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Dynamics and electrorheology of sheared immiscible fluid mixtures
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We analyze the electrorheological effect in immiscible fluid mixtures with dielectric mismatch. By taking the
electric field effect into account, which couples to the dynamics of domain morphology under flow, we propose
a set of electrorheological constitutive equations valid under the condition where the relative magnitude of the
flow field is stronger than that of the electric field. Through comparison with recent experiments, we point out
a unique dynamical stress response inherent in situations where the cross-coupling between different fields is
essential.
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I. INTRODUCTION

The dynamics and rheology of immiscible fluid mixtures
(emulsions) are vital in many practical applications such as
in the pharmaceutical, cosmetics, and food industries. While
they are macroscopically phase separated at rest, droplets
of various sizes and shapes are created under a flow field,
which deform, rupture, and reconnect in a steady state. The
rheological property of such a system is intimately related to
the statistics of domain structures, i.e., the spatial profile of the
interfaces [1]. This can be quantified by the interface tensor

q
αβ

= V −1
∫

dS(nαnβ), (1)

and the interfacial area density

Q = V −1
∫

dS = q
αα

, (2)

where �n(�r) is the unit vector normal to the interface and the
integral is over the whole interface in the system volume V .
Note that the summation convention for the repeated indices
is implicit throughout the paper, that is, qαα = ∑

α qαα and
qαβqβγ = ∑

β qαβqβγ . From the analysis of the time evolution
of these quantities, Doi and Ohta proposed a constitutive
equation for binary fluid mixtures having the same viscosity
and density, mixed with the volume ratio of about 1:1 [2].

Throughout the present paper, we shall assume the above
condition to hold but, as a new element, allow the two fluids
to have a mismatch in their dielectric constants, which are
denoted as ε1 = ε̄ + δε and ε2 = ε̄ − δε. Then the system
acquires an ability to respond to an electric field, leading
to the shape change of droplets and interfacial instabilities
[3–12]. This change in the domain structure is expected to
affect the flow properties of the system, thus giving rise to the
electrorheological effect [13–19]. Despite its fundamental and
practical importance, the theoretical study on this subject has
been limited so far. Na et al. have carried out a theoretical
analysis of electrorheology based on the Maffettone-Minale
model for a single droplet [18], and Orihara et al. have analyzed
their data by using the interface tensor for an ellipsoidal
droplet [19]. But the constitutive equation describing this type
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of electrorheology is not yet available. It is noted that here,
in addition to the viscous stress σV

αβ = η0(καβ + κβα), where
καβ = ∂vα/∂rβ is the macroscopic velocity gradient and η0 is
the viscosity of the fluids, there are two contributions to the
stress tensor. The first arises from the interface

σ� = −�q
αβ

, (3)

which is expressed via the interface tensor with interfacial
tension � as a proportionality factor. The second is the
Maxwell stress σM

αβ(�r) = ε(�r)Eα(�r)Eβ(�r), where ε(�r) and
�E(�r) are the local dielectric constant and the electric field

at the spatial position �r [20]. Since the Maxwell stress is
created at the boundary with dielectric gap, its spatial average
σM

αβ = V −1
∫
V

d�rσM (�r) is expected to be correlated with the
interfacial configuration. Indeed, it has been shown [21] that
under the weak electric field and the small dielectric mismatch
δε � 1, the average Maxwell stress is expressed as

σM
αβ � −�(q

αγ
sγβ + q

βγ
sγα), (4)

with the coupling tensor

sαβ(R) = KεE
ex
α Eex

β R

�
, (5)

which is a function of the typical length scale R of the
domain. Here the external electric field �Eex (defined as the
voltage difference across the capacitor divided by its gap
width) is constant in space and Kε = (δε)2/ε̄. In what follows,
we will omit the argument in sαβ(R) when R = Rγ̇ , where
Rγ̇ � �/η0γ̇ is the typical domain size under steady flow
with the shear rate γ̇ ; otherwise (R �= Rγ̇ ), and we make
the argument explicit. Note that Rγ̇ is not a parameter given
externally but emerges as a result of the dynamics.

In this paper, we focus on the electrorheology of the
immiscible fluid mixture under the situation where the relative
magnitude of the electric field is weak compared to the flow
field.

More concretely, the condition of the weak electric field
can be stated as

S < 1, (6)

where S = sαα(� 0) is the trace of the tensor sαβ . Physically,
the quantity S measures the ratio of the electrostatic energy to
the interfacial energy at the length scale R.
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Our procedure is composed of two steps. First, by adding
the term arising from the electric field effect into the original
Doi-Ohta theory, we derive the time evolution equation of the
interface tensor under the simultaneous action of the flow and
electric fields. Second, we need to take account of the Maxwell
stress contribution to the stress tensor, which can also be ex-
pressed in terms of the interface tensor through Eq. (4). These
steps will be illustrated in Sec. II. Next, in Sec. III, we apply the
derived equations to examine the steady-state rheology, where
the constant electric field is imposed on top of the constant
flow field. We move on to the dynamical response in Sec. IV,
where we compare our results with recent experiments done
by Orihara et al., in which the dynamical stress response to
the oscillatory electric field has been measured [18]. Summary
and future challenges are given in Sec. V.

II. ELECTRORHEOLOGICAL CONSTITUTIVE
EQUATION

A. Dynamics of the interface tensor: Doi-Ohta theory

Under the flow field, but in the absence of the electric field,
the stress tensor for the mixture of two fluids with the same
viscosity η0 can be written as

σαβ = η0(καβ + κβα) − �qαβ − pδαβ, (7)

where p is the pressure. The second term on the right-hand
side is the interface contribution, where the interface tensor
[cf. Eq. (1)] is redefined as

qαβ = 1

V

∫
dS

(
nαnβ − 1

3
δαβ

)
= q

αβ
− Q

3
δαβ (8)

to make it traceless. The coupling tensor [Eq. (5)] is also
redefined in the traceless form,

sαβ = sαβ − S
3

δαβ ≡ S�
(E)
αβ , (9)

where �
(E)
αβ = ÊαÊβ − (1/3)δαβ is constructed from the unit

external electric field vector Êα = Eex
α /Eex. In the following,

we adopt this traceless form as the definition of these interfacial
and coupling tensors to facilitate the symmetry argument. It
is noted here that the flow field and the interfacial tension are
the two main factors affecting the interface tensor. The former
enlarges and orients the interface, and the latter counteracts it,
hence providing the physical mechanism for the relaxation. By
accounting for these factors separately, and summing them up,
Doi and Ohta proposed the following time evolution equations
for the interface tensor and interfacial area density [2]:

∂qαβ

∂t
= −qαγ κγβ − qβγ κγα + 2

3
δαβκμνqμν

− Q

3
(καβ + κβα) + qμνκμν

Q
qαβ − λQqαβ,

(10)

∂Q

∂t
= −καβqαβ − λμQ2, (11)

where λ = (c1 + c2)�/η0 and μ = c1/(c1 + c2) with positive
numbers c1 and c2 which may depend on the volume fraction.

As one can see, the last terms in the above Eqs. (10) and
(11) proportional to λ originate from the interfacial tension,
while other terms come from the geometrical property of the
flow field. Since καβ changes the sign under the interchange
t → −t , all the terms in Eqs. (10) and (11) with καβ

are streaming (nondissipative) terms, while the last terms are
dissipative terms.

A dimensional analysis of the above constitutive equation
indicates that (i) the steady-state viscosity is independent of
shear rate (no shear thinning or shear thickening) and (ii) the
normal-stress difference is nonzero and is proportional to |γ̇ |.
These features follow from the fact that the present system
possesses neither an intrinsic length scale nor an intrinsic time
scale and both were well confirmed experimentally [22].

B. Effect of electric field

In a phase-separated system, the dielectric constant in each
phase would generally differ. When the electric field is applied,
a Maxwell stress is created at the interface due to the dielectric
gap. In this section, we shall consider its consequence on the
rheology for the sheared immiscible blends.

From the symmetry argument alone, one may expect the
additional terms

a1sαβ + a2qαβS + a3(qαγ sγβ + qβγ sγα), (12)

a4S + a5qγ δsγ δ, (13)

in Eqs. (10) and (11), respectively, where the coefficients a1–a5

may generally depend on the scalar quantities Q, and so on.
Note that all the terms are dissipative since we do not consider
the couplings such as sαγ κγβ . Our task here is to determine
these coefficients from a physical argument. To do so, let us
quickly note the derivation of relaxation terms in Eqs. (10) and
(11) due to the interfacial tension [2]. Generally speaking, the
effects of the interfacial tension are (i) to reduce the interfacial
area and (ii) to make the system isotropic. The interfacial area
per volume is Q and the degree of the anisotropy is qαβ/Q,
therefore, the simplest relaxation equation is

∂

∂t
Q

∣∣∣
�

= −r1Q, (14)

∂

∂t

(
qαβ

Q

)∣∣∣
�

= −r2

(
qαβ

Q

)
, (15)

where r1 and r2 represent the rate of size relaxation and shape
relaxation associated with the anisotropy, respectively. These
relaxation rates would be determined by the viscosity η0, the
interfacial tension �, and the configuration of the interface
characterized by Q and qαβ . In the simplest approximation,
the dependence on qαβ is disregarded. Then, by dimensional
analysis, we have

r1 = c1
�Q

η0
, r2 = c2

�Q

η0
. (16)

From Eqs. (14), (15), and (16), we find

∂

∂t
qαβ

∣∣∣
�

= −λQqαβ, (17)

∂

∂t
Q

∣∣∣
�

= −λμQ2. (18)
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Equations (17) and (18) appear in the last terms of Eqs. (10)
and (11), respectively.

The electric field introduces the length scale RE and the
corresponding time scale τE in the problem, which are obtained
from the condition S � 1 as

RE � �

Kε(Eex)2
, τE � η0RE

�
� η0

Kε(Eex)2
. (19)

Analysis of the planer interface indicates that the fluctuation
mode with the wavelength longer than the critical value RE

becomes unstable under the electric field [6] (see also the
appendix for the meaning of RE and τE). In the smaller
length scale, the interface is stable, but the electric field would
introduce the anisotropy in the configuration of the interface
(qαβ/Q)E . In the simplest level, such electric field effects
could be taken into account through the following relaxation
equations:

∂

∂t
Q

∣∣∣
�

= −r1[Q − QE], (20)

∂

∂t

(
qαβ

Q

)∣∣∣
�

= −r2

[
qαβ

Q
−

(
qαβ

Q

)
E

]
, (21)

where QE � R−1
E . The degree of the deformation (qαβ/Q)E

is determined by the balance between the interfacial energy
and the electric energy, and it is expected to depend on the
square of the electric field. The only traceless tensor matching
the above consideration is sαβ(R), where the length scale with
which to compare the two factors is the instantaneous domain
size, i.e., R(t) � Q(t)−1. Therefore,

−
(

qαβ

Q

)
E

= c3sαβ(Q−1) = c3 S(Q−1)�(E)
αβ , (22)

where c3 is a positive numerical constant. The minus sign in
the left-hand side in Eq. (22) indicates that the droplet would
be elongated in the direction of the applied electric field [3].
The above physical consideration thus fixes the phenomeno-
logical coefficients Eqs. (12) and (13) suggested by symmetry
argument as a1 � −λμ1Q(t)/Rγ̇ , a2 � λμ/Rγ̇ , a3 = 0, a4 �
λμQ(t)/Rγ̇ , a5 = 0. With these terms, the relaxation equa-
tions under the electric field can thus be rewritten as

∂

∂t
qαβ

∣∣∣
�

= −λ(Q − μQE)qαβ − λμ1QEQ�
(E)
αβ , (23)

∂

∂t
Q

∣∣∣
�

= −λμ(Q − QE)Q, (24)

where μ1 = c3(1 − μ). There are some remarks on these
phenomenological coefficients. (i) In the time scale t � τE ,
the primal effect of the electric field is the introduction
of the anisotropy in the length scale r < RE , i.e., the (qαβ/Q)E
term in Eq. (21), which is represented by the term a1sαβ in
the time evolution equation, as discussed in the appendix. This
terms is, in fact, responsible for the characteristic feature in the
stress response to the oscillatory electric field of the steadily
sheared immiscible blend in the frequency range ω/γ̇ � S
(see Sec. IV). (ii) The above results a3 = a5 = 0 traces back
to our simplified assumption on the relaxation rates Eq. (16).
These relaxation rates could be, in general, anisotropic, i.e.,
dependent on the tensor qαβ , which may result in nonzero a3

and a5 [22]. However, we expect the present approximation
to be valid at least qualitatively when the electric field is
weak enough. (iii) Partial support of the approximation comes
from an experimental observation, which reports that the
deformation of the single droplet under weak electric field
follows the time evolution described by Eqs. (21) and (22) [7].
Here, to make a proper comparison, one should keep in mind
that in the single droplet problem, the droplet size before
deformation controls the rate (r2) and the equilibrium degree
of the anisotropy [(qαβ/Q)E] under the electric field, whereas
there is no such intrinsic length scale in our case of sheared
immiscible blends [see Eqs. (16) and (22)].

With the above modification of the relaxation dynamics,
one can now write down the time evolution equation for qαβ

and Q in the presence of the weak electric field. Setting the
units of the time and the length as 1/γ̇ and Rγ̇ = �/(η0γ̇ ),
respectively, the equations in the dimensionless form read

∂q̃αβ

∂t̃
= −q̃αγ κ̃γβ − q̃βγ κ̃γ α + 2

3
δαβ κ̃μνq̃μν

− Q̃

3
(κ̃αβ + κ̃βα) + q̃μν κ̃μν

Q̃
q̃αβ

− λ̃[Q̃q̃αβ − S(μq̃αβ − μ1Q̃�
(E)
αβ )], (25)

∂Q̃

∂t̃
= −κ̃αβ q̃αβ − λ̃μ[Q̃2 − SQ̃], (26)

where q̃αβ = Rγ̇ qαβ, Q̃ = Rγ̇ Q, κ̃αβ = γ̇ −1καβ, t̃ = γ̇ t,

λ̃ = c1 + c2.
To close the constitutive equation, one notes that the stress

is expressed as

σαβ = η0(καβ + κβα) − �qαβ + σM
αβ − pδαβ, (27)

where, as well as qαβ [Eq. (8)], the Maxwell stress is also made
traceless,

σM
αβ = −�

[
qαγ sγβ + qβγ sγα

+ 2

3
(Qsαβ + Sqαβ − qγ δsγ δδαβ)

]
. (28)

III. STEADY-STATE RHEOLOGY

We first look at the electric field effect in the steady-state
rheology, where the constant electric field is imposed on top
of the constant flow field. Here, it is important to realize
that the additional terms due to the electric field in the
dimensionless kinetic equations (25) and (26) enter through
the dimensionless number S � Kε(Eex)2/(η0γ̇ ), which does
contain a γ̇ dependence. This limits the scaling form of the
constitutive equation as in the following.

A. Constant electric field

We inquire the stress as a function of the shear rate γ̇ at
a constant electric field. This fixes the length scale RE and
the corresponding time scale τE � η0/(Kε(Eex)2). Therefore,
the γ̇ dependence can be encoded with the dimensionless
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FIG. 1. (Color online) Excess stress due to the electric field as

a function of S (c1 = c2 = c3 = 1), where the average flow field is
�v = (γ̇ y,0,0), and the electric field is applied to the velocity gradient
direction �Eex = (0,E,0).

combination τEγ̇ = 1/S. The stress can be written as

σαβ(γ̇ ,Eex) = Kε(Eex)2 fαβ(S), (29)

where the scaling function fαβ(S) = f V
αβ(S) + f �

αβ(S) +
f M

αβ (S) has the viscous, interfacial, and Maxwell stress con-
tributions f V

αβ(S) = S−1(κ̃αβ + κ̃βα), f �
αβ(S) = −S−1q̃αβ(S),

and f M (S) ∼ −q̃(S), where the precise functional form of
the Maxwell stress is determined from Eq. (28). Equation (29)
indicates that (i) at constant S, the stress is proportional to
the square of the electric field and (ii) in the limit of small
S � 1, the Maxwell stress is negligible. Invoking the linear
response of the domain shape to the electric field δq̃

(E)
αβ =

q̃
(E)
αβ − q̃

(E=0)
αβ ∼ S, this leads to σαβ(γ̇ ,Eex) ∼ η0γ̇ + δσ

(E)
αβ ,

where the second term δσ
(E)
αβ ∼ Kε(Eex)2 is the correction to

the leading stress contribution (first term). (iii) In approaching
S → 1, the functional form of q̃αβ (S) becomes nontrivial, and
the Maxwell stress contribution becomes comparable to other
two terms. This may lead to the nontrivial dependence of the
stress on γ̇ .

B. Constant shear rate

We inquire the stress as a function of the electric field at a
constant shear rate. This fixes the dynamical length scale Rγ̇ .
The stress can be written as

σαβ(γ̇ ,Eex) = η0γ̇ gαβ(S), (30)

where, as before, the scaling function gαβ(S) = gV
αβ +

g�
αβ(S) + gM

αβ(S) has three contributions; gV
αβ = κ̃αβ + κ̃βα ,

g�
αβ(S) = −q̃αβ (S), and gM (S) ∼ −Sq̃(S), where again the

precise functional form of the Maxwell stress is determined
from Eq. (28). Equation (30) indicates that (i) at constantS, the
stress is proportional to the shear rate and (ii) in the limit of
small S � 1, the Maxwell stress is negligible. The excess
stress δσ

(E)
αβ due to the electric field is δσ

(E)
αβ ∼ Kε(Eex)2.

(iii) In approaching S → 1, the Maxwell stress contribution
becomes apparent, and the excess stress would depend more
strongly on the electric field. In Fig. 1, we plot the excess shear

stress δσ (E)
xy and the first normal stress difference δN

(E)
1 as a

function of S, where N1 = σxx − σyy , which are calculated
from Eqs. (25)–(28).

IV. STRESS RESPONSE TO THE OSCILLATORY
ELECTRIC FIELD

Recently, Orihara et al. have measured the dynamical
stress response to the oscillatory electric field in the sheared
immiscible blend [18]. In this section, we attempt to analyze
their experimental results in view of our constitutive equation.
We consider the system of the immiscible blend under
steady shear flow: κxy = γ̇ and other entries of καβ = 0.
Assuming that the system is in its steady state, we apply
the oscillatory electric field to the shear gradient direction
�Eex(t) = (0,E0 cos ωt,0). We examine the response of shear
stress δσ (E)

xy (t) = σ (E)
xy (t) − σ (E=0)

xy in the flow direction (along
x axis) induced by the oscillatory electric field. Note that
the dielectric relaxation of molecules is assumed to be a fast
process, and we focus on the rheological consequence of much
slower process of the domain structure response. The relevant
stress components are the interfacial and Maxwell stresses, the
sum of which can be written as σ (E)

xy (t) = −�qxy(t)[1 + S(t)]
from Eqs. (7) and (28), leading to

δσ (E)
xy (t) = −�

[
δq(E)

xy (t) + q(E=0)
xy S(t) + O((Eex)4)

]
, (31)

where S(t) = Kε(E0 cos ωt)2Rγ̇ /� is now time dependent.
The first and second terms in the right-hand side are the
contribution from domains, which are deformed due to the
electric field, and from the Maxwell stress, respectively.
We quantify the former contribution, i.e., response of the
interface configuration, in particular, its xy component
δq(E)

xy (t) = q(E)
xy (t) − q(E=0)

xy , to the electric field as

− �δq(E)
xy (t) =

∫ ∞

0
ds χq(s) S(t − s)

= S0

2

∫ ∞

0
ds [χq(s) + χq(s) cos �(t − s)],

(32)

where S0 = KεE
2
0Rγ̇ /� is defined using the amplitude E0 of

the external electric field and we introduce the frequency � =
2ω corresponding to the second harmonics. We can rewrite
this as

−�δq(E)
xy (t)

= δq
(E)
xy + S0

2
[χ ′

q(�) cos �t + χ ′′
q (�) sin �t], (33)

with the complex susceptibility χ̂q(�) = ∫ ∞
0 dt χq(t)ei�t =

χ ′
q(�) + iχ ′′

q (�). The first term in the right-hand side δq
(E)
xy =

S0
2

∫ ∞
0 ds χq(s) = S0

2 χ̂q(0) is the steady-state average (static
response), around which the dynamical oscillatory response
takes place. Adding to this the Maxwell stress contribution,
we obtain the stress response as

δσ (E)
xy

S0/2
= χ̂(0) + χ ′(�) cos �t + χ ′′(�) sin �t, (34)
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1.2

FIG. 2. (Color online) Real and imaginary parts of the suscep-
tilibity χ ′(�) and χ ′′(�) with c1 = c2 = 1, c3 = 5. Note that the
magnitude of the ordinate reflects the amplitude of the response
function, which is defined as the ratio of the stress to S0/2 [see
Eq. (34)].

where χ̂(0) = χ̂q(0) − �q(E=0)
xy , χ ′(�) = χ ′

q(�) − �q(E=0)
xy ,

and χ ′′(�) = χ ′′
q (�). The explicit functional form of the

response function can be obtained via numerical integration
of the nonlinear time evolution equations (25) and (26) with
a time-dependent weak external field S(t) applied. Real and
imaginary parts of the susceptibility are shown in Fig. 2 for two
values of S0. As our rheological constitutive equation given
by the set of Eqs. (25)–(28) indicates, the response function
obtained under various shear rates and electric fields can be
collapsed onto master curves parameterized by S0.

Let us compare our result Fig. 2 with the experimental
measurement (Fig. 4 in Ref. [18]). The measurements were
performed around the upper threshold of the electric field,
below which the response is linear to S0 (see Fig. 2 in
Ref. [18]). This is transcribed to the condition S0 ∼ 0.1 (see
Fig. 1). First, one has to note that the experimental system
in Ref. [18] does not satisfy all the conditions assumed in
the theory: The blend is in a droplet-dispersed phase with
the viscosity mismatch. Nevertheless, one can approve that
our theory captures the overall shape of the experimentally
measured frequency-dependent response curve rather well. In
particular, it is remarkable that the real part, after passing
through the maximum of the imaginary part, crosses the zero
level and develops the negative dip around �/γ̇ � 1. The
location of this dip is in a semiquantitative agreement with the
experiment. In the high-frequency limit, our theory predicts a
small, but nonzero, constant in the real part, which is, however,
not seen in the experiment [18]. As can be seen from the
expression of χ ′(�) below Eq. (34), this constant offset to the
real part is the Maxwell stress contribution −�q(E=0)

xy S(t).
Since the relaxation rates of the domain [Eqs. (14), (15),
and (16)] affects the value of q(E=0)

xy under steady shear, the
magnitude of this offset depends on the parameters c1 and c2,
i.e., the larger the value of these parameters, the less detectable
the offset becomes.

There are three numerical coefficients, c1, c2, and c3, in
our theory. While quantitative correspondence of these with

 0.01

 0.1

 1

 10

 0  0.2  0.4  0.6  0.8  1

po
si

ti
on

μ

dip of χ′(Ω)

peak of χ′′(Ω)

Ω
/γ.

FIG. 3. (Color online) Positions of peak in χ ′′(�) and the dip in
χ ′(�) as a function of μ for the case of S0 = 10−4.

experiment is difficult, their physical meanings are clear. As
Eq. (22) shows, c3 reflects the ability for the domain shape
to deform under the electric field. Therefore, the change in c3

modifies the vertical scale of Fig. 2 but keeps essential features
intact. The parameters c1 and c2 are expected to depend on the
composition of the blend and are associated with the relaxation
rates of the domain size and the domain shape, respectively
[see Eqs. (14), (15), and (16)] [2]. These parameters enter
into the dynamical equations in the form of λ̃ = c1 + c2 and
μ = c1/(c1 + c2). Again, the change in these parameters keeps
the overall feature of the response discussed above. However,
as already stated, the larger λ̃ makes the constant offset in
χ ′(�) less detectable. In addition, the change in μ slightly
shifts the peak in χ ′′(�) and the dip in χ ′(�) of the complex
response. In Fig. 3, we plot the peak and dip positions as a
function of μ.

In the low-frequency region, there seems to be another
characteristic mode in the experiment (Fig. 3 in Ref. [18]).
Orihara et al. conjectured that this mode may be ascribed
to the translational motion of droplets to form chains along
the applied electric field. We note that the analysis based on
the Maffettone-Minale model [18] produces a similar result,
especially on the presence of the negative dip in the real part.

The appearance of the negative dip in the stress response is
indeed highlighted in experiments as a characteristic feature
of the electrorheological response of immiscible blends [18].
To look into its origin, let us assume καβ = 0, i.e., no flow
condition and Q(t) � QE (see the appendix for the meaning
of the second condition). Then, since �

(E)
αβ has only diagonal

components [see Eq. (9)], it is only the diagonal parts of
qαβ that respond to the electric field according to our kinetic
equation (25). Therefore, the very existence of the off-diagonal
response qxy , and thus σxy , is a signature of the cross-coupling
between the flow field and the electric field. To see its
dynamical characteristic, let us further assume that the size
relaxation is much slower than the shape relaxation process,
i.e., c1 � c2 ⇔ μ � 1, so Q(t) is approximately constant,
the value Qc of which is supposed to satisfy Qc � QE . Then
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the response of the diagonal components of qαβ becomes a
single Debye process with a rate �Qc/η0. This is indeed
experimentally observed in the shape response of single
droplets to the electric field [7]. Here the phase delay should
approach π/2 from below in the high-frequency limit. When
καβ is nonzero, the deformed interface due to the electric
field is further deformed by the flow field. Because of such
a sequential effect, the indirect response to the electric field
through the coupling with the flow field is expected to exhibit
a larger phase delay, exceeding π/2 at �/γ̇ � 1. The essential
point of the above discussion [23] would be intact even when
the assumption of the constant Q is relaxed, although the direct
response of the diagonal component of qαβ is then no longer a
simple Debye process.

V. SUMMARY

We have proposed a set of electrorheological constitutive
equations for immiscible blends, where the electric field effect
is incorporated into Doi-Ohta theory through a tensor sαβ

coupled with the interface tensor qαβ . Quite generally, it
is expected that the qualitative feature of such an interplay
between flow and electric fields would depend on their relative
magnitude, which can be measured by the dimensionless
number S ≡ sαα . The present theory is restricted to the
condition S < 1, where the effect of the flow field is dominant,
over which the electric field acts as a weak perturbation. As
can be inspected from Fig. 1, the response to the square of
electric field is linear up to S � 0.1. We have examined in this
regime the linear response of the shear stress to the oscillatory
electric field and found a good agreement with the recent
experiment [18]. The characteristic negative dip in the real
part of the frequency-dependent response function signals the
phase delay larger than π/2, which results from the coupling of
the electric field with the flow field. We expect that such a trend
would be rather general in the electrorheological dynamical
response.

At S > 1, the electric field plays more vigorous roles.
The domain becomes more anisotropic such as a stripe
morphology, leading to stronger electrorheological effect [17].
The viscosity mismatch between components, which is not
included in the present theory, is also expected to be an
important factor in many practical problems. The boundary
effect due to the phenomena occurring at the liquid-solid
interface may become important for small systems. Another

issue is the effect of the conductivity. Compared to the perfect
dielectric medium treated here, the blend with a conductive
medium is expected to exhibit additional electrorheological
features, where the presence of charge carriers affects the
interface stability [3]. We believe that exploring these effects
on the electrorheology of immiscible blends should be a
significant future challenge.
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APPENDIX: DOMAIN GROWTH UNDER
AN ELECTRIC FIELD

To get a feeling of the time scale τE , let us analyze the
dynamics of domain growth under an electric field. This
process is described by Eq. (24), whose solution is

Q(t) = QE

[
1 − Q(0) − QE

Q(0)
exp

(
− t

τE

)]−1

. (A1)

For t � τE , Eq. (A1) becomes Q(t) � Q(0)[1 + X(t)(Q(0) −
QE)]−1, where X(t) = �t/η0 is a length scale corresponding
to Siggia’s hydrodynamic scaling for the domain growth [24].
In this time window, the QE term in the relaxation equation
[Eq. (20)] is irrelevant, and the primal effect of the electric field
is the introduction of the anisotropy in the length scale r < RE ,
i.e., (qαβ/Q)E term in Eq. (21). In the frequency domain,
the condition t � τE is equivalent to ω/γ̇ � S. Therefore,
the characteristic feature found in the stress response to the
oscillatory electric field around �/γ̇ � 1 (Sec. IV) has its
origin in this anisotropy in the domain configuration induced
by the electric field. In longer time scale t � τE ⇔ ω/γ̇ � S,
the QE term affects the dynamics in such a way that Q(t)
exponentially saturates to QE . We expect that our discussion
here could be a useful guide to analyze experiments of the type
reported in Ref. [25] on the phase separation dynamics under
the electric field.

Note also the relation S−1 = RE/Rγ̇ = τEγ̇ . In this form,
S is expressed as the ratio between characteristic length or time
scales, which emphasizes the particular interplay between the
electric field and the flow field in the problem.
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