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Melting of a finite-sized two-dimensional colloidal crystal
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We have studied the melting process of a finite-sized two-dimensional colloidal crystal by video microscopy.
The local area fraction φ and the local hexatic orientational order parameter ψ6 have been evaluated for respective
Voronoi cells in the crystal. The histogram of φ exhibits a peak and the peak φ continuously decreases with
the time elapsed. The histogram of |ψ6| shows an abrupt broadening for φ < 0.65. This critical value of φ is
the transition point between the hexatic and dense liquid phases in finite crystal. We have also evaluated φ and
|ψ6| as a function of the distance from the center of the crystal r . φ(r) is almost constant within the crystal
and monotonously decreases with the time elapsed. |ψ6(r)| gradually decreases with r but there is the core with
|ψ6| = 1 at earlier time stage. The temporal change of the average φ within the crystal is qualitatively explained
by the slow diffusion of the particles situated at the crystal edge. The steric repulsion between the particles within
the crystal enhances the expansion rate of the crystal edge. Overall melting behavior is same in the crystals
with different sizes. We have also studied the melting of a finite-sized crystal composed of soft-core particles by
Brownian dynamics simulation and verified the finite-size effect on the melting process. The simulated behavior
is qualitatively in good agreement with the experimental results.

DOI: 10.1103/PhysRevE.89.052305 PACS number(s): 82.70.Dd, 64.70.pv, 64.70.dj

I. INTRODUCTION

Colloidal crystals have been intensively studied as a model
system of atomic and molecular crystals [1–3]. The advantage
of utilizing colloidal particles as model is that one can
study their structures and dynamics at the level of individual
particles. Since the size of the particles is much larger
than the atomic scale, the characteristic time scale of their
dynamics becomes much slower and one can easily follow
their dynamics under the microscope. The crystallization and
melting processes of colloidal crystals have been studied
in three dimensions with single-particle resolution [4–6].
These studies also offer important fundamental information for
designing and building photonic crystals from the viewpoint
of application [7].

The melting process of colloidal crystal drastically changes
in lower dimensions where thermal fluctuation easily de-
stroys the long-range positional order. The melting of two-
dimensional crystal has intensively been studied theoretically
and experimentally [8]. The most successful theoretical ap-
proach to this problem is the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) theory [9–12]. This theory predicts a
two-step phase transition between crystal and liquid, including
a hexatic phase as an intermediate phase. Even in the crystal
phase, the translational order is quasi long range due to
thermal fluctuation. The density correlation function decays
as a power of interparticle distance. The hexatic phase exhibits
short-ranged translational order and quasi-long-ranged hexatic
orientational order. In the liquid phase, both orders become
short ranged. The melting from the crystal to the hexatic phase
is driven by the unbinding of dislocations and that from hexatic
to liquid by unbinding of the disclination pairs [12].

The KTHNY scenario has theoretically been discussed by
computer simulation [13–19]. Experimentally, the melting has
been studied in charged colloids [20–22], size-tunable colloids
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[23,24], the colloids at the oil-water interface [25], plasma
crystals [26,27], paramagnetic colloids under a magnetic
field [28,29], and colloids under a laser light field [30]. In
those studies, the melting has been realized by varying the
concentration of particles [20–25] or the interaction between
particles [26–30] in the equilibrium infinitely large systems in
the scale of particle size.

However, the studies on the melting dynamics in a finite-
sized colloidal crystal under the nonequilibrium condition
are not so numerous [31–35] compared with that for nearly
infinite crystals in equilibrium. Among them, the melting of
a finite-sized crystal under short-range attraction which is
induced by a depletion interaction has been reported [31].
Depending on the size of a crystal, the two kinds of melting
processes have been observed. When the size of a crystal is
larger than a certain threshold size, the crystal slowly melts
from its edge. Otherwise, the crystal breaks into clusters
and rapidly melts. However, the temporal growth of spatial
inhomogeneity during the melting process of a finite-sized
crystal has not been discussed much.

In this paper, we have studied the melting process of a
finite-sized two-dimensional crystal composed of hard-sphere
colloids. Since the concentration of the colloids around the
crystal is very low, the observed process might be better
called “sublimation.” By introducing the local area fraction and
the local hexatic orientational order parameter, we discussed
the influence of crystal boundary and spatial inhomogeneity
during the dynamic melting process. The dependence of the
melting process on the initial crystal size has been also studied.
The obtained experimental results are compared with those
calculated by our Brownian dynamics simulation and the
proceeding study under short-range attraction [31].

II. EXPERIMENT

In this study, we used uniform spherical silica particles
3.0 μm in diameter (Hipresica, UNK). They were stored in
ultrapurified water with mix-bed ion-exchange resins before
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use to avoid aggregation. The silica particles used in this study
have silanol groups on their surfaces and they are slightly
charged in pure water. Since the screening length is much
smaller than the size of the particle, the interaction between
them can be regarded as short-ranged repulsion or nearly hard-
sphere-like repulsion. This is also supported by the fact that the
aggregation of the particles has not been observed. The dilute
silica solution was sandwiched between a slide glass and a
cover glass. The one surface of the slide glass was deposited
by indium tin oxide to enhance the laser heating over wide
area. The slide glass was stored in the aqueous solution of
sodium dodecyl sulfate at critical micelle concentration over
night to prevent the adsorption of silica particles on the surface.
The cover glass was burned at 500 ◦C to make its surface
hydrophilic. The thickness of the sample cell was controlled
by the quantity of the solution to fill the gap. The average
resultant thickness of the cell was about 4 μm. The sides of the
cell were enclosed by hydrophobic liquid blocker (Funakoshi)
to avoid overflow, evaporation, and convection of the solution.

We artificially formed a single colloidal crystal of spherical
silica particles with arbitrary size by thermal convection and
thermal diffusion [36–38] in this study. Silica particles move
toward the warmer region in water. Since this effect is usually
tiny, we made the large temperature gradient by a strongly
converged high power Nd:YVO4 laser beam (wavelength 1064
nm, Spectra Physics) with an oil-immersion objective lens
(Plan Apo VC, 60×, NA = 1.4, Nikon). This enables us
to form a two-dimensional colloidal crystal with arbitrary
size as shown in Figs. 1(a) and 1(c). However, we have not
succeeded in increasing the area fraction of the particles up to
the closest packing in two dimensions. When we increased the
area fraction of the particles up to 0.85, some center particles
were pushed out from the crystal by the pressure of the outer
particles and attached the cell surface permanently. Therefore
we started our experiments only from a certain area fraction
smaller than 0.85.

FIG. 1. Snapshots of the melting process of a large (L) and a small
(S) colloidal crystal. [(a) and (c)] t = 0 s. [(b) and (d)] t = 399 s. The
scale bars are 10 μm. The total number of particles within the crystal
at t = 0 is 259 for the L crystal and 112 for the S crystal. The images
are taken under a slightly defocused condition to avoid overlapping
the individual particles’ images. This makes it easy to evaluate the
center position of the respective particles.

By turning off the laser beam, we abruptly switch off the
attractive interaction which collects the particles. Then the cry-
stal starts to melt by diffusion of the particles from the
crystal edge. This situation corresponds to superheating of
the crystal far above the melting temperature. The melting
process was observed under an inverted optical microscope
(TE2000-U, Nikon) with the same objective lens used for
laser heating. The images were captured by a monochrome
charge-coupled-device camera (ADP-240, Flovel, 12-bit) at
10 frames/s. After correcting the brightness of images and
subtracting the background, the images were binarized and
the center position of the particles were tracked with Image J.

For further analysis of the melting process, we divided
the space into a number of regions called Voronoi cells.
For the center position of each particle, a Voronoi cell is a
corresponding region consisting of all points closer to this
center point than to any other. From the Voronoi map, we
calculated the local area fraction φ as the area ratio of a particle,
1.52πμm2, to a Voronoi cell for respective cells as shown in
Fig. 2. The local φ is proportional to the local number density
of the particles.

We also evaluated the local hexatic orientation order
parameter ψ6 for the respective Voronoi cell including the
j -th particles at rj as

ψ6(rj ,t) = 1

N

N∑
k=1

exp(6iθ (rjk,t)), (1)

where θ (rjk,t) is the angle between the vector connecting j -th
and k-th nearest-neighboring particle rjk and the horizontal
axis of the captured images and N is the number of the
neighboring particles to the j -th particle. If the cell has the
perfect sixfold rotational symmetry, ψ6 = 1. The examples of
the spatial distribution of |ψ6| are shown in Fig. 3.

FIG. 2. (Color online) Distribution of the local area fraction φ in
an L crystal. (a) t = 0 s. (b) t = 399 s. The polygons are the Voronoi
cells of the respective particles.
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FIG. 3. (Color online) Distribution of the hexatic orientational
order parameter |ψ6| in an L crystal. (a) t = 0 s. (b) t = 399 s. The
polygons are the Voronoi cells of the respective particles.

III. TEMPORAL CHANGE IN HISTOGRAM OF LOCAL
PARAMETERS φ AND ψ6

We study the histogram of the local area fraction φ over the
crystal. Figures 4(a) and 4(b) respectively show the temporal
change in the histogram of φ for a large (L) and a small (S)
crystal. These graphs respectively exhibit peaks at respective
time points. The value of φ at the peak decreases from 0.82 to

0.5 with time t . The peak height also continuously decreases
and the distribution becomes broader as the time elapsed.
We cannot identify any transition behavior from the temporal
change in the histogram of φ.

We also study the temporal change in the histogram of
local hexatic orientational order parameter |ψ6| as shown in
Figs. 4(c) and 4(d) for respective crystals. These graphs exhibit
clear peaks at |ψ6| > 0.8 at the earlier time stage. However, the
peak broadens and the data largely scatter around 0.4 at the later
time stage. A similar change in the histogram of |ψ6| has been
reported for the shear-induced melting of a three-dimensional
colloidal crystal [6]. Also, in the infinitely large system, the
coexistence of two characteristic distributions in |ψ6| has been
reported during the melting process [21,39].

The peak in the histogram of |ψ6| disappears at around
t = 80 s for the L crystal and t = 50 s for the S crystal. The
dynamic melting of hexatic phase might occur around this time
point and the hexatic and liquid phase coexist at this point.
This is the reason that the peak disappears at this moment and
a broad peak reappears again as the time elapsed. Although the
coexistence of two phases seems to indicate that the hexatic and
liquid phase transition is first order, this transition is considered
to be continuous in the KTHNY scenario. On the other hand,
Bernard and Krauth recently have found that the hexatic-
to-liquid phase transition in the two-dimensional hard-disk
system is first order by use of the Monte Carlo simulation for a
larger system [40]. The experimentally observed coexistence
is mainly due to the nonequilibrium inhomogeneity in our
system but may be partly due to the first-order hexatic-liquid
phase transition.

We find that the corresponding peak φ at this time point
is about 0.65 irrespective of the crystal size, as indicated by
lines in Figs. 4(a) and 4(b). This indicates that the average

FIG. 4. (Color online) Temporal change in the
histogram of φ and |ψ6| for an L crystal and an S
crystal. (a) φ in the L crystal. (b) φ in the S crystal.
(c) |ψ6| in the L crystal. (d) |ψ6| in the S crystal.
The transition between the hexatic and liquid phases
occurs about 80 s for the L crystal and dabout 50 s
for the S crystal as indicated by the lines in (c) and
(d). The corresponding φ is about 0.65 irrespective
of the crystal size as shown in the lines in (a)
and (b).
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FIG. 5. (Color online) Temporal change in the spatial distribution
of the number of the nearest neighbors. The cells which have fifth-,
sixth-, and seventh-nearest neighbors are represented in different
colors.

melting behavior does not depend on the size of crystal. The
only difference between the L and S crystals is that in time
scale. The time necessary to expand to the same φ depends
on the initial crystal size. Since the overall behavior of the
melting process does not strongly depend on the crystal size,
we only present the experimental result on the L crystal in the
following discussion.

In order to observe the dynamic melting process of
the hexatic phase, we studied the two-dimensional spatial
distribution of the number of the nearest neighboring (NN)
particles as shown in Fig. 5. According to the experimental
result in infinitely large crystals, melting of the hexatic phase
proceeds by the dissociation of the pair of 5- and 7-NN
disclinations [21]. In our experiment, melting proceeds with
the repeated creation of defects at the edge of the crystal and
their diffusion to the center region. The growth of chains of
5- and 7-NN pairs from the edge of the crystal has been also
observed (60, 80, and 100 s in Fig. 5).

The dependence of the fraction of 5-, 6- and 7-NN pairs
on time t is shown in Fig. 6. The fraction of the 6-NN pair
decreases with time and approaches 0.5. The number of 5- and
7-NN pairs increases with time and respectively approaches
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FIG. 6. (Color online) Dependence of the fraction of the number
of the nearest-neighboring particles on time t .

0.3 and 0.2. Since the transition from the hexatic to the liquid
phase undergoes the dissociation of 5-NN and 7-NN pairs [21],
the fraction of 5- and 7-NN pairs is expected to be the same.
However, there is an imbalance in the number of the pairs
in Fig. 6. Such an asymmetry has been also observed in the
infinite system [23]. However, in this study, this is mainly due
to the fact that the boundary particles have a smaller NN pair
as clearly seen at 0 s and 20 s in Fig. 5, and the number of
particles at boundary is relatively large in our finite system.

IV. RADIAL DISTRIBUTION OF LOCAL
PARAMETERS φ(r) AND ψ6(r)

The radial distribution of local parameters φ(r) and ψ6(r)
have been studied to examine the spatial inhomogeneity within
the crystal (hereafter we call it cluster). Those two values
are respectively evaluated by φ(r) = ∑

r�ri�r+�r φ(ri)/M and
|ψ6(r)| = ∑

r�ri�r+�r |ψ6(ri)|/M , where M is the number of
the particles whose radial position ri satisfy r � ri � r + �r .
The calculated φ(r) and |ψ6(r)| are respectively shown in
Figs. 7(a) and 7(b). φ(r) exhibits an almost constant value
within the cluster, and this constant value of φ monotonously
decreases with the time elapsed. In order to evaluate the size
of the cluster and the average density within the cluster, we
fitted the radial profile φ(r) by

φ(r) = A tanh

(
r0 − r

ξ

)
+ C, (2)

where A is the amplitude, r0 is the radius of the cluster, ξ is the
half width of the edge, and C is constant. The best-fitted curves
of Eq. (2) to data at respective time points are drawn as the
solid curves in Fig. 7(a). Although this profile is usually used
to analyze the equilibrium density profile across the boundary
between two coexisting phases, the agreement is good except
for the longer elapsed time.

The dependence of r0, ξ , and φ0 (φ at r = 0) on the elapsed
time t are shown in Figs. 8(a) and 8(b). The value of r0 can
be regarded as the size of the cluster and increases with t . The
value of ξ is the measure of the roughness of the boundary of
the cluster. ξ is almost constant as large as one or two times of
the particle’s diameter. φ0 is a decreasing function of t .
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FIG. 7. (Color online) Temporal change in the
radial distribution of (a) the local area fraction
φ(r) and (b) the local hexatic orientational order
parameter |ψ6(r)| in the L crystal. The solid lines in
(a) are the best-fitted curves of Eq. (2).

We discuss this temporal change using a simple model:
The boundary position follows the diffusion process and the
density within the cluster is independent of r . With this simple
assumption, r0 is given by

r0(t) � α + β
√

t, (3)

where α and β are constant. The number of the particles
within the crystal is conserved and the temporal change
φ0(t) = φ(r = 0,t) is given by

φ0(t)

φ0(0)
= α2

r2
0

� (1 + γ
√

t)−2, (4)

where γ is the constant.
Instead of Eq. (4), we fitted the time dependence of

φ0(t)/φ0(0) shown in Fig. 8(b) by

φ0(t)

φ0(0)
= (1 + a1t

a2 )−2. (5)

The best-fitted values are a1 = 1.09 × 10−2 and a2 = 0.558.
The best-fitted curve is shown as the solid line in Fig. 8(b).
With the best-fitted value a2 = 0.558, we can also fit r0(t) =
a3 + a4t

0.558 to data with a3 = 22.92 and a4 = 0.517 as shown
in the solid line in Fig. 8(a). The obtained exponent a2 =
0.558 is a little bit larger than 0.5. This is partly due to the
repulsion between the interior particles. This repulsive effect
will be discussed theoretically by use of a Brownian dynamics
simulation in the next section. Although the relation a1 =
a4/a3 is expected to hold from Eqs. (3) and (4), the growth
rate of r0 is larger than that estimated from the decrease of the
average density φ0. This indicates that the expansion rate of the
cluster differs from the free diffusion rate outside of the cluster.
Although the dependence of φ0(t) is mainly determined by the
expansion rate of the cluster, the size r0 is determined by
the whole profile of φ(r), including the exterior particles near
the boundary. This makes the size r0 greater than that expected
from the dense part of the cluster, and the growth rate of r0

becomes larger on appearance. This is also the reason that the
fitting of Eq. (2) to data becomes worse at later time stages.

The radial distribution |ψ6(r)| exhibits the flat part with
|ψ6(r)| � 1 at the center region of the cluster, but |ψ6(r)| at the
outer region decreases with r for 0 < t < 80 s. For t > 80 s,
|ψ6(r)| at the center of the cluster becomes smaller than 1. This
corresponds the distribution of 5- and 7-NN particles in Fig. 5.
These particles are distributed at the outer side of the cluster
and invade into the inner region as time elapses. At longer time
periods, |ψ6(r)| approaches 0.5 over the whole distance within
the cluster. To visualize this change, the temporal change of the
two characteristic values are shown in Fig. 9: The radius of the

FIG. 8. (Color online) Temporal change of the radius of the
cluster r0, the boundary width ξ , and φ at the center of the cluster φ0.
The best-fitted lines, r0(t) = 22.92 + 0.517t0.558 and φ0(t)/φ0(0) =
(1 + 1.09 × 10−2t0.558)−2, are respectively drawn as the solid lines in
(a) and (b).

052305-5



SAYURI TANAKA, YUMA OKI, AND YASUYUKI KIMURA PHYSICAL REVIEW E 89, 052305 (2014)

50

40

30

20

10

0

Sl
op

e
(m

m
-1

)

4003002001000
t (s)

15

10

5

0 R
ad

iu
s o

f |
6|=

1 
(µ

m
)

 Radius
 Slope

FIG. 9. (Color online) Temporal change of the radius of the area
of |ψ6| = 1 and the slope of |ψ6| in the cluster. The area of |ψ6| = 1
disappears at around t = 80 s and the average slope monotonously
decreases with t . The transition from the hexatic to the liquid phase
is considered to occur at t = 80 s.

region with |ψ6| = 1 and the average slope of the declined part
within the cluster. The |ψ6| = 1 area monotonously shrinks
and disappears at about t = 80 s. This time point agrees
with that when the histogram of |ψ6| drastically changes.
The slope continuously decreases with time and approaches
zero.

V. BROWNIAN DYNAMICS SIMULATION OF THE
MELTING OF A FINITE-SIZED CRYSTAL

We also study the melting process of a finite-sized colloidal
crystal by use of a Brownian dynamics simulation. In our
simulation, the soft repulsive interaction between the particles,
U (rij ) = 4ε(d/rij )12, is only taken into account, where ε

(>0) is the magnitude of the interaction, d is the diameter
of the particle, and rij is the interparticle distance between
the i-th and j -th particles. We have not taken into account
the hydrodynamic and electrostatic ones. The dynamics of
the respective particles follow the Langevin equations in the
viscous limit as

ζ
d r i

dt
=

∑
i �=j

48ε

(
d

rij

)12 eij

rij

+ f i
B, (6)

where r i is the position of the i-th particle, ζ is the friction
coefficient, eij is the unit vector parallel to r ij , and f B

i is

the random force acting on the i-th particle. f B
i satisfies

〈 f B
i (t)〉 = 0 and 〈 f B

i (t ′) f B
i (t ′′)〉 = 2ζkBT δ(t ′ − t ′′), where

〈· · · 〉 represents ensemble average, kB is the Boltzmann
constant, and T is the absolute temperature. We used the
dimensionless form of Eq. (6) for simulation. The unit scales
are d for length, td = d2/D for time (D is the diffusion
constant of the particle, which is given by D = kBT /ζ ), and
kBT for energy. In our simulation, the time step is 10−5, the
number of particles is 169, and ε = 2.0. We set the initial
arrangement of the particles to the hexagonal one and the initial
interparticle separation to 1.05d. This distance corresponds the
experimental initial area fraction φ = 0.83.

The results of simulation corresponding to the experimental
ones, Figs. 4, 7, and 8, are respectively shown in Figs. 10–12.
We can also note that the time point at the hexatic-liquid
transition is about 7000 and the corresponding φ is about
0.63. This value is closed to our experimental value of 0.65 in
finite-sized clusters and that in the bulk of about φ = 0.7. The
value is also close to the bulk value in a similar system [21].
The simulated radial distribution of φ(r) and |ψ6(r)| in Fig. 11
also makes a qualitative agreement with the experimental data
in Fig. 7. In the middle time stage, the experimental result
of |ψ6(r)| exhibits the gradual decrease with r while φ(r)
maintains an almost uniform value within the cluster. This
characteristic radial dependence of |ψ6| is also reproduced in
the simulation.

The temporal variation of the fitting parameters is quan-
titatively in agreement with experimental data. The time
dependence of φ0 is well fitted by Eq. (5) with a1 =
8.23 × 10−4 and a2 = 0.578 as shown in the solid line in
Fig. 12(b). The time dependence of the cluster size r0 is also
well fitted by r0 = 19.57 + 1.81 × 10−2t0.578 as shown in the
solid line in Fig. 12(a). The ratio of the best-fitted values
1.81 × 10−2/19.57 is close to a1 but is a bit larger than a1.
The best-fitted value of a2 = 0.578 is close to the experimental
value of a2 = 0.558. This indicates that the introduction of a
repulsive interaction accelerates the melting process.

VI. DISCUSSION

As discussed in the previous section, the short-range
repulsive interaction and finite-size effect are essential for the
melting dynamics in our system. We briefly compare the result
of pure diffusion of a finite-sized single cluster composed of
sizeless particles without interaction. The temporal variation

FIG. 10. (Color online) Temporal change in the
histogram of φ and |ψ6| obtained by use of a
Brownian dynamics simulation. (a) φ; (b) |ψ6|.
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FIG. 11. (Color online) Temporal change in the
radial distribution of φ(r) and |ψ6(r)| obtained by
use of a Brownian dynamics simulation. (a) φ(r);
(b) |ψ6(r)|. The solid lines in (a) are the best-fitted
curves of Eq. (2).

of density φ(r,t) governed by the diffusion equation (where D

is the diffusion constant),

∂φ(r,t)

dt
= D

∂2φ(r,t)

dr2
, (7)

FIG. 12. (Color online) Temporal change in the size of a cluster
r0, the boundary width ξ , and φ at the center of the crystal φ0. The best-
fitted lines, r0(t) = 19.57 + 1.81 × 10−2t0.578 and φ0(t)/φ0(0) =
(1 + 8.23 × 10−4t0.578)−2, are respectively drawn as the solid lines
in (a) and (b).

with the initial condition,

φ(r,0) = θ (r0 − r) =
{

1 (r0 � r)
0 (r0 < r) , (8)

is given by

φ(r,t) = 1

2

[
erf

(
r0 − r

2
√

Dt

)
+ erf

(
r0 + r

2
√

Dt

)]
, (9)

where r0 is the initial radius of the cluster and erf(x) is the
Gaussian error function defined by

erf(x) = 2√
π

∫ x

0
exp(−u2)du. (10)

The temporal variation of Eq. (9) is schematically shown
in Fig. 13(b). At the earlier time stage, the edge position of
the cluster is almost same and the region with φ = 1 rapidly
shrinks. Then, with the time t elapsed, the profile of φ(r)
approaches Gaussian. This differs from that observed in our
study as shown in Fig. 13(a).

On the other hand, when the attractive interaction exists
as reported in Ref. [31], the size of the crystal decreases
while keeping a high φ value which corresponds to the crystal
phase and the width of the boundary is about two layers,
as schematically shown in Fig. 13(c). After the size of the
crystal becomes smaller than a certain critical value, it rapidly
decomposes into small dense clusters.

In our system, the expansion of the cluster is governed by
the diffusion of the outermost particles. Since the cooperative
diffusion of the particles within the cluster is large, this enables
us to equilibrate the density of the particles within the cluster
much faster than the expansion speed. Therefore, the density
at the interior of the cluster is almost constant and the system
can be regarded as an infinite system with the same φ. The
comparison between three systems suggests that the dynamics
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FIG. 13. (Color online) Schematic temporal change of the radial
distribution of the area fraction φ(r). (a) Experimental result in the
present study (short-range repulsion). (b) Simple diffusion (pointlike
particle without interaction). (c) Previous experimental result (short-
range attraction).

of the melting process is largely influenced by the interaction
between particles, especially in the finite-sized system.

VII. CONCLUSIONS

We have studied the melting process of an isolated two-
dimensional colloidal crystal (or cluster) with single particle
resolution. The use of the thermophoretic force to collect
colloidal particles enabled us to form an isolated nearly
close-packed cluster without defects. We evaluated the local
area fraction φ and local hexatic orientation order parameter
ψ6 for respective Voronoi cells. From the temporal variation of
the histogram of φ and |ψ6|, the distribution of |ψ6| abruptly
changed at φ = 0.65. The overall manner of change does
not depend on the initial size of the crystal. From the radial
distribution of φ and |ψ6|, the melting process was found to
differ markedly from that with attractive interaction or without
interaction. The decrease of the area fraction was limited by
the diffusion of the most-outer particles. The distribution of
φ within the cluster was almost uniform and the average
φ monotonously decreased with time. The experimentally
obtained results were qualitatively reproduced by Brownian
dynamics simulation of the particles interacting via soft-core
repulsion. The precise melting process by controlling the
interaction between particles in colloidal systems is valuable
to elucidate the melting mechanism in atomic systems.
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