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Simulation of radiation transfer and coherent backscattering in nematic liquid crystals
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We consider the multiple scattering of light by fluctuations of the director in a nematic liquid crystal. Using
methods of numerical simulation the peak of the coherent backscattering and the coefficients of anisotropic
diffusion are calculated. The calculations were carried out without simplifying assumptions on the properties of
the liquid crystal. The process of multiple scattering was simulated as a random walk of photons in the medium.
We investigated in detail the transition to the diffusion regime. The dependence of the diffusion coefficients
on the applied magnetic field and the wavelength of light were studied. The results of simulation showed a
nonmonotonic dependence of the diffusion coefficients on the external magnetic field. For calculation of the peak
of the coherent backscattering we used the semianalytical approach as long as in nematic liquid crystals this peak
is extremely narrow. The parameters of the backscattering peak and of diffusion coefficients which were found
in numerical simulations were compared with the experimental data and the results of analytical calculation.
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I. INTRODUCTION

The study of multiple scattering of light in liquid crystals
has attracted considerable attention for many years [1–10].
Nematic liquid crystals (NLCs) have been studied most
thoroughly. Physical properties of these systems are well
known, and as a rule their elastic and optical parameters
are measured with high accuracy. From the point of view of
multiple scattering liquid crystals are the unique objects. In
these systems the multiple scattering occurs on the thermal
fluctuations of the orientation. The amplitude and correlation
properties of these fluctuations are studied in detail both ex-
perimentally and theoretically. NLCs differ from suspensions
where the scattering takes place on the separate particles
and from heterogeneous solid dielectrics where the scattering
occurs on the structural inhomogeneities.

The difficulty of studying multiple scattering in NLCs is
due to the large optical anisotropy and the complex structure
of the phase function of the single scattering on the fluctuations
of the director.

The most interesting and well-investigated effects of multi-
ple scattering in NLCs are the coherent backscattering and the
diffusion of light.

An effective description of the radiative transfer in a
strongly inhomogeneous media provides the method of the
diffusion approximation. This approach was comprehensively
studied in a number of papers [11–18]. The speed of photon
diffusion and diffusion coefficients are obtained in experiments
on the passage of the short pulses through the medium [19].
In isotropic systems the diffusion coefficient is determined by
the relation D = vltr/3, where v is the velocity of light in
the inhomogeneous medium and ltr is the transport length. In
absorbing media the ratio D = v/[3(μ′

s + μa)] is used for the
diffusion coefficient D where μ′

s and μa are the coefficients of
scattering and absorption. The correctness of this expression
was discussed in a series of papers [20–22].
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Considerable interest has been attracted to the study of
the diffusion of photons in NLCs. This problem has been
discussed in Refs. [1–6,8,9,13,23]. For calculation of the
diffusion coefficients two approaches were proposed. One
approach was based on the exact analogy between the wave
problem and the electron-impurity problem, for which the
exact solution for the diffusion constant is expressed by means
of the Kubo-Greenwood formula [3–5,24]. Another approach
was based on the approximate solution of the Bethe-Salpeter
integral equation [1,2]. The components of the diffusion tensor
were measured by the pulse method in Refs. [25,26] and by
the deformation of the light beam passing through the sample
in Ref. [1].

The effect of coherent backscattering was thoroughly
studied theoretically and experimentally for different systems
[27–29], including liquid crystals [2,3,8,9,30]. Calculation of
the backscattering peak is reduced to the summation of ladder
and cyclic diagrams. This problem is solved exactly for a
system of pointlike scatterers [13] while for the scatterers of
finite size or fluctuations with finite correlations length it is
necessary to introduce approximations. The accuracy of these
approximations is not always possible to control due to the
complexity of the problem being considered.

On the other hand there exist numerical simulation meth-
ods [1,4,5,8,31] that allow one to overcome many difficulties
occurring in the analytical approach. Due to the extreme
complexity of the problem both analytical and numerical
methods were performed using some simplifying assumptions.
Despite these simplifications, the authors showed the tensor
nature of the diffusion coefficient and obtained the narrow peak
of coherent backscattering with an elliptical shape in cross
section. However, with the emergence of the experimental
data on the investigation of the diffusion of light and of
the coherent backscattering the question arises whether the
results of the theory, numerical simulation, and experiment are
consistent with each other. The most natural solution of this
problem seems the numerical simulation of multiple scattering
of light in NLCs without any simplifying assumptions. In the
process of numerical simulations we will take into account the
scattering up to very high orders. Therefore the calculation
results allow us to establish reliably the values of diffusion
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coefficients and to describe in detail the shape of the coherent
backscattering peak. The aim of our study was to solve this
problem and to compare with the results of analytical and
numerical calculations and with the experiment.

The paper is organized as follows. The second part describes
the method of numerical simulation. The third part contains
description of the transition to the diffusion approximation
and discusses the dependence of the diffusion tensor on
the system parameters. The fourth part contains the results
of numerical simulation of coherent backscattering. The
conclusion contains the analysis of the obtained results. The
basic equations describing the fluctuations in a NLC, its optical
properties, and single light scattering are presented in the
Appendix.

II. SIMULATION OF SCATTERING IN
ANISOTROPIC MEDIUM

We have simulated the multiple scattering by the Monte
Carlo method. In our study of the photon diffusion we assumed
that the entire space is occupied by NLCs oriented by the
magnetic field. In this case such an approach is justified since
the tensor diffusion (A13) is a macroscopic quantity and it
is independent of the size of the sample. When studying the
coherent backscattering it was considered that an NLC fills a
half space.

The standard simulation procedure of the multiple scatter-
ing is as follows. Between scatterings the photon propagates
along a straight line. The length passed by a photon between
successive scatterings is generated randomly so that the
average distance between successive scatterings coincides with
the mean free path of a photon l(j ) = τ−1

(j ) (k(i)). Choice of the
direction for the photon propagation after scattering is also a
random quantity and depends on the single-scattering phase
function.

In our problem this procedure is much more complicated.
As long as the medium is uniaxial there exist two types
of waves, i.e., ordinary and extraordinary in the scattering
process. The value of the wave vector of extraordinary wave
depends on the angle between the direction of the wave
propagation and that of the vector director. The phase function
of the single scattering of this wave depends on the angle
between the direction of the optical axis and the wave vectors
of the incident and of the scattered waves. Finally, the mean
free path of a photon l(j ) determined by the extinction depends
on the type of the wave and the direction of its propagation. The
angular dependence of the extinction coefficient in Eq. (A11)
determines both the LC optical anisotropy and the modules of
orientation elasticity. This dependence does not disappear even
if we neglect the difference between the Frank modules [5,31].
Figure 1 shows the angular dependence of extinction for
different ratios between the Frank modules and the same
optical anisotropy.

According to our model prior to each act of scattering a
photon is in one of two “channels” of scattering, i.e., it has
one of two polarizations, (o) or (e). If prior to scattering a
photon had (e) polarization it can be scattered into one of two
channels, (o) or (e). At the start of simulations we calculate
the probability of (e) → (e) scattering. This probability w(θi)
is determined as a ratio of the scattering intensity in the

FIG. 1. Angular dependence of extinction of the ordinary (curve
4) and extraordinary (curves 1–3) rays. Calculations are carried out
by Eq. (A11) for the following values of the parameters ε⊥ = 2.2,
εa = 0.8, λ = 4.88 × 10−5 cm, T = 301 K, H = 5000 Oe, χa =
1.38 × 10−7. The Frank moduli are as follows: K11 = 0.79 K33,
K22 = 0.43 K33, K33 = 6.1 × 10−7 dyn for curves 2 and 4; K11 =
2.6 × 10−7 dyn, K22 = 1.4 × 10−7 dyn for curve 1; and K11 = K22 =
K33 = 4.5 × 10−7 dyn for curve 3 (one constant approximation). In
all three cases, the sum of the Frank moduli is the same.

extraordinary wave and the total scattering intensity:

w(θi) =
∫

I
(e)
(e) d�q∫ (

I
(e)
(e) + I

(o)
(e)

)
d�q

, (2.1)

where θi is the angle between k(i) and n0.
Between successive scatterings the photons move in a

medium with permittivity ε(k). At each scattering event it
is necessary determined randomly the direction of the photon
propagation, the type of the wave into which it is supposed to
scatter, and the distance of its free path.

The probability density of the scattering per unit solid angle
is given by the phase function of the single scattering. As
far as the investigated system is anisotropic this probability
depends on the angle θi between the wave vector k(i) prior to
the scattering and the vector director n.

Usually the generation of a random variable with a
given probability density is performed using the inverse
function method [32]. Typically in this approach a model
phase function (for example, the Henyey-Greenstein phase
function) is used [33–35]. In our case expression for the
phase function (A5) is much more complicated. Therefore
generation of random directions in each scattering event
leads to a cumbersome procedure including the conversion
of special functions such as elliptic integrals. For this reason
this approach seems to be hopeless for numerical simulation.

In the general case in order to describe the single scat-
tering it is necessary to define four parameters: two angles
determining the direction of the vector k(i) and the two angles
determining the vector k(s). As far as our system is optically
uniaxial there is a symmetry consisting in that the simultaneous
rotation vectors k(i) and k(s) around the director n do not change
the scattering probability for k(i) to k(s). This allows us to
reduce the number of parameters from four to three. As one
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of the parameters we choose the angle θi . For a given vector
k(i) we introduce a local Cartesian coordinate system with unit
vectors

v3 = k(i)

k(i)
, v1 = v3 × n, v2 = v3 × v1. (2.2)

Within this coordinate system the corresponding spherical
coordinate system is introduced. The angles θ and φ of this
coordinate frame will be used for description of the scattering
direction. Thus in order to generate a random direction of the
photon after the scattering it is necessary for a given angle θi to
randomly get the angles θ and φ defining the direction of k(s).
For the angle φ it is sufficient to consider the interval [0,π ]
since expression (A5) has a mirror symmetry relative to the
point φ = π .

Owing to the complexity of the expression (A5) we
have built an approximation of the phase function. For this
purpose we took into account that it smoothly depends on
the angle θi . In order to interpolate the phase function (A5)
we create initially a discrete set of angles {θ̃1,θ̃2,...θ̃M} for the
angle θi , such that within the intervals θ̃j � θi � θ̃j+1 the
phase function changes by less than 1%. For each angle θ̃j

in this set we divide the solid angle of scattering θ ∈ [0,π ],
φ ∈ [0,π ] into rectangular cells sj :

sj : θ ∈ [
θ

j

l ,θj
r

)
, φ ∈ [

φ
j

l ,φj
r

)
, (2.3)

where the indices l and r refer to the left and the right edges
of the rectangle. The sizes of the rectangles are chosen so
that the bilinear interpolation of the phase function I j (θ,φ)
constructed from the values calculated at the vertices of the
cell described the phase function with the required accuracy.
The division was carried out adaptively so that a narrow peak
of the phase function had a sufficiently large number of cells
because photons are scattered primarily in this direction. The
construction of interpolation was performed separately for
each type of scattering.

In our simulations the accuracy of the interpolation was
about 1%. This precision was achieved for the number of cells
3 × 103−3 × 104.

In simulating each act of a single scattering for the angle
θi we select the closest element of the set {θ̃1,θ̃1, . . . ,θ̃M} and
this way we get the corresponding interpolation of I j (θ,φ|θi).

The probability that the direction of scattering enters the
cell sj is equal to

pj =
∫
φ,θ∈sj I j (θ,φ|θi) d	∑
t

∫
φ,θ∈st I t (θ,φ|θi) d	

. (2.4)

With the aid of the uniform random number generator in the
interval [0,1] we select the cell with the number t of the array
such that ∑

j=1,j<t

pj < r,
∑

j=1,j�t

pj � r, (2.5)

where r is a random number. After selection of the cell it is
necessary to choose random angles θ and φ inside the cell.
This can be done by using a two-dimensional analog of the
inverse function method [32] using the corresponding bilinear
interpolation of the cell I t as the probability density. Thus the

obtained angles θ and φ belonging to this cell will determine
the direction of the photon propagation after the last scattering.

On having determined the wave vector of the scattered
photon k(s) it is necessary to get the distance that the photon
passes before the next scattering event. The probability density
distribution of the mean free path between two successive
scattering events s has the form [32]

f (s) = 1

l
exp(−s/ l), (2.6)

where l is the mean free path. Then the probability that the
mean free path of a photon exceeds s is

ξ =
∫ ∞

s

f (s ′) ds ′, (2.7)

where ξ is a random number uniformly distributed within
the range (0,1]. So explicit expression for s is obtained from
Eqs. (2.6) and (2.7):

s = −lln ξ . (2.8)

The expression (2.8) allows us to receive the lengths of the
free path of photons with the given probability density (2.6).

So in our simulation we first choose the scattering channel,
then the direction of scattering, and finally the distance that
the photon would run before the next scattering.

For simulations of the multiple scattering by fluctuations
of the director in an NLC we calculated phase function
without any simplifying assumptions. In contrast to Ref. [5]
our approach allows us to perform the calculations for arbitrary
values of the Frank moduli and to take into account the
dependence on the azimuthal angle in the (e) → (e) scattering.

To control the accuracy in the phase function we performed
more fine crushing of the polar and azimuthal angles. The
crushing process was stopped when the results of calculations
ceased to change.

III. RADIATIVE TRANSFER IN THE DIFFUSION
APPROXIMATION

In the studying of the photon diffusion the purpose of
simulation is to investigate the statistical features of radiation
transfer in an anisotropic medium. For this purpose we run
randomly a separate photon and determine its trajectory by
the method described in the previous section. The procedure is
repeated many times in order to get a set of trajectories. With
the help of this set we calculate the mean square displacement
of photons along and across to the director, 〈r2

‖ 〉 and 〈r2
⊥〉.

It is known that starting from a certain moment of time the
scattered radiation can be described within the framework of
the diffusion approximation. It means that the mean square
displacement of photons starts to depend linearly on time. In
this case the following relations are valid:

〈x2〉 = 〈r2
‖ 〉 = 2D‖t, (3.1)

〈y2〉 + 〈z2〉 = 〈r2
⊥〉 = 4D⊥t. (3.2)

Here the direction of the x axis is chosen along the director.
The performed calculation allows us to study the transition to
the diffusion regime with increasing the scattering order. Also
we investigate the dependence of the diffusion coefficients on
the external field and on the wavelength of light [36].
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FIG. 2. Plots of the mean square displacement of the photons
(a) along and (b) across the director vs time for three values of the
external magnetic field.

Figure 2 shows the time dependence of the mean squared
displacement of the photon along (a), and across (b), the
director for three values of external magnetic field. In Fig. 3
the same value as a function of the average scattering orders is
presented. The calculations are performed for the liquid crystal
5CB with the following parameters: K33 = 7.5 × 10−7 dyn,
K11 = 0.79K33, K22 = 0.43K33, χa = 1.1 × 10−7, ε‖ = 3.0,
ε⊥ = 2.2, λ = 514.5 nm, and T = 301 K. The interval of
linear dependence in both figures correspond to areas where
the diffusion approximation is valid. In the simulation process
all photons are emitted in the same direction, which is taken
for the z axis.

It is seen that the initial part of the square displacement of
photons does not linearly depends on time. It means that in
this interval the diffusion regime has not yet established. Note
that the forms of the curves in Figs. 2 and 3 do not coincide.
The reason is that the transition from the time scale to the scale
of scattering orders is rather complicated. The reason is that
the passage time between successive scatterings of photons
depends on the direction of propagation. For the extraordinary
beam it is due to dependence of the refractive index and the
extinction coefficient on the angle between the wave vector and
the director. For an ordinary beam it is caused by the angular
dependence of the extinction coefficient only.

FIG. 3. Plots of the mean square displacement of the photons
(a) along and (b) across the director vs the mean number of scattering
events for three values of external magnetic fields. The plots were
obtained in the following way. The number of scatterings, n, and the
square of photon coordinates, x2 and y2, were calculated for each
trajectory and for each moment of time. These values were averaged
over the trajectories, and 〈n〉(t), 〈x2〉(t), 〈y2〉(t) were obtained for
each t .

It is seen that the number of scattering orders which are
required for transition to the diffusion regime decreases with
increasing of magnetic field. This result is natural since with
increasing the magnetic field the phase function of the single
scattering approaches to circular one, and consequently the
randomization of the photon propagation directions occurs for
a smaller number of scatterings.

We also studied the dependence of the transition rate to the
diffusion regime on the direction of photon emission from the
source. It was found that the time of transition to a diffusive
regime is smaller if the photon is emitted by the small angle
with respect to the vector director. We present functions 〈x2〉(t)
for the four directions of emission of photons in Fig. 4. The
calculations are performed for the same parameters as in Fig. 2
and H = 0.2 T.

The diffusion coefficients were found from the array of
data corresponding to the diffusive regime by the method of
the maximum likelihood using the explicit form of the Green
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FIG. 4. Dependence of the mean square displacement of the
photon, 〈x2〉, on angle θ between the incident beam and the director:
(1) − θ = π/12, (2) − θ = π/4, (3) − θ = π/3, and (4) − θ = π/2.

function (A14) of the diffusion equation. They were found
from the relations

D⊥ = 1

4MN

M∑
j=1

1

tj

N∑
l=1

r2
⊥l(tj ) = 1

4M

M∑
j=1

1

tj
〈r2

⊥(tj )〉, (3.3)

D‖ = 1

2MN

M∑
j=1

1

tj

N∑
l=1

r2
‖l(tj ) = 1

2M

M∑
j=1

1

tj
〈r2

‖ (tj )〉, (3.4)

where N is the number of radiated photons, M is the number of
time steps, the index l is the number of photons, and the index
j is the time step. In our calculation the discrete time points
tj are introduced starting from t = t0 with a constant step �t .
Here time t = t0 belongs to the region of the diffusion regime.
In general we can choose a rather arbitrary set of values of
tj as long as for such separate trajectories it is not difficult to
determine the position of the photon at each moment.

All calculations for the diffusion coefficients are performed
for the same parameters as in Fig. 2. Figure 5 shows the

FIG. 5. Dependence of the diffusion coefficients of photons D‖
(×) and D⊥ (�) on the magnetic field.

FIG. 6. Dependence of the diffusion coefficients of photons D‖
(×) and D⊥ (�) on the magnetic field calculated with regard to the
(e) rays only.

dependence of the diffusion coefficients on the magnetic
field. The figure shows that the diffusion coefficients vary
nonmonotonically with increase of the field. One can see that
nonmonotonic behavior disappears for the strong fields. The
reason is that in this case the phase function of the single
scattering becomes close to the circular one and the director
fluctuations are suppressed by the external field. In order to
determine the cause of the nonmonotonic behavior we have
tried to simplify the system which was used in the simulation.
Figure 6 shows the results of the calculation when only
(e) → (e) scattering is taken into account. The results when
in addition one-constant approximation is used are shown in
Fig. 7. It is seen that the nonmonotonic dependence of the
light diffusion coefficients on the magnetic field holds. The
observed nonmonotonic behavior of the diffusion coefficient
does not agree with the results of calculation in Refs. [1,2],
where smooth growth of D‖ and D⊥ with increasing of the field

FIG. 7. Dependence of the diffusion coefficients of photons D‖
(×) and D⊥ (�) on the magnetic field calculated with regard to the (e)
rays only. Simulations are performed for one constant approximation
(K11 = K22 = K33 = 5.55 × 10−7 dyn).
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is predicted. Perhaps such a discrepancy is due to the fact that in
Refs. [1,2] only the minimal eigenvalue of the integral operator
of the Bethe-Salpeter equation was taken into account.

At first glance, a significant nonmonotonic behavior of the
diffusion coefficients D‖ and D⊥ in the region of relatively
small fields is not consistent with the results of analytical
calculations of the diffusion tensor (see Ref. [2], Fig. 7). In this
paper the Bethe-Salpeter integral equation was solved taking
into account the lowest eigenvalue. This solution presents
the series of the spherical harmonics. When calculating the
diffusion coefficients, the contributions of the first two nonzero
harmonics were taken into account. It was shown that the
dependence of the second harmonic on the field has a rather
complicated nonmonotonic character (see Ref. [2], Fig. 5).
However, the contribution of this harmonic was too small
to significantly affect the field dependence of the diffusion
coefficients. Numerical simulation actually corresponds to
an iterative solution of the Bethe-Salpeter equation in the
ladder approximation. Formally, this solution contains the
contributions of all spherical harmonics. Probably for this
reason we obtained a significant nonmonotonic dependence
of the diffusion coefficients on the field.

We also investigated the dependence of the diffusion
coefficients on the wavelength of light. The results of the
calculations are shown in Fig. 8. It is seen that within the
visible light spectrum the diffusion coefficients vary almost
twice. This means that in quantitative calculations this effect
can be essential.

In order to illustrate the reliability of the obtained results we
calculated the diffusion coefficient using the designed program
for a simple model.

We will consider a scalar isotropic model for which the
diffusion coefficient has the form

D = v

3

1

μ′
s

= v

3

lext

1 − 〈cos θ〉 , (3.5)

where lext is the extinction length, and 〈cos θ〉 is the average
cosine of the scattering angle. Instead of a correlation function
of the permittivity fluctuations (A8) we accept the scalar

FIG. 8. Dependence of the diffusion coefficients of photons D‖
(×) and D⊥ (�) on the radiation wavelength for H = 0.2 T.

FIG. 9. Dependence of the diffusion coefficient on the external
magnetic field for the scalar model (3.6). Solid line is the result of
calculations by Eq. (3.7).

expression

B = k4
0ε

2
akBT

Kq2 + χaH 2
, (3.6)

where q = 2k0
√

ε⊥ sin(θ/2), θ is the scattering angle. For this
model, the diffusion coefficient has the form

D = 16πcK
√

ε⊥
3k2

0ε
2
akBT

1

2 − h2 ln(1 + 2/h2)
, (3.7)

where h2 = χaH
2/(2ε⊥k2

0K).
For this model we calculate the dependence of the diffusion

coefficient on the field using Eq. (3.7) and using the program
that was created earlier for simulation of the multiple scattering
of light in NLCs. For calculations we used the following
parameters: K = 5.55 × 10−7 dyn, ε⊥ = 2.2, k0 = 2π/λ, λ =
514.5 nm, χa = 1.1 × 10−7, T = 301 K. The results presented
in Fig. 9 coincide within fractions of a percent.

Comparisons were performed for three liquid crystals: 5CB,
PAA, and MBBA. Table I shows the parameters of these liquid
crystals, the external conditions, and the obtained results.
The dashes mean that in the cited papers the corresponding
data are not presented. In the right part of the table the
data are arranged in pairs. In the upper row of each pair
the results of numerical simulations are shown, and in the
lower row the known theoretical or experimental data are
presented. The sole exception is line 4 where the simulation
results are compared with two types of experiments. In the
first experiment the diffusion coefficients and their ratio were
measured by the passage of a light pulse through the NLC.
In the second experiment only the ratio of the diffusion
coefficients was obtained by investigating the distribution of
the light transmitted through the liquid crystal layer. The
experiment of the same type was completed in Ref. [1] (line 3
of the table). Note that the simulation results are in reasonable
agreement with the theory for the coefficient D⊥ (lines 1,
5, and 6 of the table). For the coefficient D‖ the results of
simulation are noticeably larger than predicted by theoretical
calculations. Furthermore simulation results differ markedly
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TABLE I. Comparison of the calculated and measured diffusion coefficients of photons. The Frank modules Kjj are measured in 10−7 dyn.
The diffusion coefficients are measured in 109 cm2/s.

No. NLC ε‖ ε⊥ K11 K22 K33 H,T ξ,μm λ,nm T ,K Results of D‖ D⊥ D‖/D⊥

1

5CB

2.923 2.381
4.187 2.279

0.5 546.4 300
Simulation 1.93 0.87 2.28

5.3 4.72 Theory [1,6] 1.43 0.98 1.45
2 2.3 Simulation 1.70 0.75 2.21

Theory [6] – – 1.51
3 2.923 2.381 4.187 2.279 5.3

0.2
11.8

514.5 303.15
Simulation 1.75 0.78 2.26

– – – – – – Experiments [1] 0.7 ± 0.1 0.5 ± 0.1 1.6 ± 0.25
4 2.923 2.381 5.93 3.23 7.5

0.5
5.22

405 300
Simulation 1.54 0.68 2.26

– – – – –
–

Experiments [25,26] 0.456 ± 0.019 0.362 ± 0.015 1.26
Experiments [25] – – 1.44 ± 0.06

5 PAA 3.35 2.47 3.0 9.51 – 2.2 500 400 Simulation 0.67 0.28 2.43
Theory [4] 0.502 0.287 1.75

6 MBBA 4.7 5.4 3.7 7.45 – 1.5 500 300 Simulation 1.54 0.88 1.77
Theory [4] 1.146 0.872 1.31

from the experimental data (lines 3 and 4 of the table). The
possible reason is that some parameters of the NLC used in
the experiments were not indicated and the simulation was
performed with the data taken from Ref. [37].

IV. THE FORMATION OF THE COHERENT
BACKSCATTERING PEAK

The main feature of calculating the coherent backscattering
peak in NLCs is that noticeable interest in scattering of photons
emitted from the medium presents the scattering extremely
close to the normal, i.e., at angles ∼10−4–10−6 rad. After
multiple scattering the probability of photon emission in such
a narrow range of angles is very small. Therefore the direct
numerical procedure based on a simple counting of photons
in this range of angles is extremely inefficient, and in order to
solve this problem a semianalytical Monte Carlo [38] method
is used [39]. The idea of this method is as follows. We take into
account the contribution δn(k(s)

F ) of each photon into intensity
at each scattering event in the direction k(s)

F in the range of
angles θs < 10−4 rad that we are interested in

δn

(
k(s)

F

) = Wnpis

(
k(i),k(s)

F

)
exp

[
− 1

ls
(
k(s)

F

) zn

cos θs

]
, (4.1)

where n is the scattering order, Wn is the weight of a photon, pis

is the normalized single scattering phase function, k(s)
F is the

wave vector of scattering directed to the receiver at an angle θs ,
and zn is the distance between the current position of the photon
and the boundary. The angle θs is measured strictly from
the backscattering direction 0 � θs � π/2. Equation (4.1) has
a simple physical meaning. The contribution of the photon
δn(k(s)

F ) is the product of three factors: the probability of a pho-
ton Wn to suffer n scatterings without abandoning the medium;
the probability pis to have the direction of the scattering k(s)

F ;
and the exponential factor meaning the probability to reach
the boundary without experiencing collisions. It should also
be taken into account that a photon contributes to a (o) or (e)
scattering canal.

Calculations have shown that in our system the photons
are emitted from the medium mainly after a small number

of scatterings, n ∼ 102. On the other hand a significant
contribution to the coherent backscattering yields the photons
that have experienced a very large number of scatterings
n ∼ 104–105. For better accounting for these photons we used
a modified procedure of simulation in which the photons do
not abandon the medium [38]. In this condition we take into
account the weakening of the intensity caused by the weight
Wn. The condition of keeping the photons in the medium
is reached in the following way. If the current scattering is
directed to the boundary, k(s)

z < 0, then the length of the free
path is generated between 0 and the distance from the current
starting point and the boundary.

For the photon located at a distance z from the boundary and
having a wave vector k(i) before the scattering the probability
to leave the medium at each scattering event is expressed as

esc
(
k(i),z

) =
∑
s=o,e

∫ π/2

0
sin θs dθs

∫ 2π

0
dφspis

(
k(i),k(s))

× exp

[
− 1

ls(k(s))

z

cos θs

]
, (4.2)

where φs is the azimuthal angle measured from the axis x. It
is convenient to calculate the function esc(k(i),z) preliminarily
in the form of an interpolation table. This function provides
determination of the decrease in weight for the photon after
each next step of scattering

Wn+1 = Wn

[
1 − esc(k(i),z)

]
, W1 = 1. (4.3)

The expression (4.3) takes into account the loss of intensity
due to emission of photons from the medium.

We assume that the detector that collects the radiation is
infinite and occupies the whole plane XY . We are interested
in the distribution of the photons emitted from the medium
over angles θs and φs . For each emitted photon we collect
the emission angles θs , φs , and vector R(n)

s which indicate the
place of the photon emission from the medium. Vector R(n)

s

lies on the surface of the medium, R(n)
s,z = 0. Summation of

the contributions of photons δn(k(s)
F ) (4.1) in the direction θs ,

φs yields the angular distribution of the intensity in the ladder
approximation. The corresponding contribution of the cyclic

052506-7



E. V. AKSENOVA, D. I. KOKORIN, AND V. P. ROMANOV PHYSICAL REVIEW E 89, 052506 (2014)

diagrams is assumed to be obtained by multiplying δn(k(s)
F ) by

the phase factor cos[q · (R(n)
s − Ri)] [40,41], where vector Ri

indicates the place of the photons’ incidence, its coordinates
are taken as Ri = (0,0,0), q is the scattering vector q = k(s)

F −
k(i)

0 , and Ri . Summing over all the photons for each pair of
angles θs and φs we get the angular dependence of the relative
intensity of the scattered radiation [12,13]

J (θs,φs) = JC + JL

JL

, (4.4)

where JL and JC are the contributions of the ladder and cyclic
diagrams

JL =
A∑

a=1

n∑
j=1

δj

(
k(s)

F

)
, (4.5)

JC =
A∑

a=1

n∑
j=2

δj

(
k(s)

F

)
cos

[
q · R(j )

s

]
. (4.6)

It should be recalled that the cyclic diagrams are formed
starting from the double scattering. Here the summation over
a = 1,2, . . . ,A means the sum over all photons participating
in the simulation. The summation over j is performed over the
orders of scattering. In the simulation we restrict ourselves by
n = 105 scattering orders. In addition if the contribution to the
scattering of the order δj becomes very small, ∼10−8, then the
higher orders for this photons are not taken into account.

The angular dependence of the scattered radiation intensity
was obtained from Eq. (4.4). Figure 10 shows the dependence
of the intensity on the angle θs for two cross sections
of the peak at φs = π/2 and φs = 0, curves 3 and 4. It
is seen that there is a noticeable anisotropy of scattering.
The calculations were performed for the liquid crystal 5CB
studied in Refs. [8,9]. Parameters of this liquid crystal are
K11 = 0.79K33, K22 = 0.43K33, K33 = 6.1 × 10−7 dyn, H =
0.5 T, χa = 1.38 × 10−7, εa = 0.8, ε⊥ = 2.2, λ = 488 nm,
T = 301 K. The experimental sample was a cylinder of 8 cm

FIG. 10. Cross sections of the coherent backscattering peaks.
Here curves (1) and (2) were obtained analytically [30], curves (3)
and (4) are the results of simulations, and curves (5) and (6) are the
experimental data [8,9]. The curves (1), (3), and (5) refer to the angle
φs = 0, and the curves (2), (4), and (6) refer to the angle φs = π/2.

diameter and 4 cm height. The extinction for such a liquid
crystal is shown in Fig. 1, curve 2 for the extraordinary beam
and curve 4 for the ordinary beam. The figure shows that
the mean free path of a photon is of order l ∼ 2 × 10−2 cm,
and it is significantly less than the sample size. Therefore in
the simulation of the experiment the approximation of the
semi-infinite medium is quite justified. Figure 10 also shows
the results of analytical calculations, curves 1 and 2 [30],
and experimental data [8,9], curves 5 and 6. In the selected
geometry the contribution of the single scattering (e)→(e)
in the strictly backward direction is absent. In analytical
calculations the (e)→(e) was only taken into account. The
contributions of the ladder and the cyclic diagrams in this case
are equal, and the relative peak height should be equal to 2.
In Refs. [8,9] this height was about 1.6. Probably this could
be caused by the finite width of the instrumental function
of the device. From Fig. 10 one can see that the results
of the analytical calculations, lines 1 and 2, predict a peak
width which differs from the numerical calculations. Probably
the cause is that in the summation of the diagram series a
number of assumptions have been made. Among them are the
diffusion approximation [2] and a simplified model for the pair
correlation function.

The calculated anisotropy of the backscattering peak is
shown in Fig. 11. The cross sections of the peak are shown
at different heights: 1.7, 1.6, 1.5, and 1.4. The calculated
anisotropy of the peak is 1.46; in the experiment the anisotropy
was 1.17 ± 0.04.

Performed numerical simulations allow us to retrieve the
details of the process which are practically impossible to
obtain both experimentally and theoretically. In particular
Fig. 12 shows the forming of the coherent backscattering peak
when we take into account a different number of scattering
orders. All curves are normalized to the intensity determined
by summing of the ladder diagrams of all scattering orders, i.e.,
n = 105. We see the noticeable contribution made to the lower
orders of scattering. These contributions are not described

FIG. 11. Cross sections of a coherent backscattering peak
obtained by numerical simulation in polar coordinates (θs,φs). Cross
sections by planes perpendicular to the z axis are calculated at heights
of J = 1.7 (1), 1.6 (2), 1.5 (3), and 1.4 (4).
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FIG. 12. The contribution of the first n scattering orders to the
formation of the backscattering peak: (1) n = 10, (2) n = 50, (3) n =
102, (4) n = 103, and (5) n = 105. All the curves are normalized by
the sum of ladder diagrams that take into account n = 105 scatterings.

in the framework of the diffusion approximation as it was
shown in the previous section. It means that the analytical
calculations performed in the diffusion approximation cannot
fit the experimental curves with considerable accuracy.

V. CONCLUSION

We have investigated the multiple scattering of light
in NLCs with the aid of a computer simulation method.
Calculating the multiple scattering of photons we take into
account the very high scattering orders (up to 105).

The transition from radiative transfer in the form of
contributions of separate scattering orders to the photon
diffusion in the inhomogeneous media has been studied in
detail.

We make a simulation based on actual parameters of
the liquid crystal without introduction of any simplifying
assumptions. The phase function was taken into account with
a high accuracy. Considerable attention was paid to study the
dependence of the diffusion tensor on the external magnetic
field. The simulation results show that the field dependence
becomes nonmonotonic in weak fields. This nonmonotonic
behavior remains when we introduce the simplifying assump-
tions such as the one-constant approximation and the scattering
of the extraordinary beams only.

In Ref. [2] it was shown that the contributions of the spher-
ical harmonics of higher orders to the diffusion coefficients
are nonmonotonically dependent on the field. However, the
contribution of the third spherical harmonic only is of the order
of 1%. In numerical simulations we actually take into account
the spherical harmonics of all orders. Probably therefore in
our calculations the nonmonotonic behavior of the diffusion
coefficients occurs in the weak fields.

For the reliability control we performed the calculations for
a simple scalar model. For this model it is known the analytical
expression for the diffusion coefficient. The diffusion coeffi-
cients obtained using our program and calculated analytically
coincide with high accuracy.

It was found that the diffusion coefficients vary significantly
with the wavelength within the region of the visible light.

In the analysis of the diffusion tensor dependence on
the magnetic field calculations were carried out up to the
fields when the values of the orientational and of the field
contributions to the energy are comparable. It corresponds to
an anomalously high value of the field. The reason is that
all estimates refer to the diamagnetic liquid crystals, which
have very low anisotropy of magnetic susceptibility. At present
paramagnetic liquid crystals based on rare-earth elements are
synthesized in which the anisotropy of magnetic susceptibility
has much greater values. For these liquid crystals even a strong
field region is quite available for experimental research.

We also carried out a comparison of the diffusion coeffi-
cients obtained by numerical simulation with those that were
obtained for the liquid crystals in the theoretical calculations
in the works and in a real experiment.

Besides the light diffusion we study the coherent backscat-
tering in NLC by numerical simulation. Simulation allowed us
to analyze the contributions of different orders of scattering in
the formation of the backscattering peak. The semianalytical
approach allowed us to take into account the contributions of
very high scattering orders (up to 105). These contributions
are important in the formation of the backscattering peak.
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APPENDIX: DIRECTOR FLUCTUATIONS AND SINGLE
LIGHT SCATTERING IN NEMATIC LIQUID CRYSTALS

The orientation of the liquid crystal is determined by the
unit vector director n(r). The free energy of distortion in an
external magnetic field has the form [42]

F = 1

2

∫
dr{K11(div n)2 + K22(n · rot n)2

+K33(n × rot n)2 − χa(n · H)2}. (A1)

Here Kll , l = 1,2,3 are Frank modules, χa = χ‖ − χ⊥, χ‖, χ⊥
are the magnetic susceptibilities along and normal to H, and
H is the constant external magnetic field. It is assumed that the
sample is large enough so that we can ignore the interaction
energy with the anchoring surface. We consider that χa > 0.
In equilibrium the vector director n = n0 is constant, and for
χa > 0 it is directed along the magnetic field, n0 ‖ H.

As an optical system the nematic liquid crystal is uniaxial
with a permittivity tensor

εαβ(r) = ε⊥δαβ + εanα(r)nβ(r), (A2)

where εa = ε‖ − ε⊥, ε‖, ε⊥ are permittivities along and across
the director n0.

Eigenwaves E0(r) in a uniaxial media are two plane waves,
i.e., ordinary, (o), and extraordinary, (e), with wave vectors

052506-9



E. V. AKSENOVA, D. I. KOKORIN, AND V. P. ROMANOV PHYSICAL REVIEW E 89, 052506 (2014)

k(o) and k(e):

E0
(j ) = E0

(j )e
(j )eik(j )·r, j = o,e.

Here E0
(j ) is the amplitude of the field, e(j ) is the unit

polarization vector, k(j ) = k0n
(j ),

n(o) = √
ε⊥, n(e) =

√
ε‖ε⊥

ε⊥ + εa cos2 θe

(A3)

are refractive indices of the ordinary and the extraordinary
waves, and θj is the angle between the vectors n0 and k(j ).

The fluctuations of the permittivity tensor are mainly caused
by the fluctuations of the director and have the form

δεαβ (r) = εαβ(r) − ε0
αβ = εa

[
n0

αδnβ(r) + n0
βδnα(r)

]
, (A4)

where ε0
αβ = ε⊥δαβ + εan

0
αn0

β .
The intensity of the single scattering by fluctuations of the

permittivity δε̂(r) is equal to

I
(s)
(i) = I 0

(i)
Vsc

(4π )2R2

1

n(i) cos δ(i)

×
∑
j=o,e

n(j )

cos3 δ(j )
f 2

(j )e
(s)
α e

(s)
β Bαβμν(q)e(i)

μ e(i)
ν , (A5)

e(o) = n × s(o)

sin θo

,

(A6)

e(e) = s(e)ε‖ cos θe − n(ε‖ cos2 θe + ε⊥ sin2 θe)

sin θe(ε2
‖ cos2 θe + ε2

⊥ sin2 θe)1/2
,

where indices i,s = (o,e) show the type of the incident and the
scattered waves, Vsc is the scattering volume, R is the distance
between the scattering volume and the point of observation,

cos δ(o) = 1, cos δ(e) =
(
e(e)ε̂0e(e)

)1/2

n(e)
, (A7)

q = k(s) − k(i), k(s) and k(i) are the wave vectors of the
scattered and the incident wave, I 0

(i) is the intensity of the
incident light, and Bαβμν(q) = k4

0〈δεαμδε∗
νβ〉(q) is the correla-

tion function of the permittivity fluctuations. It is determined
by the fluctuations of the director according to the expression

Bαγβδ(q) = k4
0ε

2
a

2∑
l=1

〈|δnl(q)|2〉(alαalγ n0
βn0

δ + alαalδn
0
βn0

γ

+ alβalδn
0
αn0

γ + alβalγ n0
αn0

δ

)
. (A8)

Here

〈|δnl(q)|2〉 = kBT

Kllq
2
⊥ + K33q

2
‖ + χaH 2

, l = 1,2, (A9)

a1(q) = q
q

, a2(q) = n0 × a1(q),

(A10)

f(o) = 1, f 2
(e) =

(
s(e)ε̂0s(e))(s(e)ε̂02s(e)

)
ε‖ε⊥

,

where the unit vector s(j ) = k(j )/k(j ) is directed along the wave
vector.

If we substitute the explicit expression for the correlation
function in the formula for intensity of the single light

scattering (A5), it is easy to see that there is no scattering of the
ordinary ray into the ordinary one, (o)→(o), since the vector
director n0 and the polarization vector of the ordinary ray
are orthogonal. Note that the scattering (o)→(e) and (e)→(o)
occur for the vector q with the length q ∼ k0|n(o) − n(e)|. It
means that the scattering vector at all angles remains finite.
At the same time the intensity of scattering (e)→(e) for small
angles has a sharp peak. The height of this peak increases
with decreasing of the field, H → 0. In this case the scattering
of the extraordinary ray into an extraordinary one is mainly
forward.

If we ignore the intrinsic absorption, the extinction coeffi-
cient is determined by the loss of light due to scattering and it
has the form [2]

τ(j )(k(j )) = 1

(4π )2

e
(j )
α e

(j )
β

n(j ) cos2 δ(j )

×
∑
l=o,e

∫
d	(l)

q

n(l)e(l)
ν e(l)

μ

cos2 δ(l)
Bαβνμ

(
k(l) − q

)
, (A11)

where
∫

d	
(l)
q denotes the integration over the surface q =

k(l)(q).
When light propagates in rather thick samples of NLCs

the multiple scattering regime is formed as far as the director
fluctuations are not small. In order to describe the intensity
of the multiple scattering it is convenient to use the Bethe-
Salpeter equation. In the weak scattering approximation the
Bethe-Salpeter equation can be solved by iteration. The
solution has the form of an infinite series. The terms of this
series correspond to the contributions of different scattering
orders. In the diffusion approximation the probability density
P = P (r,t) of the arrival for a photon at point r at time t is
described by the diffusion equation

∂P

∂t
= D‖∇2

‖P + D⊥∇2
⊥P, (A12)

where D̂ is the tensor diffusion coefficient of light, which for
NLC has the form

D̂ = D⊥Î + (D‖ − D⊥)n0 ⊗ n0, (A13)

where D‖ and D⊥ are the diffusion coefficients along and
across n0. In the case of a point source in an infinite medium
the solution of this equation is

P (r,t) = 1

8(πt)3/2D⊥D
1/2
‖

exp

[
− 1

4t

(
r2
‖

D‖
+ r2

⊥
D⊥

)]
,

(A14)

where r‖ and r⊥ are the directions along and across the director.
The solution of the Bethe-Salpeter equation in the diffusion

approximation allows us to describe multiple scattering of light
in all directions except a narrow vicinity of the backscattering.
In this area the effect of the coherent backscattering becomes
significant. This effect means that the fields scattered by
the same inhomogeneities in reverse order are coherent with
fields scattered in the direct order. This leads to additional
contribution to the scattering and the emerging of a narrow
peak in the backscattering region.
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