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Anomalous thermomechanical properties of a self-propelled colloidal fluid
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We use numerical simulations to compute the equation of state of a suspension of spherical self-propelled
nanoparticles in two and three dimensions. We study in detail the effect of excluded volume interactions and
confinement as a function of the system’s temperature, concentration, and strength of the propulsion. We find
a striking nonmonotonic dependence of the pressure on the temperature and provide simple scaling arguments
to predict and explain the occurrence of such anomalous behavior. We explicitly show how our results have
important implications for the effective forces on passive components suspended in a bath of active particles.
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The kinetic theory of gases proved to be one of the crowning
achievements of 19th century physics. The seminal work
of Bernoulli, Clausius, Maxwell, and Boltzmann presented
a definitive relationship between the internal structure of a
gas and its thermomechanical properties and thus provided
unprecedented insight into the behavior of gaseous systems
and set the foundation for the modern kinetic theory.

In recent years, active systems have been at the forefront
of nonequilibrium statistical mechanics, as they show a
range of exotic behavior not typically observed in their
passive counterparts, including turbulence [1–4], delayed
crystallization [5], and self-regulation [6–9] (see Refs. [10–12]
for recent reviews on the field). In spite of the great effort
deployed to systematically quantify the individual and col-
lective dynamics of synthetic and naturally occurring active
nanocomponents, such as self-propelled colloidal particles and
bacterial suspensions, our understanding of active systems still
remains incomplete.

As an attempt to provide a better link between the
microscopic properties and the resulting macroscopic behavior
in actives systems, we consider a solution of spherical self-
propelled nanoparticles (one of the simplest realizations of
an active system) and determine what is typically one of
the most fundamental properties of a solution: its equation
of state. We show how self-propulsion leads to anomalous
thermomechanical properties and how these are affected
by confinement and excluded volume interactions. We also
discuss, as an application of our results, how the effective
interactions induced by an active ideal gas on two plates kept
in close proximity gives rise to and unexpected behavior as a
function of activity and temperature.

To understand the interplay between active and thermal
forces, we begin our study with what is possibly the simplest
thermodynamic system, a dilute suspension of noninteracting
self-propelled particles (the active ideal gas), and we ignore
any effective interaction between the particles that may arise,
for instance, as a result of gradients in fuel concentration or
hydrodynamic interactions [13–16]. In our case, the pressure
is determined solely by the average force that particles exert
on an enclosing container.

*ac2822@columbia.edu

We implement a minimal model, inspired from recent ex-
perimental and theoretical work [17–22], of N self-propelled
particles in two and three dimensions modeled as spheres of
diameter σ confined within a circular or spherical container
of radius R centered at the origin of our coordinate system.
Each ideal particle undergoes Langevin dynamics at a constant
temperature T and interacts exclusively with the wall via a
truncated harmonic potential of the form

Vw(r) =
{

0 for r − R < 0

k (r − R)2 for r − R � 0,

where r is the distance from the center of the container, k =
800kBT0/σ

2 is the spring constant, and kBT0 (with T0 = 1) is
the thermal energy at room temperature that will be used as
the energy scale.

Self-propulsion is introduced through a directional force
that has a constant magnitude |Fa| and is directed along a
predefined orientation vector nnn, which passes through the
origin of each particle and connects its poles. The equations
of motion of an individual particle are given by the coupled
Langevin equations

mr̈rr = −γ ṙrr − ∂rrrVw + |Fa|nnn +
√

2γ 2Dξξξ (t), (1)

ṅnn =
√

2DrξξξR(t) × nnn, (2)

where m is the particle’s mass, γ is the drag coefficient, and D

and Dr are the translational and rotational diffusion constants,
respectively. The typical solvent-induced Gaussian white noise
terms for both the translational and rotational motion are
characterized by 〈ξi(t)〉 = 0 and 〈ξi(t) · ξj (t ′)〉 = δij δ(t − t ′)
and 〈ξRi(t)〉 = 0 and 〈ξRi(t) · ξRj (t ′)〉 = δij δ(t − t ′), respec-
tively. In the low Reynolds number regime the rotational
and translation diffusion coefficients for a sphere satisfy the
relation Dr = 3D/σ 2.

All simulations were carried out in two and three dimen-
sions using LAMMPS [23], with the mass of each particle m = 1,
the drag coefficient γ = 10, and the time step �t = 10−3. The
drag coefficient γ was chosen to be sufficiently large such
that the motion of the particles is effectively overdamped.
Several of the simulations were repeated with larger values of γ

(e.g., γ = 50,100), which produced no detectable differences
in our results. Each simulation was run for a minimum of
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FIG. 1. (Color online) (a) Pressure in the two-dimensional sys-
tem as a function of temperature for several values of |Fa|. (b) Same
curve as (a) for T < 2. (c) Pressure as a function of the box radius
where |Fa| = 20 for several values of T . All solid lines are plotted
using Eq. (8) and the corresponding system variables.

3 × 107 time steps. The total number of particles ranged
from N = 102 to N = 3 × 104. The mechanical pressure was
calculated as the average force the particles exerts on the
boundary divided by the area of the container A.

The zero-propulsion and zero-temperature limits are well
understood. In the former, the system reduces to an ideal
gas exerting a pressure P = ρkBT , while in the latter, all
particles accumulate on the walls of the container and each
contributes a persistent force of magnitude |Fa|. This result
is due to a particle’s inability to rotate in the absence of
thermal fluctuations and after hitting the wall they slide across
its surface until the tangential component of the active force
vanishes. The resulting pressure is trivially P = N |Fa|/A.

The interesting behavior emerges at finite temperatures
and moderate activity where the rotational diffusion is able
to derail the otherwise rectilinear trajectories of the particles.
Figures 1(a) and 2(a) show how the pressure exerted on the wall
depends on the temperature T for different values of the active
force respectively in two and three dimensions. Strikingly,
these curves show nonmonotonic behavior. Specifically, for
small values of T , an increase of the temperature leads to a
sharp decrease of the pressure, whereas for large values of
T , the system’s pressure reestablishes the ideal gas pressure-
temperature dependence expected for nonactive particles.

The behavior of the pressure at low temperatures (or large
|Fa|) can be rationalized with the following argument: The
two relevant time scales in the system are the decay of
the rotational correlation time due to thermal fluctuations,
which can be written for the specific cases of two and three
dimensions as τr � (d − 1)D−1

r [24], where d = 2,3 is the
system dimensionality, and the time required for the particles
to move across the system. The latter time scale at low T is
dominated by the active motion and scales as τa � Rγ/|Fa|.
Therefore, as long as τa/τr � 1, i.e., the rotational motion
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FIG. 2. (Color online) (a) Pressure in the three-dimensional sys-
tem as a function of temperature for several values of |Fa|. (b) Same
curve as (a) for T < 2. (c) Pressure as a function of the box radius
where |Fa| = 20 for several values of T . All solid lines are plotted
using Eq. (8) and the corresponding system variables.

does not decorrelate faster than the time required for the
particle to cross the container, there will always be a net
linear contribution to the pressure on the wall by the active
force. A simple way of estimating the average pressure in this
regime can be obtained by considering that a particle can be
either on the wall pushing with a force proportional to |Fa| or
diffusing across the box, generating no pressure on the wall.
A particle on the wall will exert a force for a time of the order
of τr � (d − 1)D−1

r . The average time spent by the particle
diffusing across the box without generating any pressure on
the wall is τa � Rγ/|Fa|. Hence, over the time τr + τa the
force exerted on the wall by a single active particle can be
estimated as 〈F 〉 � (|Fa| · τr + 0 · τa)/(τr + τa) = |Fa|/(1 +
τa/τr ). Multiplying by N and dividing by the surface, one
obtains the total pressure

〈P 〉 =
(

N

A

) |Fa|
1 + τa

τr

(3)

and in the limit τa/τr � 1, this can be further simplified to

〈P 〉=
(

N

A

) |Fa|
1 + τa

τr

� N |Fa|
A

(
1−τa

τr

)
� N |Fa|

A
e−τa/τr . (4)

We expect that the exact numerical value of the pressure will
be dependent on the specific geometry of the boundary, as the
behavior of the particles on the surface is well known to be
strongly sensitive to it [25], but the qualitative nonmonotonic
behavior observed here should remain unaltered. To account
for this uncertainty, we introduce a geometric factor α and
Eq. (3) can be recast as

〈P 〉 =
(

N

A

) |Fa|
1 + τa

τr

=
(

R

d

)
ρ|Fa|

1 + α
( 3(d−1)RkBT

σ 2|Fa |
) , (5)

where we have also used the appropriate Einstein relation (D =
kBT/γ ) to introduce the proper temperature dependence.
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The derivation of Eq. (5) assumes that particles spend a
majority of their time at the boundary, which ceases to be
true when τa/τr � 1. A simple expansion of Eq. (5) in this
limit gives 〈P 〉 � ( ρ

d
) |Fa |2σ 2

3(d−1)kBT
, indicating that, as is typical for

nonactive ideal gases, the pressure depends on the square of
the particle velocities. Of course, such an expansion assumes
that the particle velocities are proportional to the active force,
but at large temperatures, one cannot neglect the contribution
of thermal fluctuations to the motion of the particle. In this
regime, we appeal to the insights of equilibrium statistical
mechanics and make the assumption that the pressure is
proportional to the average translational kinetic energy of the
system. The introduction of self-propulsion when τa/τr � 1
can be viewed as a perturbation of an ideal gas. One way
to associate a pressure in this regime is to compute 〈ṙrr2(t)〉
from Eq. (1) (see the Appendix). For simplicity, we consider
particles confined to two dimensions and only have a single
degree of rotational freedom. Assuming the system reaches its
steady state (i.e., t → ∞ and 〈F 〉 = 0), we can write

〈ṙrr(t)2〉 = 2kBT

m
+ |Fa|2

m(3kBT/σ 2 + γ 2/m)
(6)

Measurements of 〈ṙrr(t)2〉 in numerical simulations performed
in two dimensions on a system with periodic boundary
conditions are in good agreement with Eq. (6).

Assuming that in this limit we can write the pressure as
P/ρ = m

2 〈ṙ(t)2〉, we obtain

P = ρ

(
kBT + |Fa|2

6kBT/σ 2 + 2γ 2/m

)
, (7)

where ρ is the number density. The first term captures the
ideal gas behavior, whereas the second term corrects for the
increase of the velocity of the particles due to their propulsion.
This correction is not a constant factor, but slowly decays with
the temperature as the extent of the random thermal forces
overwhelms (affecting both rotational and linear degrees of
freedom) the role of the active ones. It is important to stress
that, if the pressure-velocity relation that we used in Eq. (7) is
indeed applicable to an active gas, it can only be valid for very
high temperatures and large values of R.

Remarkably, we find that the equation obtained by simply
adding the ideal gas limit ρkBT to Eq. (5),

P = ρkBT +
(

R

d

)
ρ|Fa|

1 + α
( 3(d−1)RkBT

σ 2|Fa |
) , (8)

provides the best description of the data observed in our simu-
lations in both two- and three-dimensional systems in terms of
all external parameters: the temperature [Figs. 1(a), 1(b), 2(a),
and 2(b)], the radius of the cavity [Figs. 1(c) and 2(c)], and
the strength of the activity [Figs. 3(a), 3(b), 4(a), and 4(b)].
The single fitting parameter for all curves in two and three
dimensions is estimated to be α � 0.89. Our derivations of
Eqs. (4) and (5) is based on simple scaling arguments, however,
a recent detailed analysis of the dynamics of self-propelled
particles under strong confinement near the boundary has
been carried out by Fily et al. [26]. They found the analogous
exponential decay we report in Eq. (4). In their calculations
they predict that α = 1, which is in good agreement with our
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FIG. 3. (Color online) (a) Pressure in the two-dimensional sys-
tem as a function of |Fa| for several values of T . (b) Same curve as
(a) for |Fa| < 50. The solid lines in (a) and (b) correspond to Eq. (8).
(c) Fraction of particles β that are within one particle radius from the
boundary as a function of |Fa| for various values of T .

numerical findings. Figures 3(c) and 4(c) also indicate how
the average fraction of particles on the surface of a container
β, defined as the number of particles that are within a particle
radius σ/2 from the boundary divided by the total number of
particles in the system, depends on |Fa| for different values of
the temperature. At low temperatures and large propulsions
the particles tend to accumulate at the surface, while for
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FIG. 4. (Color online) (a) Pressure in the three-dimensional sys-
tem as a function of |Fa| for several values of T . (b) Same curve as
(a) for |Fa| < 50. The solid lines in (a) and (b) correspond to Eq. (8).
(c) Fraction of particles β that are within one particle radius from the
boundary as a function of |Fa| for various values of T .
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large temperatures and weak propulsions the particles are
dispersed homogeneously within the container. It should again
be stressed that Eq. (8) suggests that the anomalous behavior
of the pressure with the temperature is not solely to be found
in highly confined gases, but should persist in the limit of large
containers.

Taking the limit for R → ∞ in Eq. (8) while keeping the
density constant gives

P = ρ

(
kBT + |Fa|2σ 2

3αd(d − 1)kBT

)
, d = 2,3, (9)

which has the same limiting behavior for very high tempera-
tures as Eq. (7). The location of the inflection point T ∗, whose
value grows linearly with the strength of the active force and
is independent of R, can then be easily computed to give

T ∗ = |Fa|σ
kB

√
3αd(d − 1)

. (10)

Let us now consider the behavior of an active gas when
excluded volume interactions between the particles are no
longer negligible. This is achieved in our simulations via the
Weeks-Chandler-Andersen (WCA) potential

U (rij ) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6

+ 1

4

]
(11)

with a range of action extending up to rij = 21/6σ . Here rij is
the center-to-center distance between any two particles i and
j and we set ε = 10kBT0.

In analogy with nonactive gases, the deviations from the
ideal (noninteracting) case are estimated by Z ≡ P/P0, where
P and P0 are, respectively, the pressures of the nonideal and
ideal active systems at the same V , T , and |Fa|. The con-
ventional understanding of this factor for nonactive systems
is intimately linked to the virial expansion of the pressure
at low densities: When Z ≈ 1 the system has nearly ideal
behavior and molecular interactions are negligible, Z > 1 is
the signature of a positive second virial coefficient pointing to
an effectively repulsive nature of the interactions between the
particles, and Z < 1 would point to an effective attraction
that under the appropriate conditions would lead to phase
separation. The compressibility factor as a function of volume
fraction φ = πρσ 3/6 for d = 3 and φ = πρσ 2/4 for d = 2 at
several values of |Fa| is shown in Fig. 5. As expected, for small
values of |Fa|, the purely repulsive nature of the interparticle
interactions leads to Z > 1 for the range of volume fractions
considered in these simulations. Strikingly, as the activity is
increased, Z shows nonmonotonic behavior. Specifically, there
exist values of Z smaller than one that appear for a range of low
densities until excluded volume interactions eventually take
over at larger φ to restore the expected Z > 1. It is tempting
to associate the value of Z < 1 with an effective attraction
among the particles leading to a phase separation between the
high-density layers on the surface and the low density in the
bulk, however, it is not clear that a simple relation between the
virial coefficients and the sign of the interaction between the
particles also holds for active nonideal gases. Nevertheless,
phase separation of spherical self-propelled particles has been
recently observed and predicted in two- and three-dimensional
systems with periodic boundary conditions [20,27–31].
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FIG. 5. (Color online) Compressibility factor Z for the (a) three-
and (b) two-dimensional systems as a function of volume fraction φ

for different values of the active force |Fa| at T = 1. The dashed line
indicates the nonactive ideal case.

To understand this behavior it is instructive to consider
how the active force (the dominant term in the large |Fa|
limit) generates a pressure on the wall. For an ideal active gas,
particles accumulating at the walls can freely slide across its
surface until they align their propulsion axis parallel to the
normal of the wall, thus each contributing the maximal force
|Fa| (when T = 0) to the pressure. For a nonideal active gas,
excluded volume interactions between the particles hinder the
particles’ ability to reach these optimal configurations. Clearly,
this becomes more of a problem as the volume fraction is
increased and the particles begin to form layers at the surface
of the container. The net result is a smaller average force per
particle relative to the one generated by the ideal gas and
a compressibility factor Z < 1. This effect is highlighted in
Fig. 6, where we plot the angular distribution P (cos α) for all
the particles in contact with the boundary for various volume
fraction in two and three dimensions. Here α is the angle
between the propelling axis and boundary normal. As density
increases, the angular distribution broadens and a fraction of
the particles are antialigned to the normal at the boundary,
indicating that the second layers of particles can cage particles
in the first layer, leading to a broadening of the angular
distribution.

We briefly conclude with an important application of
the nontrivial thermomechanical properties of an active gas
reported in this paper. We compute the strength of the
effective force experienced by two parallel plates immersed
in a two-dimensional suspension of nonideal active particles.
For the sake of simplicity, we consider a two-dimensional
system, where each plate has a length of 10σ and a width of
σ and are fixed at a center-to-center distance σ such that the
faces of the plates are in contact. All particles in the system
have a diameter of σ and interact via the potential in Eq. (11)
with ε = 10kBT0. The plates are made to be purely repulsive
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FIG. 6. (Color online) Distribution of the dot products between
the propelling axis of a particle and the normal to the wall at the
particle’s location for various volume fractions of interacting particles
in both (a) three and (b) two dimensions. Only particles within a range
of σ from the wall are considered for this analysis. The logarithmic
scale in the vertical axis has been chosen to better highlight the
difference between the curves. The value of the active force is
|Fa| = 20.

and interact with the particles in the system via a WCA
potential with cutoff σR , where σR is the shortest distance
between the center of the particle and the edge of the plate.
The strength factor is kept consistent with the interparticle
strength factor and is set to εR = 10kBT0. In addition, the
simulation box is set up to be a square of area A with
periodic boundary conditions at a fixed particle concentration
ρ = N/A = 0.1 with N = 188 particles. The strength of the
effective attractive force between the plates 〈F0〉 is computed
from the mean force acting on the plates when held in place.
The well known result for nonactive systems is that the
strength of the induced attractive potential (depletion force)
is proportional to the local pressure imbalance ρkBT (in the
ideal gas approximation) that develops when the plates are at
a surface-to-surface distance smaller than σ . The expectation
for nonactive particles is therefore that the interaction strength
should increase monotonically with T and ρ. Figure 7 shows
how instead the strength of the force between the plates
presents a nonmonotonic behavior with temperature when
the depletant is activated by a sufficiently large propelling
force |Fa| = 25 in our two-dimensional simulations. This
counterintuitive result becomes immediately obvious when
considering the anomalous pressure-temperature dependence
discussed in this paper. We anticipate that other anomalies

F
0

T

FIG. 7. (Color online) Nonmonotonic behavior of the effective
force 〈F0〉 induced by an active gas on two plates held at a fixed
contact distance as a function of T . The value of the active force is
|Fa| = 25.

will appear when computing the full potential of mean force
between the plates as a function of distance, as also observed
by Angelani et al. [32] for the case of active rodlike particles
and spherical colloids.
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APPENDIX

In the high-temperature limit where τa/τr � 1, the average
pressure exerted by a single active particle can be readily
computed using two different methods. For simplicity, we
consider a particle confined to two dimensions with a single
rotational degree of freedom. The first approach is simply
to assume that the pressure is proportional to the average
squared velocity of the particle and thus P/ρ = m〈ṙ̇ṙr2〉/2,
where ρ is the number density. A more rigorous approach is
to directly compute the correlation function 〈rrr · FFFe〉, where
FFFe is the net force exerted on the particle. For a system
of ideal particles, it is relatively straightforward to prove
P/ρ = −〈rrr · FFFe〉 [33]. In the long-time limit, both approaches
give the same expression for the pressure and thus we choose to
illustrate the former method for its computational convenience
and simple interpretation. The equation of motion of an
active Brownian particle of mass m and self-propelling force
|Fa[θ (t)]| are given by the coupled Langevin equations

mr̈rr = −γ ṙrr + |Fa|nnn +
√

2Dξξξ (t), (A1)

θ̇ =
√

2DrξR(t). (A2)

Using an approach similar to that given in [24] and
references therein, the x component of the velocity is given by

ẋ(t) = ẋ0e
−(γ /m)t + e−(γ /m)t

m

∫ t

0
{|Fa| cos[θ (s)]

+
√

2Dξ (s)}e(γ /m)sds, (A3)

where ẋ0 = ẋ(0). It follows that

ẋ(t)2 = ẋ2
0e

−(2γ /m)t + 2ẋ0e
−(γ /m)t

m

∫ t

0
{|Fa| cos[θ (s)]

+
√

2Dξ (s)}e(γ /m)sds + e−(2γ /m)t

m2

×
(∫ t

0
{|Fa| cos[θ (s)] +

√
2Dξ (s)}e(γ /m)sds

)2

,

(A4)
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which readily simplifies to

ẋ(t)2 = ẋ2
0e−(2γ /m)t + 2ẋ0e

−(γ /m)t

m

∫ t

0
{|Fa| cos[θ (s)] +

√
2Dξ (s)}e(γ /m)sds

+ |Fa|2e−(2γ /m)t

m2

∫ t

0

∫ t

0
cos[θ (s)] cos[θ (s ′)]e(γ /m)(s+s ′)ds ′ds

+ 2De−(2γ /m)t

m2

∫ t

0

∫ t

0
ξ (s)ξ (s ′)e(γ /m)(s+s ′)ds ′ds. (A5)

Using the equipartition theorem (〈ẋ2
0〉 = kBT/m)) and taking the ensemble average of ẋ(t)2, we are able to further simplify the

above expression to

〈ẋ(t)2〉 = kBT

m
e−(2γ /m)t + 2De−(2γ /m)t

m2

∫ t

0
e(2γ /m)sds + |Fa|2e−(2γ /m)t

m2

∫ t

0

∫ t

0
〈cos[θ (s)] cos[θ (s ′)]〉 e(γ /m)(s+s ′)ds ′ds. (A6)

To evaluate the integral in the last term, it is important to note that 〈cos[θ (t)] cos[θ (t ′)]〉t>t ′ = e−Dr (t−t ′)/2. It follows that

|Fa|2e−(2γ /m)t

m2

∫ t

0

∫ t

0
〈cos[θ (s)] cos[θ (s ′)]〉e(γ /m)(s+s ′)ds ′ds

= |Fa|2e−(2γ /m)t

m2

(∫ t

0

∫ s

0
〈cos[θ (s)] cos[θ (s ′)]〉e(γ /m)(s+s ′)ds ′ds +

∫ t

0

∫ t

s

〈cos[θ (s)] cos[θ (s ′)]〉e(γ /m)(s+s ′)ds ′ds

)

= |Fa|2e−(2γ /m)t

2m2

[∫ t

0
e−(Dr−γ /m)s

(∫ s

0
e(Dr+γ /m)s ′

ds ′
)

ds +
∫ t

0
e(Dr+γ /m)s

(∫ t

s

e−(Dr−γ /m)s ′
ds ′

)
ds

]

= |Fa|2e−(2γ /m)t

2m2

[
1

Dr + γ

m

(
m

2γ
(e(2γ /m)t − 1) + 1

Dr − γ

m

(e−(Dr−γ /m)t − 1)

)

+ 1

Dr − γ

m

(
m

2γ
(e(2γ /m)t − 1) + 1

Dr + γ

m

(e(2γ /m)t − e−(Dr+γ /m)t )

)]
. (A7)

The integral in the second term of Eq. (A6) is straightforward and the final result is

〈ẋ(t)2〉 = kBT

m
+ |Fa|2

2m2

[
1

Dr + α

(
1

2α
(1 − e−2αt ) + 1

Dr − α
(e−(Dr+α)t − e−2αt )

)

+ 1

Dr − α

(
1

2α
(1 − e−2αt ) − 1

Dr + α
(1 − e−(Dr+α)t )

)]
, (A8)

where α ≡ γ

m
. In the limit that t → ∞,

〈ẋ(t)2〉 =kBT

m
+ |Fa|2

2m2α(Dr + α)
. (A9)

A similar computations can be carried out to show that 〈ẏ(t)2〉 = 〈ẋ(t)2〉 and thus the pressure is given by

P/ρ = m

2
〈ṙ(t)2〉 = m

2
[〈ẋ(t)2〉 + 〈ẏ(t)2〉]

= m〈ẋ(t)2〉 = kBT + |Fa|2
2γ (Dr + γ /m)

= kBT + |Fa|2
6kBT/σ 2 + 2γ 2/m

. (A10)
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