
a polymer ejecting from a a capsid it is important to have
a correct view of the underlying generic process. Here the
polymer starts from a random confined conformation. Ejection
can be viewed as a special case of polymer translocation. For
clarity, in what follows, we will call translocation the process
of a polymer moving from one half space to another through
a nanometer-scale pore in the wall or membrane separating
them and refer to the process of a polymer exiting a capsid
through a nanometer-scale pore as capsid ejection.

The relation between capsid ejection and polymer translo-
cation is of particular importance. In the early important
work by Muthukumar on the ejection of a polymer from
a capsid starting from a random conformation [2] and the
following reinvestigation by Cacciuto and Luijten [7], the
Monte Carlo method was used. The formalism invoked to
explain the findings assumes that the polymer, initially in
spherical confinement, moves slowly enough to remain in
equilibrium. According to blob scaling results [20], in [2] the
initial free energy of the confined polymer was assumed to
scale as F ∼ N/R1/ν , where N is the number of monomers,
R the radius of the confining sphere, and ν the Flory exponent.
In [7] it was noted that the correct initial scaling for the spher-
ical confinement is F ∼ Nφ1/(3ν−1), where φ is the mono-
mer volume fraction. Using this scaling relation and the lower
bound for the translocation time, derived in [21], the authors
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obtained the scaling relation

τ ∼ N1+νφ1/(1−3ν) (1)

for the ejection time.
Sakaue and Yoshinaga presented an analytical formulation

for the capsid ejection process [8]. They noted that the origin of
the scaling in Eq. (1) is unclear. Most notably, they criticized
the proposition that a polymer is driven by the strong and
constant free energy of the confinement. In their analysis
the driving force diminishes as the monomer density inside
the capsid drops. Accordingly, the ejection is first dominated
by the osmotic driving force and later by the diffusion of
the polymer. The resultant osmotic force is exerted only on
the monomer residing at the pore, which induces a response
that depends on the monomer’s distance from the pore. No
assumption of the polymer remaining in equilibrium is made
in this description. Related to this, it has recently been shown
that the experimentally measured variation of the mobility of
the ejecting DNA with its remaining length in the capsid [5]
can be explained by considering the free energy of the spooled
conformation and the friction between sliding DNA strands
and the capsid wall [6]. Similarly to the work in [8], this
approach does not invoke any assumptions about the polymer
remaining in or close to equilibrium or being ejected rapidly
straight from the initial conformation.

We have previously shown that driven polymer transloca-
tion is a strongly out-of-equilibrium process [22,23], where
the polymer is continuously lifted further out of equilibrium
during translocation so that on the cis side there is an
increasing region where the polymer is under tension and the
monomers are in motion. This idea was earlier used by Sakaue
in his analytical calculation [24]. The analytical treatment
was adopted and expanded in [25]. Sakaue’s concept was
given further confirmation by a generalized computational
model [26]. The model was improved in [27]. We have
previously reported that for a pore of finite friction the scaling
τ ∼ N1+ν−χ is obtained and that for a pore of zero friction
the scaling is τ ∼ N1+ν for large enough pore force [22].
Rowghanian and Grosberg have derived a comprehensive
and quite conclusive theory for polymer translocation in the
asymptotic limit of very long polymers [28]. In this asymptotic
limit the translocation was confirmed to scale as τ ∼ N1+ν . In
all computational work the polymers are inevitably well below
the length required to obtain asymptotic scaling. A finite-size
scaling presented by Ikonen et al. shows the close connection
of zero pore friction and the asymptotic limit [29].

Apparently, in the Monte Carlo simulations the ejection
rate was sufficiently high for obtaining statistically meaningful
results even at fairly low initial monomer densities inside
the capsid [2,7]. This is somewhat unexpected, since there
is the long-standing problem of how the ejection is com-
pleted [14,30]. One explanation for the problem in vivo is
offered by particles binding to the translocating or ejecting
polymer. These chaperones inhibit the backsliding of the
polymer [31–34]. The binding particles acting only, or at
least more actively, on the trans side in effect introduce an
asymmetry across the pore, which we will model in a simple
way. Recently, osmotic- and hydrostatic-pressure-induced
water flow was argued to be the mechanism through which

the genome ejection is completed [30]. For a recent review on
phage genome ejection, see [35].

The strong effect the pore friction has on the capsid
ejection [5,6] strongly suggests that the polymer is driven
increasingly out of equilibrium during ejection just as in the
case of driven polymer translocation. The importance of the
pore friction is generally agreed upon in polymer translocation.
In accordance with the strong nonequilibrium nature of the
translocation process it has been found that the dynamics used
may have influence on the outcome in polymer translocation.
In particular, the results of Monte Carlo simulations were
found to deviate from those of Langevin dynamics simulations.
This deviation increased with increasing pore force [23]. In the
case of different viscosity on either side of the separating wall
it was shown that using strict Brownian dynamics gives the
translocating polymer a bias that is opposite to the bias given
by Langevin dynamics [36]. In capsid ejection the effective
viscosity inside the capsid is higher than outside. These two
findings and the notion of the potential nonequilibrium nature
of the process together with the question of how the capsid
ejection process is completed call for a reinvestigation of the
capsid ejection process using a simulation method that captures
the true dynamics of the process.

The paper can be outlined as follows. First, in Sec. II we
describe our computational model. In Sec. III we present the
results for the capsid ejection and compare them to those for
polymer translocation. In Sec. IV we summarize our findings
and draw conclusions.

II. THE COMPUTATIONAL MODEL

In order to make a close comparison between capsid
ejection and polymer translocation we use dynamics and
polymer model identical to those we used in Ref. [37].

A. The polymer model

The standard bead-spring polymer model is used. Here,
adjacent monomers are connected with anharmonic springs,
described by the finitely extensible nonlinear elastic (FENE)
potential

UF = −K

2
R2

0 ln

(
1 − r2

R2
0

)
, (2)

where r is the length of an effective bond and R0 = 1.5σ is
the maximum bond length. The shifted Lennard-Jones (LJ)
potential

ULJ = 4ε

[(
σ

r

)12

−
(

σ

r

)6

+ 1

4

]
, r � 21/6, (3)

is applied between all beads that are a distance r apart. The
parameter values were chosen as ε = 1.0, σ = 1.0, and K =
30/σ 2. The length scale can be related to the physical length
scale for instance by the relation b = 2λp, where b = 1 is the
bond length and λp is the persistence length, e.g., 40 Å for
ssDNA [38]. Unless otherwise noted, all lengths are given in
units of b = 1.
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B. The dynamics

The dynamics of the polymer translocation was simulated
by using Ermak’s implementation of Langevin dynamics [39].
Accordingly, the time derivative of the momentum of the
polymer bead i is given by

ṗi(t) = −ξpi(t) + ηi(t), (4)

where ξ , pi(t), and ηi(t) are the friction constant, momentum,
and random force of the bead i, respectively. The time
integration was performed using the velocity Verlet algo-
rithm [40]. We set the Boltzmann constant kB = k = 1. The
temperature used in the simulations is T ∗ = kT /ε = 1. The
forces in reduced units are �f ∗ = �f σ/ε = �f . ξ = 0.5, and
ηi(t) is related to ξ by the fluctuation-dissipation theorem.
The mass of a polymer bead is m = 16. The time step used
in the numerical integration of the equations of motion is
δt∗ = (ε/mσ 2)1/2δt = 0.001 [41]. Times are given in units
of δt∗.

C. The capsid and the pore

The spherical capsid has walls of thickness 3b, where b = 1
is the Kuhn length for the model polymer. Momentum reversal
in the direction perpendicular to the capsid wall on the polymer
beads hitting the inner or outer surface prevents them from
entering the wall. In the directions tangential to these surfaces
no-slip boundary conditions are applied. The pore is modeled
as a cylindrical potential whose center axis is perpendicular to
the wall and extends through it. Hence, the pore length is also
3b. The pore diameter is 1.2σ . Inside the pore, the cylindrically
symmetric damped linear force pulls the beads toward the pore
axis,

fh = −krp − cvp, (5)

where k = 1000, c = 1, rp is the distance of a polymer
bead from the pore axis, and vp is its velocity component
perpendicular to the axis.

The cylindrical pore is a versatile pore model that enables
one to precisely determine the effective pore friction. The
combination of no-slip boundary conditions on the capsid wall
and the aligning force inside the pore can create a situation
where the bond between the bead inside the pore and its
adjacent bead outside it crosses the corner where the capsid
and the walls meet. Hence, the bead outside the pore can get
stuck due to the no-slip condition and the bond may break.
Such local effects are by no means unphysical. In the present
study we are interested in generic (scale-invariant) features of
the ejection process and hence have implemented an aligning
local force exerted on the first bead outside the pore in the
direction perpendicular to the pore axis. The magnitude of
this small force is determined by the fraction μ of the crossing
bond inside the pore, f = −μkrp. Hence, the force magnitude
is equal to what would be exerted on the polymer chain if the
pore potential interacted with a continuous charge distibution
along the chain. This is close to the actual situation. In DNA the
charges reside along the chain at very small intervals compared
to the pore dimensions. This aligning force is not necessary
at the pore exit on the outer surface of the capsid. As will be
seen, applying this force only at the entrance and not at the
exit of the pore has a profound effect on the ejection process.

FIG. 1. Snapshots of a polymer of length N = 404 escaping
through the asymmetrical pore from inside a capsid of radius
R = 5.759. Initial density (monomers per volume) ρ = 0.5.

D. Initial conformations

The polymers were either directly generated in the capsid
or, in the case of dense packing, first generated outside the
capsid with one end inside the pore and then packed inside by
applying a constant force on the polymer segment in the pore.
One polymer bead (monomer) was initially placed outside the
capsid and three beads were placed in the pore. Hence, when
investigating the ejection of a polymer, e.g., of length 400 we
actually have 404 beads of which 400 are initially inside the
capsid. Polymers were let relax to obtain the initial equilibrium
conformation before allowing them to start escaping through
the pore. Figure 1 shows the initial conformation of 400 beads
inside a capsid of radius 5.759, which corresponds to the initial
monomer density, i.e., monomers per capsid volume, ρ = 0.5,
inside the capsid.

III. RESULTS

A. Symmetrical pore

As described in Sec. II C, the cylindrical pore model
requires a local alignment force at its entrance in order to avoid
jamming of the polymer there. This force is a small fraction
of the force exerted on a bead inside the pore. It is applied
in the direction perpendicular to the pore axis and hence does
not directly affect the momentum in the direction of ejection.
The alignment is not necessary at the exit of the pore, nor is it
needed in polymer translocation, where monomer densities at
the pore entrance are lower. However, to preserve the symmetry
of the pore model we first apply the alignment at both ends of
the pore.

For monomer densities ρ � 0.2, very few initial polymer
conformations lead to ejection. The ejection probability for
ρ = 0.2 is approximately 0.6%. Moreover, the ejection process
is very slow. These two factors prohibit gathering sufficient
statistics from simulations for these densities. For ρ = 0.1
the capsid radius R is of the order of the radius of gyration
Rg of the free polymer, which according to [7] defines the
border between the entropic-barrier-dominated diffusion- and
the drift-dominated regimes. The ejection probability increases
abruptly at ρ = 0.25, where it is 50%–60%. For this density
the ejection rate is barely high enough for simulations for
polymers of length N = 200 to complete in 21 days, which
is the maximum runtime limit in the supercomputers we have
access to. For ρ = 0.5 the ejection probability ranges from
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FIG. 2. (Color online) (a) Ejection and translocation times with
least-squares-fitted scaling relations τ ∼ Nα . From the top down:
Ejection times for capsids with the symmetrical pore, ρ = 0.25 and
0.5; α ≈ 2.06 and 1.67, respectively. Polymer translocation driven
by a pore force f = 0.75; α ≈ 1.4. Ejection times for capsids with
the asymmetrical pore. α ≈ 1.33, 1.25, and 1.21 for ρ = 0.002, 0.01,
and 0.02, respectively. Fitting would give α ≈ 1.15 and 1.13 for 0.25
and 0.5, respectively. However, for the asymmetrical pore the scaling
breaks down for ρ � 0.25 (see the text). (b) Radii of gyration (in
units b = 1) as a function of lengths N for polymers initially inside
the capsids. Initial densities are from top down as in (a). The scaling
Rg ∼ Nν with ν = 0.6 and 0.333 are given for reference.

80% to 95% depending on N . For this density the ejection rate
is barely sufficient for simulations for polymers of N = 400 to
complete within 21 days. Figure 2(a) shows the ejection time
τ versus the polymer length N for ρ = 0.25 and 0.5. τ scales
with N , τ ∼ Nα , where α ≈ 2.06 and ≈1.67 for ρ = 0.25
and 0.5, respectively. These differ from the expenent α = 1.6
indicated by Eq. (1).

As changing ρ changes the way τ scales with N , so is
changing N expected to change how τ scales with ρ. The
ejection times for only two densities, ρ = 0.25 and 0.5, do
not allow determining the relation between τ and ρ. However,
they suffice to show that τ does not scale with ρ according to
Eq. (1). For the measured ν ≈ 0.6, τ should scale as τ ∼ ρψ ,
where ψ = 1/(1 − 3ν) = −1.25. Our measurements would
give values ψ ≈ −0.93, −1.64, and −1.93, for N = 25, 50,
and 100, respectively.

The scaling τ ∼ Nα with α ≈ 2.06 for ρ = 0.25 is close to
the scaling for unforced translocation, α ≈ 2.2, so one might
think that the ejection approaches the limit where confinement
has only a weak influence on the ejection dynamics. However,
the capsid does confine polymers at ρ = 0.25, as can be seen
in Fig. 2(b), where the measured Rg scales spherically with N ,
which indicates complete confinement of the polymer.

As we expect the ejection to be influenced by nonequilib-
rium effects, it is reasonable that the scaling argued by Eq. (1)
does not hold. It is well established that due to the strong
out-of-equilibrium character of driven polymer translocation
finite-size effects are present for the polymer lengths used in
simulations. For similar reasons, the ejection dynamics is also
expected to show finite-size effects for the polymer lengths
used in simulations, and the scaling of τ with N and ρ cannot
be expected to be obtained independently.

In [22] we used the evolution of the radius of gyration on
the trans side Rtr

g as a function of reaction coordinate s, i.e., the
number of translocated monomers, to show that the polymer
on the trans side also is driven out of equilibrium during
translocation. For the ejection ρ = 0.5 the trans side does
not appear to be as strongly out of equilibrium, since Rtr

g (s)

follows fairly closely the R
eq
g (N ) of equilibrated polymers of

N = s. Accordingly, the measured Rtr
g (s) ∼ s0.6. In contrast,

for the asymmetrical pore, discussed in Sec. III B, Rtr
g (s) <

R
eq
g (N = s), and the trans side is driven out of equilibrium

during ejection in this case.

B. The asymmetrical pore

Introducing a small asymmetry in the pore affects the
ejection dynamics profoundly. As explained in Sec. II C, a
small force is exerted on a single bead that is inside the
capsid and connected to a bead inside the pore. The force is
directed towards the center axis of the pore, and its magnitude
corresponds to the force that would be exerted on the part
of the bond that is inside the pore. The resulting force is
thus physically justified. However, implementing this only on
the inside and not on the outside of the capsid introduces
a small asymmetry: The beads just outside the capsid have
a slightly smaller probability to slide back into the pore
compared to the case where the alignment is done outside the
capsid also. This effect is analogous to binding proteins that
attach to translocated polymers, preventing them from sliding
back. In the asymmetrical pore the backsliding is made less
probable, whereas the binding particles prevent the backsliding
completely. The backsliding probability in the latter case is
varied by the rates at which particles are attached to and
unattached from the polymer [33].

The most striking effect the pore asymmetry has is that
polymers starting from very low monomer densities get ejected
with high probability. For example polymers of 100 monomers
starting from initial conformations whose monomer density is
0.001 eject with the probability 96%, whereas no ejection
takes place through the symmetrical pore for this density, and
ejections are recorded with the probability 0.06% at ρ = 0.2.
So only a minor modification in the pore region is needed for
viral ejection from a capsid to be initiated and completed.

The dynamics of the ejection through the asymmetrical pore
resembles strongly that of forced translocation. Accordingly,
we compare capsid ejection through the asymmetrical pore
to polymer translocation through the symmetrical pore using
identical Langevin dynamics and polymer models. The scaling
reported for polymer translocation does not represent any
supposedly “correct” value but is the scaling obtained for a
translocation model that is as closely identical to the used
capsid ejection model as possible. Indeed, for example due to
finite-size effects, no universal scaling exponents can be di-
rectly obtained for polymer lengths amenable for simulations.

Ejection times are plotted for polymers of different lengths
starting from different initial monomer densities ρ; see
Fig. 2(a). The ejection time τ is seen to scale with N for all
ρ � 0.25. The translocation times for the case where polymers
are driven through a pore in the wall dividing the space
are given for reference. Here, the polymers were driven by
applying a constant force f on the segments inside the pore.
For the pore force 0.25 per bead, that is, the total pore force
f = 0.75, the translocation time scales as τ ∼ Nα , where
α = 1.4. The scaling turns out to be essentially the same
for f = 1.5 and 3 (not shown). This can be compared with
capsid ejection, where for the lowest initial densities used,
ρ = 0.001 and 0.002, scaling is obtained with α ≈ 1.33. For
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these densities the radii of gyration for the polymers inside
the capsids scale with the polymer lengths as Rg ∼ Nν , where
ν = 0.6; see Fig. 2(b). This is the scaling obtained for free
polymers in a good solvent. Hence, the capsid confines the
polymers only weakly at densities ρ � 0.002, and the ejection
time scales with the polymer length for capsid ejection almost
as the translocation time for the polymer translocation using
identical dynamics.

The scaling form τ ∼ Nα with the smallest deviations
was obtained for ρ = 0.01 and 0.02 with α = 1.25 and 1.21,
respectively. The dependence of Rg on N deviates from the
free polymer scaling at these densities. For the asymmetrical
pore the scaling breaks down at densities ρ = 0.25 and 0.5.
Power-law fitting would give the scaling exponent 1.1 < α <

1.2. Hence, in capsid ejection the scaling breaks down for
ρ � 0.25. Moreover, for densities ρ � 0.25 the radius of
gyration scales with the polymer length as Rg ∼ N0.333, so
ρ ≈ 0.25 marks the density beyond which the polymer is
completely confined by the capsid. Apart from the different
scaling exponent α, the translocation time magnitudes for the
driving force f = 3 (not shown) closely correspond to the
ejection times for ρ = 0.25.

For reference, we implemented the pore asymmetry also
in our translocation model. There, in the absence of the
confinement due to the capsid, the asymmetry corresponds
to the driving force f ≈ 0.83 applied inside the symmetrical
pore. The characteristics of these two cases were identical.
Fitting gives values α = 1.36 and 1.37 for the unforced translo-
cation with the asymmetrical pore and driven translocation,
f = 0.83, with the symmetrical pore. For these translocations
the ratio of polymers sliding back to the cis side are 5.5%
and 21.3%, respectively, so even though the characteristics for
these two processes are identical, asymmetry is more effective
than pore force as a means of ensuring that the translocation
is completed.

Polymer translocation and polymer ejection from a capsid
share the common feature of the translocation or the ejection
time apparently scaling with polymer length. While the
characteristics of the driven translocation seem to be largely
determined by the spreading of tension on the cis side part
of the polymer [22–26,28], a detailed conclusive explanation
of how the scaling τ ∼ Nα changes with applied force is still
missing. In capsid ejection, where the polymer is initially in
a packed conformation, tension spreading inside the capsid
can hardly explain the obtained scaling, at least for higher
monomer densities. As pointed out in [8], in capsid ejection
the time-dependent radially transmitted pressure drop has a
role analogous to tension spreading in polymer translocation.

C. Event distributions

In polymer translocation we have found that registering
transitions in the process at small length scales reveals scaling
in the numbers and times of such transitions and shows
characteristics of a multiplicative stochastic process [37]. It
is of interest to see if capsid ejection can be characterized
similarly. For this we observe the ejection process at a finer
scale than the bond length b and register polymer segment
motion inside the pore with resolution b/10. In order to
characterize the ejection process we define an event in this
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FIG. 3. (Color online) (a) Asymmetrical pore. Numbers of events
logarithmically binned on traversed segment lengths �s and normal-
ized by the maximum numbers of events n̂E for capsid ejection start-
ing from monomer densities ρ = 0.002 and 0.5 and driven translo-
cation. The log-normal function n̂E = (1/�s) exp{−[ln(�s/2)]2/4}
is plotted to guide the eye. (b) Normalized cumulative event time
distributions for capsid ejection through the asymmetrical pore with
N = 400 and ρ = 0.002, 0.25, and 0.5 and through the symmetrical
pore for translocation with N = 100, f = 0.75, and N = 200, f =
1.5 and for capsid ejection with ρ = 0.5 and N = 100. Functions to
guide the eye are of the form given in Eq. (9) with �s0 = 6. �sc = 95
and σ = 1 for the curve fitting cumulative event times for ρ = 0.25
and 0.5, and σ = 0.65 for ρ = 0.002.

process as a transition of a polymer segment �s in either
direction inside the pore without reversal. Hence, an event is
not terminated by, e.g., pausing the motion, but only when the
segment starts moving in the direction opposite to the previous
direction. Defining an event in this way ensures that all the
pauses will also be included just as they are in the definition of
the total ejection time. The resulting distributions should not
be confused with distributions of total ejection or translocation
times reported, e.g., in [7,15].

Figure 3 shows log-binned distributions of numbers of
events nE for transitions of distance �s. Ejection proceeds
slowly in the case of the symmetrical pore and the distributions
present large fluctuations, exactly as was the case for unforced
translocation [37]. Due to this, only cumulative distributions
for the case of the symmetrical pore are shown in Fig. 3(b).
To compare their forms each noncumulative distribution is
normalized by its maximum number of events, i.e., n̂E =
nE(�s)/nmax. The normalized distributions n̂E(�s) for capsid
ejection are seen to be of log-normal form. This same form was
obtained also for polymer translocation [37]. A distribution
obtained for polymer translocation with f = 0.75 is shown in
Fig. 3 for comparison.

Capsid ejection through both the symmetric and asymmet-
ric pores can be characterized as a multiplicative stochastic
process in the same way as polymer translocation. As the
speed of ejection through the asymmetrical pore for ρ = 0.25
was found to be of the same order as the translocation speed
for f = 3, it is natural to expect that stochasticity, that is,
fluctuations, play as important a part here as was found to be the
case for driven polymer translocation [37]. The deterministic
contribution in the polymer translocation comes from the force
balance between the drag force and the driving pore force.
Tension spreading on the polymer contour on the cis side
determines the number of moving segments contributing to
the drag force. As said, in capsid ejection tension spreading
in the polymer confined inside the capsid is not likely to
play an important role in the high-density limit. Here the
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deterministic contribution comes from the higher pressure
inside the capsid driving the ejecting polymer and, in the
present case, by the bias coming from the pore asymmetry.
In spite of these strong deterministic contributions in both
processes, the dominance of the small-scale transitions implies
that the effect of fluctuations cannot be neglected.

In both capsid ejection and polymer translocation multi-
plicative stochasticity arises naturally. We observe traversed
polymer segments �sn, where n indexes the registered seg-
ments. �sn result from m consecutive transitions of distance
si . Denoting the probabilities of these individual transitions
as pi (1 � i � m), the probability of m such consecutive
transitions can be written as P (m)

r = ∏m
i=1 pi . Now, ln P (m)

r =∑m
i=1 ln pi . Due to the central limit theorem ln P (m)

r becomes
a normal distribution with large m [42]. Hence, P (m)

r becomes
a log-normal distribution. Now, assuming that on average,
i.e., averaging over different realizations of a sequence of
m events, 〈∏m

i=1 pi〉 ∼ m, the distribution of the number of
events as a function of m is of the same form as P (m)

r , P (m) ∼
P (m)

r . Since �sn = msi and, as will be seen, short-range
transitions dominate the capsid ejection and translocation
processes, P (�sn) ∼ P (m). A mathematically more rigorous
justification for this last relation would be in order. This would
require extensive data on pi and si at different stages of capsid
ejection and translocation.

The distributions of small-scale transitions obtained from
the simulations are a good way to characterize the two
processes. In what follows, we drop the subscript n and use
the symbol �s to denote the lengths of the traversed segments
registered with resolution b/10. Log-normal distributions of
the form

P (�s) ∼ 1

�s
exp{−[ln(�s/�s0)]2/2σ 2} (6)

were obtained for both capsid ejection and polymer
translocation. Here, �s0 is the characteristic scale and σ the
standard deviation of the variable ln �s; see, e.g., [43].

To relate the event distributions more directly to the
obtained scaling τ ∼ Nα , we measure the time �t(�s) elapsed
when transferring polymer segments of different lengths �s

through the pore. We define tE as the total elapsed time in
transitions of (constant) distances �s as

tE(�s) =
∑

�t(�s)

nE(�s,�t)�t(�s), (7)

where the sum runs over all measured �t for each constant
�s. For both capsid ejection and translocation we obtain
distributions of the form

P (tE(�s)) ∼ 1

�s
exp{−[ln(�s/�s0)]2/2σ 2}

× exp(−�s/�sc), (8)

where �sc is a finite cutoff. Due to the fluctuations present at
small �s we show in Fig. 3(b) cumulative distributions that
are of the form

PC(tE(�s))=
0∑

�s=+∞
P (tE(�s))

∼1 − erf{
√

[ln(�s/�s0)]2/2σ 2 + �s/�sc}. (9)
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FIG. 4. (Color online) (a) The distributions of nE(�t) for tran-
sitions of constant distances �s = 1, 10, and 50 in capsid ejection
with initial segment density ρ = 0.5 and in translocation with f = 3.
For translocations (TR) the symmetrical pore was used. For capsid
ejections both symmetrical (SP) and asymmetrical (AP) pores were
used. N = 100. (b) The elapsed time plotted as a function of the
reaction coordinate sampled at time intervals and averaged over
individual simulations 〈s〉 for driven translocations for f = 1.5 and
capsid ejections through the asymmetrical pore for ρ = 0.001 and
N = 200 and 400.

Each cumulative distribution shown in Fig. 3(b) is again
normalized by its maximum value. The cumulative dis-
tributions for driven translocation with f = 0.75 and 1.5
are given for comparison. These can be fitted using the
form of Eq. (9) with σ = 7, �s0 = 6. The data for capsid
ejection can be roughly fitted with �s0 = 6 and �sc =
95. For the asymmetrical pore σ ≈ 2 for ρ = 0.002 and
σ < 1 for ρ = 0.25 and 0.5. So, analogously to increasing
f in translocation [37,44], increasing ρ in capsid ejection
broadens the log-normal distributions, i.e., increases the
dispersion σ .

Due to the bias induced by the pore asymmetry it is
reasonable that the event distributions in the case of the
asymmetrical pore should resemble those for the driven
translocation. In [37] the forms of the cumulative distributions
for unforced translocation were seen to closely resemble
those for the driven translocation. Analogously, the cumulative
distribution for the symmetrical pore resembles closely that for
the asymmetrical pore.

Extracting events of different segment lengths �s charac-
terizes the roles of short- and long-range events in the capsid
ejection. In Fig. 4(a) we show the numbers of events nE

taking time �t for transferring segments of lengths �s = 1,
10, and 50 during capsid ejection and translocation. As in
polymer translocation, short-ranged transitions are seen to
dominate also in capsid ejection for both the asymmetrical
and symmetrical pores. The distributions nE(�t) for the capsid
ejection are very much like those for the translocation.

For the asymmetrical pore and ρ = 0.01 the exponentially
decaying nE(�t) for �s = 1 are shown in Fig. 5(a). The
maxima of nE(�t) for �s = 1 versus polymer length N

scale as max(nE) ∼ N1.295; see Fig. 5(b). The same scaling
is obtained for tE(�s) for constant �s (not shown), again in
keeping with what was obtained for translocation [37]. This
can be compared with the measured α = 1.25 [Fig. 2(a)]. For
the symmetrical pore the maxima nE(�t) for �s = 1 give the
obtained scaling α ≈ 1.7.

Recapitulating, the event distributions show that cap-
sid ejection dynamics through both the symmetrical and
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FIG. 5. (Color online) Asymmetrical pore. (a) The distributions
of nE(�t) for ρ = 0.01 and �s = 1 for polymers of lengths N = 25,
50, 100, 200, and 400. (b) Maxima of the distributions nE(�t) in
(a) as a function of N . The function nE ∼ N 1.295 is plotted to guide
the eye.

asymmetrical pores are dominated by short-scale transitions
just as is the case for unforced and forced polymer translo-
cations. In other words, fluctuations are important in both
processes, which, for example, complicates the application of
these processes in DNA sequencing. Based on the log-normal
forms of the distributions the processes can be regarded as
multiplicatively stochastic processes.

D. Waiting time profiles

We have previously investigated the waiting time profiles
when analyzing the effect of tension spreading in the polymer
segment on the cis side during translocation [23]. The waiting
time profile gives the time each bead has to wait before
it exits the pore. Integrating this over time should show at
least some reminiscence of scaling in order for the relation
τ ∼ Nα to result. First, we compare waiting times for ejection
through the asymmetrical pore and polymer translocation. To
obtain high resolution in s we compute cumulative waiting
time profiles from the simulations at constant time intervals
by registering the value of the reaction coordinate at the
pore exit, averaging the numbers obtained over individual
runs, and plotting them as a function of time, as depicted
in Fig. 4(b) for translocation and capsid ejection through
the asymmetrical pore. The last translocated monomers were
excluded due to different total translocation times causing large
fluctuations to the average cumulative distribution obtained in
this way.

The resulting high-resolution cumulative waiting times for
capsid ejection and driven translocation differ most in the
beginning where capsid ejection is faster. This is because
in capsid ejection the pressure inside the capsid pushing the
polymer through the pore is greatest in the beginning, whereas
in translocation the entropy difference opposes the process
most effectively at the start. Towards the end the cumulative
profiles become increasingly aligned. Indeed, the final stages,
where ρ is low, are very similar for the two processes. For
the capsid ejection the cumulative waiting times scale with the
sampled reaction coordinates as t ∼ sγ , where γ ≈ 1.2. This
is roughly the scaling found also for the number of events nE

vs N ; Figs. 5(a) and 5(b).
At a coarser scale, where the minimum registered displace-

ment is the bond length, the waiting time forms of capsid
ejection through the asymmetrical pore for ρ = 0.001 and
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FIG. 6. (Color online) (a) Waiting time profiles for capsid ejec-
tion through the asymmetrical pore. Scaled (see text) driven polymer
translocation is given for reference. Polymer length N = 400. The
two topmost aligned curves: Driven translocation through the sym-
metrical pore for f = 1 (blue) and capsid ejection for ρ = 0.001 and
ζ = 0.5 (red). Below these curves from top down: capsid ejections for
ρ = 0.001 and ζ = 0 (green), ρ = 0.01 and ζ = 0.5, and ρ = 0.01
and ζ = 0. (b) Waiting time profiles from top down: Symmetrical
pore ρ = 0.25 and ρ = 0.5, asymmetrical pore ρ = 0.001. Polymer
length N = 200.

driven translocation appear similar; see Fig. 6(a). The waiting
times for the translocation that are of the same order as for
the ejection starting from this low monomer density have
been scaled so that the forms of the waiting time profiles can
be compared. The waiting times for the driven translocation
and the capsid ejection are in fact much more similar than
was found for a computational tension spreading model and
simulated driven polymer translocation (Fig. 2 in [26]). Still,
the values of α for the ejection and translocation processes
here clearly differ. It can be concluded that very small
differences in the forms of the waiting time profiles give rise to
perceptible differences in the obtained scaling τ ∼ Nα . Also, a
conclusion of detailed similarity of processes or models cannot
be made based on approximate similarity of waiting time
profiles.

For increasing monomer density the waiting time profile
is seen to flatten, which corresponds to a smaller scaling
exponent α. The rising slope associated with the tension
spreading diminishes. In polymer translocation the finite-size
effects can be viewed as the contribution from pore friction
that is sufficiently strong compared with the overall friction.
We will report our findings on the polymer translocation
elsewhere [45]. In capsid ejection the waiting time profiles
do not change appreciably when the pore friction ζ vanishes.
Only the ejection times are reduced [see Fig. 6(b)], but the
scaling τ ∼ Nα (not shown) does not change when the pore
friction is set close to zero.

Figure 6(b) shows waiting time profiles for ejections
through the symmetrical and the asymmetrical pores. At the
start the profile for ρ = 0.25 and the symmetrical pore and
for ρ = 0.001 and the asymmetrical pore are closely aligned.
Hence, the small pore asymmetry enhances the initial ejection
of the polymer roughly as much as increasing the initial
monomer density by two orders of magnitude. As ρ diminishes
from its initial value the ejection through the symmetrical pore
slows down dramatically, whereas the asymmetry in the pore
keeps the ejecting polymer in motion. This finding is in accord
with the results for binding particles in [33], where it was noted
that the binding process involves important nonequilibrium

052702-7



R. P. LINNA, J. E. MOISIO, P. M. SUHONEN, AND K. KASKI PHYSICAL REVIEW E 89, 052702 (2014)

effects resulting in the polymer being driven by a resultant
force instead of just diffusing between binding sites in the
Brownian ratchet fashion.

E. Scaling for capsid ejection through the asymmetrical pore

Given that the pore asymmetry induces a small bias, we can
sketch a crude derivation for the scaling obtained. If we ignore
the pressure drop that is transmitted radially from the pore
during the ejection and the tension that propagates along the
chain at the final stages of the ejection, we may relate the total
energy available for ejecting the polymer and the total energy
dissipated in friction analogously to the estimate in [46] for
driven translocation. In this way we get a lower-limit estimate
for the scaling τ ∼ Nα .

The energy Edrive driving the polymer out of confinement
decreases during the ejection. It is initially E0. The work done
during ejection is W = EN � Wmax = E0N . For the densities
ρ = 0.01 and 0.02 the capsid confines the polymer; Fig. 2(b).
Accordingly, we take the number of moving monomers as
roughly constant. This approximation is supported by the
flattened waiting time profiles for ρ = 0.01; see Fig. 6(a).
Since the capsid fully confines the polymer only for ρ � 0.25
[see Fig. 2(b)], we take the distance traveled by a monomer
during ejection to be of the order ∼Rg for ρ in the order of 0.01.
Then the average monomer velocity is given by vm ∼ Rg/τ .
Hence, the energy dissipated in friction during the whole

ejection can be written as Edrag ∼ Nτξv2
m = Nξ

R2
g

τ
. From the

relation Edrive = Edrag the lower limit for the ejection time for
ρ ≈ 0.01 can be written as

τ ∼ R2
g

/
E > R2

g

/
E0 ∼ N2ν = N1.2. (10)

The scaling exponent α = 2ν = 1.2 for this crude lower-
limit estimate is close to what was obtained for ρ = 0.01
and 0.02. The estimate is based on the assumption that due
to initial confinement the polymer ejects from the spheri-
cal conformation without forming a trumpet consisting of
blobs [28]. Hence, the (average) length of the moving segment
and so the drag experienced by the polymer are taken as
constants. This lower limit fits the measured scaling exponents
obtained for monomer densities that are smaller than ρ ≈ 0.25,
beyond which scaling breaks down for ejection through the
asymmetrical pore.

IV. CONCLUSION

We have studied the process of a polymer, initially in
a random conformation, escaping from a spherical capsid
through a nanoscale pore. We used two pore models, one
of which has a minor asymmetry, namely, a small aligning
force exerted on the monomer at the pore entrance inside the
capsid. Although no bias is explicitly applied in the direction of
ejection, the alignment imparts a preference to the direction of
the ejection. Dynamically the situation is largely analogous to
that of particles binding on the polymer and partly preventing
it from sliding back [33]. In the case of capsid ejection such
an asymmetry of the pore could result from the different
curvatures of the protein capsid on the outer and inner capsid
surfaces. This asymmetry is a very efficient way of initiating

and completing the polymer ejection from a capsid. It is thus
one candidate for such a mechanism.

The ejection process through the symmetrical pore was
found to be very slow and very unlikely for initial monomer
densities ρ � 0.25. This is in stark contrast with the results
of Monte Carlo simulations in [2,7]. Also, the predictions
for the scaling τ ∼ Nα in these references were seen not to
hold for our simulations. This we ascribe to nonequilibrium
effects, which are well described in [8]. Qualitatively, capsid
ejection results from a drift component due to high monomer
density inside the capsid and diffusion. The scaling exponent
α decreases with increasing ρ for both the symmetrical
and asymmetrical pores, which is in keeping with the drift
dominating for large ρ.

The generic similarity of polymer translocation and capsid
ejection was shown by investigating the distributions of short
transitions. We showed that capsid ejection, analogously to
polymer translocation [37], shows characteristics of multi-
plicative stochastic processes. Capsid ejection showed very
similar characteristics to polymer translocation. Stochastic
multiplicity typically describes nonequilibrium processes. The
dominance of short-ranged transitions in these processes
shows that fluctuations play an important role in them, which
has consequences for example for DNA sequencing. (For
recent analyses on stochasticity and fluctuations in driven
translocation, see [27] and [47].)

The ejection through the asymmetrical pore was found to
dynamically resemble driven polymer translocation, although
the initial conformations in the two processes differ substan-
tially. Both event distributions and waiting time profiles for
these processes had very similar forms despite the fact that
their scaling exponents differed. In the literature, fairly detailed
conclusions are made based on waiting time profiles. These are
not warranted by our findings. The correct scaling is, however,
very precisely seen in the number of small-scale transition
events. This can be viewed rather as a consequence of than an
explanation for the scaling.

We showed via measured radii of gyrations that the
breakdown of the scaling relation occurs at monomer densities
for which the initial conformations are completely confined.
In a similar way as was done for driven translocation in [46]
we gave a crude estimate of the lower limit for the scaling
of the ejection time with polymer length based on the energy
available for ejection and the energy dissipated during ejection.
This lower-limit estimate of α = 1.2 is in keeping with the
results from our simulations.

In conclusion, we have characterized the dynamics of the
ejection and translocation processes and found that a small
asymmetrically applied aligning force at the pore entrance
provides a strong means of driving the polymer through a
nanoscale pore. It may facilitate many biological polymer
translocation processes. It can also find application in driving
polymers through fabricated pores for analytical purposes, e.g.,
in laboratory-on-a-chip applications.
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