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Localization of chain dynamics in entangled polymer melts
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The dynamics of polymer melts in both the unentangled and entangled regimes is described by a Langevin
equation for the correlated motion of a group of chains, interacting through both intra- and inter-molecular
potentials. Entanglements are represented by an intermolecular monomer-monomer confining potential that has no
effect on short chains, while interpolymer interactions, responsible for correlated motion and subdiffusive center-
of-mass dynamics, are represented by an intermolecular center-of-mass potential derived from the Ornstein-
Zernike equation. This potential ensures that the liquid of phantom chains reproduces the compressibility and
free energy of the real samples. For polyethylene melts the calculated dynamic structure factor is found to be in
quantitative agreement with neutron spin echo experiments of polyethylene melts with chain lengths that span
both the unentangled and the entangled regimes. The theory shows a progressive localization of the cooperative
chain dynamics at the crossover from the unentangled to the entangled regime, in the spirit of the reptation model.
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I. INTRODUCTION

In the extended family of complex fluids, where dynamics
develops on a wide range of time scales, polymer melts present
unusual and unique properties. Diffusion and viscosity display
different scaling exponents when the chain degree of polymer-
ization, N , is increased beyond the characteristic value of Ne,
which represents the statistical number of monomers delimited
by entanglements in any given chain [1]. Entanglements are
transient points of contact between chains, which constrain
the extent of monomer fluctuations due to the impossibility
of chains crossing each other (see, for example, Fig. 1).
Going from unentangled to entangled dynamics, scaling of
the diffusion coefficient varies from D ∝ N−1 to De ∝ N−2,
and viscosity changes from η ∝ N to η ∝ N3.5, in apparent
violation of the Stokes-Einstein law [2]. The different scaling
exponents for the dynamics of short, unentangled chains
(N < Ne) and long, entangled chains (N > Ne) indicates that
the leading physical phenomena guiding chain motion in the
two regimes are different [3]. However, the consistency of
the structural and thermodynamic properties, as well as the
smooth crossover of the dynamics at N ≈ Ne, suggest that the
same physical phenomena should be present in the dynamics of
both unentangled and entangled polymers, while their relative
relevance changes across the dynamical transition.

In this paper we present a theoretical approach, which de-
scribes, with quantitative precision, the dynamics of polymer
melts across the dynamical transition. Despite the relevance of
polymeric systems and the importance of properly modeling
their dynamics in the liquid state, two theoretical approaches,
formally incompatible, are commonly adopted for the dy-
namics in the two different regimes. For short chains, the
dynamics is represented by a Langevin formalism, i.e., the
Rouse approach, describing the time evolution of a chain of
monomers in the mean field of the surrounding chains. For
long chains the dynamics is described by the reptation model,
which is a phenomenological mean-field approach describing
the slithering of a polymer inside a “tube” formed by the
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constraints of the interpenetrating entangled polymers [4].
Both approaches are successful in the regime where they apply,
but each suffers from limitations, as extensively discussed in
the literature [5–8].

For the reptation model, quantitative agreement with
specific experiments has been achieved only at the expense
of introducing physical and mathematical approximations that
differ depending on the type of experiment against which
the theory is tested. New approaches have been recently
proposed to overcome this inconsistency, such as Likhtman’s
slip-link model [9]. In general, the limitation of theoretical
methods in the entangled regime is a consequence of their
phenomenological nature, which requires the definition of a
number of starting hypotheses on the nature of the dynamics
involved.

II. A LANGEVIN APPROACH TO DYNAMICALLY
HETEROGENEOUS, ENTANGLED POLYMER MELTS

Because polymer melts are viscous fluids at low Reynolds
number, microscopic approaches to their dynamics are in the
form of Langevin equations. Previous microscopic models
of entangled polymer dynamics [10,11] have focused on the
Langevin dynamics of a single chain, where entanglements
enter as a perturbation to the unentangled friction, through the
memory function.

The Langevin approach presented here describes the simul-
taneous dynamics of a group of n chains in a melt of either
unentangled or entangled polymers, where entanglements are
not accounted for in a perturbative way, but they enter the
linearized part of the equation directly, through an effective
intermonomer potential. This model is in the spirit of previous
approaches, where entangled dynamics was evaluated by
describing the simultaneous dynamics of a pair of entangled
polymers [12,13].

The theory is general and applies to any liquid of linear
polymer chains with variable monomeric structure. Due to
its microscopic formalism, it can easily be implemented to
treat block copolymers, polymer mixtures, and polymers with
different degrees of branching. The approach is tested here
to describe the dynamics of polyethylene melts across the
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FIG. 1. (Color online) Model representation of a pair of
monomers belonging to two entangled chains, which initially are
in contact and then freely interdiffuse until they experience the
constraint due to entanglements.

transition from unentangled to entangled, because for this
polymer the most complete sets of experimental and simulation
data are available in the literature [14].

A. The α parameter

The Langevin formalism presented here builds on the
evidence that polymeric liquids are glass formers, and their
dynamics is heterogeneous, with spatial regions of slow
and fast motion [15]. The trademark of dynamical hetero-
geneities is an α parameter different from zero, with α(t) =
(3/5){〈[rm(t) − rm(0)]4〉/〈[rm(t) − rm(0)]2〉2} − 1, in the in-
termediate regime between ballistic and diffusive dynamics,
where the dynamics is subdiffusive and the displacement is
not Gaussian [16]. United atom molecular dyamics (UAMD)
simulations of polyethylene melts, performed in the NV T

ensemble, at the temperature and the density of the ex-
perimental data studied in this paper [17], and from the
literature [18], show that the α parameter in all samples has
consistent qualitative features. The dynamics (see Fig. 2) is
heterogeneous up to the time of the crossover to Brownian
dynamics. This is the time necessary for the dynamics to
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FIG. 2. (Color online) Left panel: Rescaled α parameter for
polyethylene melts of increasing degree of polymerization (N =
78,100,122,142,174,224,270,320,1000, from the top to the bottom
curve) from UAMD simulations. Data from simulations of Ref. [18].
Right panel: Same data as in the left panel, but without rescaling, and
with increasing N from the bottom to the top curve.

become uncorrelated, where the decorrelation time is τRouse ≈
R2

g/D for unentangled chains and τd ≈ R2
g/De for entangled.

From the analysis of computer simulations, we observe
that at short times the degree of anomalous dynamics is
independent of the degree of polymerization (α ≈ 0.1 for
any N as shown in Fig. 2) because the monomer samples
a local region of the liquid where the chain length does not yet
affect the dynamics. In the intermediate regime α displays a
maximum, which scales roughly as

√
N , for both unentangled

and entangled melts, up to N = 320, while for the N = 1000
sample it is already difficult to define the maximum of the
function from the simulations because of the lack of sampling
in the long-time regime. The characteristic length scale of the
dynamic heterogeneities is of the order of the molecular size
Rg , because α = 0 for t ≈ τRouse for unentangled chains, and
t ≈ τd for entangled chains.

B. A Langevin equation for entangled polymer dynamics

In a dynamically heterogeneous liquid, a set of coupled
Langevin equations is derived from the Liouville equation for
the dynamics of the liquid by projecting onto the coordinates
of the slowly moving chains [19]. The time evolution of the
space coordinates of a monomer i belonging to the polymer
a, inside a group of the n polymers, follows the Langevin
equation

ζ
dr(i)

a (t)

dt
= −3kBT

l2

N∑
b=1

Aa,br(i)
b (t) − (n − 1)K[r(t)]r(i)

a (t)

+N−1
n∑

j �=i

N∑
c=1

K[r(t)]r(j )
c (t) + F(i)

a (t), (1)

where β−1 = kBT with kB the Boltzmann constant and T

the temperature in Kelvin, and ζ is the effective monomer
friction coefficient. Here the matrix A describes the in-
tramolecular structure of a semiflexible finite-size polymer,
and K[r(t)]r(i)

a (t) is the intermolecular force:

K[r(t)]r(i)
a (t) ≈ 1

β

∂

∂r(i)
a (t)

ln[g(r,t) (2)

where g(r,t) is the probability of finding a pair of monomers
belonging to different, but dynamically correlated chains at a
relative distance r at time t . The set of coupled equations
is solved by first applying a similarity transform which
isolates relative and collective dynamics of the n chains
undergoing slow cooperative motion, and then decoupling
the equations by Fourier transforming into relative, ξp, and
collective, χp, normal modes by diagonalization of the single-
chain intramolecular matrix A with eigenvectors Qi,p and
eigenvalues λp [19]. The approach reduces to the Rouse
equation in the limit of a single, infinitely long, totally flexible
phantom chain, which is not directly interacting with the
surrounding chains.

The zeroth normal-mode coupled equations of motion de-
scribe the relative and collective dynamics of the center of mass
(c.m.) of the n correlated chains, which depend on the effective
intermolecular force acting between any pair of polymers in the
melt. The related potential is present in both unentangled and
entangled polymer liquids, and results from the propagation
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through the liquid of the intermolecular monomer-monomer
interactions, i.e., Lennard-Jones potential. The analytical form
of the intermolecular potential that acts between the c.m. of
pairs of phantom chains in a polymer liquid has been recently
derived [20]. This potential ensures the consistency of both
structural and thermodynamic properties of the polymer liquid,
described either at the monomer level in a molecular dynamics
simulation or as a liquid of interacting phantom chains, as in the
Langevin, or Rouse, approach. The potential does not vanish
even in the limit of infinitely long chains [20].

As these intermolecular interactions enter the dynamics at
the level of the c.m., they correspond to an effective potential
in the p = 0 mode representation. Because the potential is a
function of the instantaneous distance between the c.m. of a
pair of chains, which evolves in time as polymers interdiffuse,
at each fixed time interval the equation of motion is solved self-
consistently to recover the intermolecular distance entering
the potential. Once self-consistency is ensured for the p = 0
mode at a given time interval, the local dynamics is optimized
by enforcing self-consistency in the intermolecular monomer
distance, i.e., for the p �= 0 modes.

At the monomer level, inside the group of n slowly moving
macromolecules, the dynamics is affected not only by the local
conformational barriers, which enter the matrix A, expressed
in the semiflexibility parameter, but also by the impossibility of
chains to cross each other. For a monomer in a chain segment
limited by entanglements, fluctuations are confined to a given
volume, which is defined by the maximum relative distance,
d, that two monomers, belonging to a pair of entangled chains,
can move relative to each other before experiencing constraint
in their dynamics (see Fig. 1).

C. Intermolecular monomer potential due to entanglements

For a pair of interpenetrating chains, two monomers that at
initial time are in contact, freely interdiffuse until they reach a
relative distance at which they start to experience the constraint
due to entanglements. We name this average relative distance
d. The effective force acting between these two monomers is
the derivative of the time dependent potential of mean force,
expressed as a function of the conditional probability, g(r,t),
that if two monomers are in contact at time zero they will be at
a relative distance r(t) at time t . More specifically, for r(t) � d

the potential is Vm[r(t)] = 0, while for r(t) > d the effective
potential is Vm[r(t)] ∝ −β−1ρent 〈ln g[r(t)]〉, where the inter-
action is weighted by the number density of entanglements in
the given volume, ρent = ρ/Ne. The intermonomer interaction
is averaged over the Gaussian distribution of monomers in
the segment between entanglements, and results in an effec-
tive potential, for r(t) > d, Vm[r(t)] ≈ ρentkBT 〈exp{−(r(t) −
d)2/d2} + exp{−[r(t) − 2d]2/d2}〉. The direct comparison of
the theoretical dynamic structure factor with neutron spin
echo (NSE) experiments defines the numerical value of the
parameter d, which is found to agree with the average statistical
distance between two entanglements, d ≈ √

Nel.
The constraint due to entanglements is applied to all

samples, unentangled and entangled, independent of the degree
of polymerization, but has no effect on the dynamics of
unentangled chains because short chains relax before they
sample the entanglement constraints. The correlation times,

in the relative and collective mode descriptions, are given by

t

τξ,p(t)
= t

τχ,p(t)
= ksλpt

ζ
+ (n − 1)

ζ

∫ t

0
K[r(t ′)]dt ′,

(3)

and ks = 3kBT /l2. For r(t) � d, K[r(t ′)] = 0, and the
unentangled dynamics is recovered. For long chains this
corresponds to the short-time regime, where the polymer has
not yet experienced the presence of entanglements, t � d2/D.

III. TESTING THE THEORY AGAINST NEUTRON
SPIN ECHO EXPERIMENTS

The theory is directly compared with NSE experi-
ments of the intermediate scattering function, S(q,t) =
N−1 ∑N

i,j=1〈exp{iq · [ri(t) − rj (0)]}〉, defined in Kubo’s cu-
mulant expansion as [21,22]

S(q,t) ≈ 1

N

N∑
i,j=1

e−(q2/6)f (q2)〈[ri (t)−rj (0)]2〉, (4)

with f (q2) = 1 − q2α(t)〈[rm(t) − rm(0)]2〉/12 + O(q4) and
where α(t) is the α parameter described above.

The theoretically calculated intermediate scattering func-
tion shows quantitative agreement with experimental data
of NSE [14,23], for samples of polyethylene melts with
increasing degree of polymerization, spanning a range from
N = 36, which is unentangled, to the entangled regime with
the degree of polymerization of N = 1692, where N ≈ 13Ne.
Figure 3 displays two samples at the crossover between
unentangled and entangled dynamics, while the samples in
Fig. 4 are in the entangled regime.

Experimental parameters that enter the theory are the
temperature T = 509 K, density ρ = 0.733 g/cm3, the seg-
ment length l = 1.53 Å, and the effective stiffness parameter
g = 0.785, which reproduces the radius of gyration of the
polyethylene samples. In the case of short, unentangled,
polymer chains the monomer friction coefficient ζ is calculated
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FIG. 3. Comparison between theoretical (lines) and experimental
(symbols) values of the normalized incoherent intermediate scattering
function for polyethylene with N = 192 (dashed lines) and N = 377
(full lines) at increasing wave vector q = 0.3 (circle), 0.5 (square),
0.77 (diamond), 0.96 (triangle up), 1.15 (triangle down).
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FIG. 4. Comparison between theoretical (lines) and experimental
(symbols) normalized incoherent intermediate scattering functions
for samples of increasing degree of polymerization, and increasing
wave vector q = 0.3 (circle), 0.5 (square), 0.77 (diamond), 0.96
(triangle up), 1.15 (triangle down). Symbols are for samples measured
at two different neutron wavelengths, λ = 8 Å (filled symbols) and
λ = 15 Å (open symbols) [24].

from the NSE data of diffusion coefficient measured in
the long-time regime where the dynamics is Fickian, as
ζ = kBT /(ND) [14]. For entangled polymer melts, the NSE
data do not reach the diffusive regime, and the friction is
calculated by optimization of the agreement between theory
and experiments. Values of the friction calculated with the
described procedure are consistent with those obtained from
coarse-grained simulations of polyethylene melts properly
rescaled [25], with the diffusion coefficient measured in
independent experiments [26,27], and recover the scaling
behavior of D ∝ N−2 typical of the entangled systems, as
shown in the left panel of Fig. 5.

Two nontrivial parameters are optimized by direct compar-
ison of the theory with experiments. The first is the distance
that two monomers can move relative to each other before they
experience the constraint due to the presence of entanglements.
The value of d is found to be identical for all the entangled
samples, and consistent with d = √

Nel for l = 1.53 Å and
Ne = 130 for polyethylene.

The second is the number of interpenetrating chains, n,
statistically included in the volume spanned by the radius
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FIG. 5. Optimized parameters. Left panel: Diffusion coefficient
of entangled samples, calculated using the numerically optimized
friction coefficient (squares) as a function of the degree of chain
polymerizaton, and compared with NMR data from Ref. [26] (circles),
and NSE data from Ref. [27] (triangle). Right panel: Numerically opti-
mized number of macromolecules undergoing cooperative dynamics
as a function of the molecular degree of polymerization. Crossover
to entangled dynamics is at Ne = 130.

of gyration, R3
g ∝ N1.5l3, of a chain of N monomers. This

number, n ≈ ρ
√

Nl3
eff, is expected to increase with increasing

polymer stiffness and with increasing density. The optimized
value of n (see Fig. 5, right panel) shows agreement with
the predicted scaling with N in the unentangled regime [14].
However, at the crossover from unentangled to entangled
dynamics (N ≈ Ne) and in the entangled region, the number of
dynamically correlated chains stays constant at n = 12, which
is the number of chains comprised in the volume defined by the
length between two entanglements. This indicates that, in this
time window, the dynamics of entangled samples is dominated
by the presence of entanglements, which limits the cooperative
dynamics of the polymers to a region that is defined by the
characteristic length scale of an entangled strand.

IV. CONCLUSIONS

The dynamics of polymer melts from the unentangled to
the fully entangled regimes is well described by a Langevin
equation for the relative motion of a subensemble of interacting
polymers. The theory is microscopic and specific to the
polymer considered and to the thermodynamic conditions
of the sample. No assumptions are made about specific
mechanisms of relaxation; instead the dynamics is repre-
sented as the time evolution of the position coordinates of
monomeric units in a group of polymer chains, which interact
through intermolecular potentials, including the effect of
entanglements. Numerical values of the input parameters, the
monomer friction coefficient, the entanglement length, and
the number of interpenetrating chains, are in agreement with
the values expected, based on physical considerations. The
equation represents well the anomalous dynamics emerging
from the presence of the group of dynamically correlated
molecules, and describes the coupling between entanglements
and anomalous dynamics in entangled polymer melts. The
model ensures thermodynamic consistency with experiments,
while it accounts for the semiflexibility, finite size, and
monomer structure of a given polymer.
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