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Effects of a temperature-dependent viscosity on thermal convection in binary mixtures
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We investigate the effect of a temperature-dependent viscosity on the onset of thermal convection in a horizontal
layer of a binary fluid mixture that is heated from below. For an exponential temperature dependence of the
viscosity, we find, in binary mixtures as a function of a positive separation ratio ψ and beyond a certain viscosity
contrast, a discontinuous transition between two stationary convection modes having different wavelengths. In the
range of negative values of the separation ratio ψ , a (continuous or discontinuous) transition from an oscillatory
to a stationary onset of convection occurs beyond a certain viscosity contrast, and for large values of the viscosity
ratio, the oscillatory onset of convection is suppressed.
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I. INTRODUCTION

Thermal convection occurs in fluids or gases heated from
below and it is a well-known, ubiquitous phenomenon [1,2].
It drives many important processes in geoscience [3–6] or
in the atmosphere [7,8], and it is a central model system of
nonlinear science [9,10]. Quite often, thermal convection can
be described theoretically in terms of the so-called Oberbeck-
Boussinesq approximation [11] for a single-component fluid,
where constant material parameters are assumed, except for
the temperature-dependent density within the buoyancy term,
which is the essential driving force of convection. However,
in nature, the viscosity may strongly depend on the tempera-
ture, implying that models beyond the Oberbeck-Boussinesq
approximation have to be used or convection takes place in
fluid mixtures. Both degrees of freedom considerably affect
convection, in particular, near its onset. This work discusses
the combination of both effects.

For a sufficiently large viscosity contrast between the lower
warmer and the upper colder region of the convection cell,
related non-Boussinesq effects have be taken into account, for
instance, to model convection phenomena in the Earth’s mantle
[6,12–22]. First studies have shown that a linear as well as a
sinusoidal temperature dependence of the viscosity of a fluid
may lead to a reduction in the onset of convection compared
to the case of a constant viscosity [12,13,17]. In contrast,
an exponential temperature dependence of the viscosity can
lead either to an enhancement or to a reduction in the
threshold [16,18], depending on the strength of the viscosity
variation. Further, a spatially varying viscosity breaks the
up-down symmetry in a convection layer, causing a subcritical
convection onset to hexagonal patterns [18], and beyond the
threshold, more complex convection regimes may be induced
in fluids having a temperature-dependent viscosity [23].

Research on convection in binary fluid mixtures has a long
tradition [24,25], with numerous applications in oceanography
or geoscience [24–28], nonlinear dynamics and bifurcations
[9,29–35], and, more recently, also convection in colloidal
suspensions [36–41]. In binary fluid mixtures, the concen-
tration field of one of the two constituents enters the basic
equations as an additional dynamic quantity [11,42]: via the

*walter.zimmermann@uni-bayreuth.de

Soret effect (thermophoresis) [43], a temperature gradient
applied to a binary fluid mixture in a convection cell causes a
spatial dependence of the concentration field, which couples
into the dynamical equation for the velocity field via the
buoyancy term. The dynamics near the onset of convection
in mixtures of alcohol and water as well as in 3He-4He
mixtures is well investigated with a good agreement between
measurements and theory [9,31]. The possibility of a stationary
as well as an oscillatory onset of convection in binary-fluid
mixtures, including a so-called codimension-2 bifurcation at
the transition between both instabilities, caused additional
attraction [9].

Although the temperature dependence of the viscosity as
well as the two-component character of fluids is considered
to be of importance for modeling many phenomena in
planetary science [3–6,25–28], the influence of a combination
of both effects onto convection is still nearly unexplored
[44,45]. As turbulent convection causes a homogenization of
concentrations and of the temperature field in the center of a
convection cell, the impact of a combination of both effects is
expected to be less significant in the turbulent regime but to
be of particular importance at the onset of convection, which
is the focus of this work.

In Sec. II, we present the dynamical equations and in
Sec. III A, we reconsider the observation that for a one-
component fluid, in the case of a linear temperature depen-
dence of the viscosity and a small viscosity contrast, one
has a reduction in the onset of convection, while there is an
enhancement of the threshold for an exponential temperature
dependence. The influence of a temperature-dependent viscos-
ity on the onset of convection in a binary mixture is considered
in Secs. III B and III C, both along the stationary branch as well
as along the oscillatory branch, including the codimension-2
point. Most striking, we find that the oscillatory branch can be
suppressed by strong viscosity contrasts. In Sec. IV, the results
are summarized and discussed.

II. BASIC EQUATIONS AND HEAT CONDUCTING STATE

Compared to the common basic equations for convection in
binary fluid mixtures in the Boussinesq approximation [32,34],
we replace the constant viscosity by a temperature-dependent
kinematic viscosity of a fluid ν = ν∞ exp(γ̄ /T ), whereby we
assume that both components of the mixture have the same
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temperature dependence [46,47]. With the mean temperature
in the convection cell, T0, and a Taylor expansion of the
exponent around T0 up to the leading order, the viscosity takes
the form

ν = ν0 e−γ (T −T0), (1)

where γ = γ̄ /T0
2 and ν0 = ν(T = T0) = ν∞ exp(γ̄ /T0). In a

binary mixture, a temperature-dependent viscosity implies,
via D ∼ 1/ν, also a temperature-dependent mass diffusion
constant D:

D = D0 eγ (T −T0). (2)

We would like to stress that this relation does not hold in
general but is appropriate when the dependence of the viscosity
on the temperature is roughly identical for both components or
when the concentration of the second component is very low,
such that the viscosity of the mixture is almost exclusively
determined by the first component. In Sec. III, we restrict our
analysis to these two cases.

The basic transport equations [42] for an incompressible
binary fluid mixture involve a dynamical equation for the
temperature field T (r,t), the mass fraction of the second
component N (r,t), and the fluid velocity v(r,t):

∇ · v = 0, (3a)

(∂t + v · ∇)T = χ�T, (3b)

(∂t + v · ∇)N = ∇ ·
(

D

(
∇N + kT

T0
∇T

))
, (3c)

(∂t + v · ∇)v = − 1

ρ0
∇p + ∇ · S − ρ

ρ0
gêz. (3d)

Herein,

S = ν(∇v + (∇v)T ) (4)

describes the stress tensor, χ denotes the thermal diffusivity of
the mixture, kT is the dimensionless thermal-diffusion ratio,
which couples the temperature gradient to the particle flux
and is related to the Soret coefficient ST via kT /T = N (1 −
N )ST , and p(r,t) denotes the pressure field. As in the common
Boussinesq approximation, we assume that χ and kT /T ∼
N0(1 − N0)ST are constants and the dependence of the density
ρ on T and N is taken into account only within the buoyancy
term, where we assume a linearized equation of state of the
form [11,35]

ρ = ρ0[1 − α(T − T0) + β(N − N0)] (5)

with the thermal expansion coefficient α = −(1/ρ0)∂ρ/∂T

and β = (1/ρ0)∂ρ/∂N .
Equations (3) are completed by no-slip boundary condi-

tions. For a fluid that in the z direction is confined between
two impermeable, parallel plates at a distance d that are held
at constant temperatures and extend infinitely in the x-y plane,
the following set of boundary conditions results at z = ±d/2:

T = T0 ∓ 1

2
δT , (6a)

0 = ∂zN + kT

T0
∂zT , (6b)

0 = vx = vy = vz. (6c)

In the absence of convection (i.e., for v = 0), the time-
independent—and, with respect to the x-y plane—translational
symmetric heat-conducting state is given by

Tcond(z) = T0 − δT
z

d
, (7a)

Ncond(z) = N0 − δN
z

d
, with δN = −kT

T0
δT . (7b)

For further analysis, it is convenient to separate this basic
heat-conducting state from convective contributions setting
T (r,t) = Tcond(z) + T1(r,t) and N (r,t) = Ncond(z) + N1(r,t).
Making use of the rotational symmetry in the fluid layer, we
can restrict our analysis to the x-z plane and introduce a scalar
velocity potential F (x,z,t) via

vx = ∂z∂xF, vz = −∂2
xF, (8)

with the help of which Eq. (3a) is fulfilled by construction.
Rescaling distances by d, times by the vertical diffusion time
d2/χ , the temperature field T by χν0/αgd3, the concentration
field N by −kT χν0/T0αgd3, and the velocity potential F

by χd, all material and geometry parameters are regrouped
in five dimensionless parameters: the Rayleigh number R

(representing the control parameter), the separation ratio ψ

(related to the Soret effect), the Prandtl number P , and the
Lewis number L,

R = αgd3

χν0
δT , ψ = βkT

αT0
, P = ν0

χ
, L = D0

χ
, (9)

are well known from common molecular binary fluid mixtures
[35] and the fifth dimensionless quantity

� = χν0

αgd3
γ (10)

characterizes the viscosity contrast ν̄ between the viscosity at
the upper and that at the lower boundary via

ν̄ = ν(z = +1/2)

ν(z = −1/2)
= e�R. (11)

In the following, we discuss our results mainly in dependence
on ψ and �, whereas P and L are fixed to P = 10 and L =
0.01, respectively.

Finally, by introducing a rescaled temperature deviation
θ = (R/δT ) T1, a rescaled concentration deviation Ñ1 =
−(T0R/kT δT )N1, and a rescaled velocity potential f =
1/(χd)F and using the combined function c̃ = Ñ1 − θ instead
of Ñ1, we obtain

(∂t − �)θ + R∂2
xf = −(

∂z∂xf ∂x − ∂2
xf ∂z

)
θ, (12a)

∂tc − L∇ · (e�(−Rz+θ)∇c) + �θ = −(
∂z∂xf ∂x − ∂2

xf ∂z

)
c,

(12b)

∂t�∂xf − P�(e−�(−Rz+θ)�∂xf )+Pψ∂xc + P (1 + ψ)∂xθ

+ 2P
[(

∂2
z e−�(−Rz+θ))∂2

x + (
∂2
x e−�(−Rz+θ))∂2

z

]
∂xf

− 4P (∂x∂ze
−�(−Rz+θ))∂2

x ∂zf

= −(
∂z∂xf ∂x − ∂2

xf ∂z

)
∂xf, (12c)
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together with the no-slip, impermeable boundary conditions

θ = ∂zc = ∂xf = ∂z∂xf = 0 at z = ±1/2, (13)

where, for simplicity, all tildes have been suppressed.

III. ONSET OF CONVECTION

The parameters at the onset of convection are determined
by a linear stability analysis of the basic, nonconvective state
θ = c = f = 0, as, for instance, described in more detail in
Ref. [39]. For this purpose, the linearized equations

∂tθ = �θ − R∂2
xf, (14a)

∂tc = −�θ + L∇ · (e−�Rz∇c), (14b)

1

P
∂t�∂xf = −ψ∂xc − (1 + ψ)∂xθ + �(e�Rz�∂xf )

− 2�2R2e�Rz∂2
x ∂xf (14c)

are solved by a Fourier ansatz along the horizontal direction:
(θ,c,f ) = (θ̄ (z),c̄(z),f̄ (z)) exp(i k x + σ t). The z dependence
of the fields θ̄ (z), c̄(z), and f̄ (z) are expanded with respect to
trivial polynomials of the lowest order, satisfying the boundary
conditions in Eq. (13) orthogonalized via the Gram-Schmidt
algorithm. By a projection of the linear equations onto these
polynomials (Galerkin method; see, e.g., Refs. [48–50]), the
dynamical equations are transformed into an eigenvalue prob-
lem. By the condition Re(σ ) = 0, the neutral curve R0(k) for
the Rayleigh number is determined, whose minimum (Rc,kc)
at the critical Rayleigh number Rc and the critical wave number
kc determines the onset of convection. With ωc = Im(σ ), we
denote the frequency at the threshold of the oscillatory onset of
convection.

A. Simple fluids (ψ = 0)

First, let us concentrate on the effect of an exponentially
temperature-dependent viscosity on the onset of convection
for one-component fluids (ψ = 0).

For this case, the critical Rayleigh number Rc and the
corresponding critical wave number kc are shown in Fig. 1
as a function of � (solid lines). Both quantities reveal a
nonmonotonic dependence on �, similar to the results reported
in Refs. [16] and [51]: while for small �, Rc rises compared
to the case of a constant viscosity, the threshold is reduced
in the limit of large �. This contrasts to related studies [17],
where a linear temperature dependence of the viscosity has
been assumed and which predict a monotonic decrease in
the threshold with rising viscosity contrast. However, we
can reproduce that result by a linear approximation of the
exponential terms in Eqs. (12), which is also shown in Fig. 1
(dotted lines) and which clearly demonstrates the importance
of terms higher than the leading linear order. The velocity
potential f at the onset of convection is shown in Fig. 2 for
two values of �. The more strongerly the viscosity varies in
space, the more the center of the convection rolls is shifted
towards the lower boundary and the more the fluid motion is
suppressed near the upper boundary, where a highly viscous
layer forms.
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FIG. 1. (Color online) (a) The critical Rayleigh number Rc and
(b) the critical wave number kc for a one-component fluid as a function
of �. The solid line marks the exponential temperature dependence
of the viscosity; the dotted line, the linear one. The dotted line ends at
� ≈ 1.941 × 10−3 (filled black circle), where the viscosity becomes
negative at the upper boundary.

B. Binary mixtures with a positive Soret effect (ψ > 0)

In the range of a positive Soret effect, i.e., ψ > 0, where the
minor component of the binary mixture is driven to the colder
boundary, convection sets in stationary for all �, just as in the
case of a constant viscosity [32–35]. Figure 3 shows Rc and
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FIG. 2. (Color online) Contour lines of the velocity potential f

at the onset of convection for (a) � = 0.002 and (c) � = 0.008.
(b, d) Corresponding spatial dependence of the viscosity ν(z)/ν0.
Critical values are kc = 3.09 and Rc = 1997 (a, b) and kc = 4.59 and
Rc = 1464 (c, d).
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FIG. 3. (Color online) Critical values (a) Rc(ψ) and (b) kc(ψ)
for � = 0.000, 0.004, and 0.008. Circles mark those values of ψ for
which neutral curves are shown in Fig. 4.

kc as functions of ψ for two representative finite values of �

as well as for the limiting case � = 0. For moderate values of
� (dashed lines), Rc and kc are higher than for � = 0 (dotted
lines) and their behavior as functions of ψ , in particular, the
shift of kc towards 0 for rising values of ψ , is pretty similar to
that for � = 0. However, for higher values of � (solid lines)
and small ψ , the threshold is reduced compared to � = 0,
which is similar to the case of a simple fluid as shown in
Fig. 1. In addition, for large �, the decay of Rc as a function of
ψ becomes much weaker, and most importantly, at a certain
value of ψ , the threshold discontinuously jumps to much lower
values, which are comparable to those for � = 0.
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FIG. 4. (Color online) Neutral curves corresponding to the cir-
cles in Fig. 3 with (a) ψ = 0.02 and (b) ψ = 0.025 for � = 0.008.
Circles mark the minima of the neutral curves.
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FIG. 5. (Color online) Contour lines of the velocity potential f

at the onset of convection corresponding to (a) Fig. 4(a) (ψ = 0.020,
� = 0.008, kc

∼= 4.00, Rc
∼= 1376) and (c) Fig. 4(b) (ψ = 0.025,

� = 0.008, kc
∼= 1.69, Rc

∼= 426). (b, d) The corresponding decay of
the viscosity.

To understand this discontinuous behavior, Fig. 4 shows the
neutral curves R0(k) for two values of ψ , which are to the right
or left of the jump, respectively, and which are shown by circles
in Fig. 3. For the larger value of ψ [cf. Fig. 4(b)], an additional
region of stationary instability forms in the (R,k) plane with
a minimum at lower Rayleigh numbers, which explains the
discontinuity shown in Fig. 3.

As the viscosity contrast [cf. Eq. (11)] at the onset of
convection is given by the product of � and Rc, the jump in the
critical Rayleigh number leads, for ψ close to the discontinuity,
to a strong change in the viscosity contrast at the threshold.
This, finally, leads to very different velocity fields at the onset
of convection for values of ψ that are to the right or to the left
of the jump, which is illustrated by the velocity potential in
Figs. 5(a) and 5(c), respectively. For the smaller value of ψ , Rc

is higher [cf. Fig. 4(a)], leading to a stronger viscosity contrast
[cf. Fig. 5(b)] and therefore to a pronounced shift of the flow
field towards the lower boundary [cf. Fig. 5(a)]. In contrast,
for the larger value of ψ , the threshold Rc is smaller [cf.
Fig. 4(b)], the viscosity contrast is much weaker [cf. Fig. 5(d)],
and thus, there is only a slight shift of the convection rolls [cf.
Fig. 5(c)]. Further, the different lateral extension of the role
structure shown in Figs. 5(a) and 5(c) reflects the jump in kc

[cf. Fig. 3(b)].

C. Binary mixtures with a negative Soret effect (ψ < 0)

The most interesting effect of a strongly temperature-
dependent viscosity occurs in the range of a negative Soret
effect, i.e., for ψ < 0, where the minor component of the
binary mixture is enriched at the warmer boundary: With
increasing values of �, the divergence of the stationary
instability (in the case of a constant viscosity [32–35])
vanishes. Further, beyond a certain L-dependent value of �, the
onset of convection is no longer oscillatory for all ψ < 0, as is
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known in the case of a constant viscosity. Instead, at strongly
negative values of ψ , the oscillatory instability is replaced by
a stationary one. Depending on the strength of the exponential
temperature dependence of the viscosity, the transition from a
Hopf bifurcation to a stationary instability with decreasing ψ

can show a discontinuous or a continuous threshold behavior.

1. Discontinuous transition from an oscillatory
to a stationary instability

For moderate values of �, the transition between the two
types of instabilities is characterized by a discontinuous jump
in Rc, kc, and ωc, as exemplarily illustrated in Fig. 6 for � =
0.003. The corresponding neutral curves R0(k) for different ψ

are shown in Fig. 7, where dashed (red) lines indicate those
parts of the neutral curves where the frequency ω is finite,
while solid (blue) lines represent a stationary instability with
ω = 0. For small |ψ |, the minima of the neutral curves [dotted
(green) line] belong to an oscillatory instability. However,
with increasing |ψ |, this region transforms into an oscillatory
island, which finally disappears, while the stationary branch
of the curve, which shows a minimum at larger values of
k, remains. In consequence, for even larger |ψ |, convection
sets in stationarily at a higher threshold and a considerably
increased critical wave number. These changes are directly
reflected in the velocity potential at the onset of convection, as
shown in Figs. 8(a) and 8(c): While Fig. 8(a) shows traveling
waves in the regime of oscillatory instability, Fig. 8(c) displays
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FIG. 6. (Color online) (a) Critical Rayleigh number Rc, (b) crit-
ical wave number kc, and (c) critical frequency ωc as functions of
ψ < 0 for � = 0.003.
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FIG. 7. (Color online) Neutral curves for � = 0.003 and differ-
ent ψ < 0 as indicated. The dotted (green) line marks the position of
the absolute minima of the neutral curves. At the critical value ψc

∼=
−0.5, the transition from an oscillatory to a stationary instability
takes place. At that point, the minimum of the neutral curves shows
a discontinuous jump in kc and Rc (circles).

stationary convection rolls with a much smaller lateral width
(due to the jump in kc), which are also much more shifted to
the lower boundary [due to the higher threshold and, hence, the
more pronounced viscosity contrast; cf. Figs. 8(b) and 8(d)].

2. Continuous transition from an oscillatory
to a stationary instability

For larger values of �, the transition between the Hopf and
the stationary bifurcation is still characterized by jumps in the
critical wave number and the critical frequency but no longer
shows a discontinuity in the threshold, as illustrated in Fig. 9
for � = 0.004. Instead of forming an oscillatory island that,
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FIG. 8. (Color online) Contour lines of the velocity potential f at
the onset of convection corresponding to Fig. 7 for (a) ψ = −0.475,
kc

∼= 4.17, Rc
∼= 4026 and (c) ψ = −0.6, kc

∼= 11.93, Rc
∼= 5181.

(b, d) The corresponding decay of the viscosity.
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FIG. 9. (Color online) (a) Critical Rayleigh number Rc, (b) crit-
ical wave number kc, and (c) critical frequency ωc as functions of
ψ < 0 for � = 0.004.

for rising |ψ |, will eventually disappear, here, as displayed
in Fig. 10, for rising |ψ |, the minimum of the oscillatory
branch of the neutral curves moves higher and higher. At
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FIG. 10. (Color online) Neutral curves for � = 0.004 and differ-
ent ψ < 0 as indicated. The dotted (green) line marks the position
of the absolute minima of the neutral curves. At ψc

∼= −0.355, the
transition from an oscillatory to a stationary instability takes place
and the minimum of the neutral curves shows a discontinuous jump
in kc (circles).

a certain value of ψ , the minima of the oscillatory [dashed
(red) line] and stationary [solid (blue) line] branches are of
equal height, and with further increasing |ψ |, the minimum
of the stationary branch is finally lower and determines the
onset of convection. The changes of the velocity potential near
this new codimension-2 point are similar to those depicted in
Fig. 8. The stationary branch of the critical Rayleigh number,
shown in Fig. 9(a) [solid (blue) line] in the range of ψ < 0 is
continued by the corresponding curve (� = 0.004) in Fig. 3(a)
to the range ψ > 0.

A further interesting difference in the scenarios shown
in Figs. 6–8 versus Figs. 9–10 is that for increasing �,
the change from oscillatory to stationary convection takes
place at a smaller value of |ψ |. With further increas-
ing �, this trend continues, i.e., for rising strength of
the exponential temperature dependence of the viscosity,
the region in the parameter range ψ < 0, where convec-
tion sets in via a Hopf bifurcation, becomes smaller and
smaller.

IV. SUMMARY AND CONCLUSIONS

The parameters at the onset of convection are determined
in a binary fluid mixture where the viscosity depends expo-
nentially on the temperature. As explicitly shown for a single-
component fluid, the critical values at the onset of convection
behave as a function of the viscosity difference between the
lower, warmer and the upper, colder boundary differently
for a linear temperature-dependent and an exponentially
temperature-dependent viscosity, respectively.

In the range of a positive separation ratio ψ , we find, as
a function of ψ , for larger values of the viscosity contrast, a
discontinuous change in the critical Rayleigh number as well
as in the critical wavelength of the convection rolls, in contrast
to their continuous behavior in the range of a constant viscosity
and small values of the viscosity contrast.

The strongest qualitative influence of an exponentially
dependent viscosity at the onset of convection is found in
the range of negative values of the separation ratio ψ . In
molecular binary mixtures, for ψ < 0, below the onset of
convection, the minor and heavier component of the fluid
mixture is, via the Soret effect, enriched near the lower and
warmer boundary. In geophysical applications, where also
double-diffusive models are applied, the Soret effect does not
play a very strong role, but due to gravitation, the heavier
minor component of the mixture is similarly accumulated in
the lower warmer range of the convection layer [52,53]. For
molecular binary fluids, such as water-alcohol mixtures, it is
common that in closed convection cells, one has an oscillatory
onset of convection in the range ψ < 0. However, beyond the
threshold, the concentration gradient is quickly reduced by the
convective motion, which soon leads to a stationary convection
pattern again [31]. In the case of an exponentially temperature-
dependent viscosity of the binary mixture, we find in the range
ψ < 0 the surprising effect that, with increasing values of the
viscosity contrast, already the onset of convection changes
from an oscillatory to a stationary one and that the range
ψ < 0, in which the onset of convection is still oscillatory,
shrinks with increasing viscosity contrasts. According to this
result for closed convection cells, we expect also in model
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systems, where one has nonvanishing currents of the minor
component through the lower boundary [27,45] and that are
of importance for geophysical situations, a stationary onset of
convection.
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