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Packing fraction of particles with lognormal size distribution
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This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution.
It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size
distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the
packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard
deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes
(close, loose) the applicable values are given. This closed-form analytical expression governing the packing
fraction is thoroughly compared with empirical and computational data reported in the literature, and good
agreement is found.
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I. INTRODUCTION

Lognormal (or log-normal) distributions are widespread in
the physical, biological, social, and economic sciences [1–4].
Particles that result from natural weathering or industrial com-
minution [5], or are formed by condensation or solidification
processes [6,7], often closely fit the lognormal distribution.
The packing of particles is relevant to physicists, biologists,
and engineers. There is practical as well as fundamental
interest in understanding the relationship between the particle
shape and particle-size distribution, on the one hand, and the
packing fraction, on the other.

The packing fraction of particles depends on their shape
and method of packing, ordered or disordered (random),
where the latter furthermore depends on the densification. In
nature and technology, often a wide variety of randomlike
packings are found, also referred to as jammed or disordered
packings. Examples are packings of rice grains, cement,
sand, medical powders, ceramic powders, fibers, and atoms in
amorphous materials. Particles possess a monosized packing
fraction that depends on the particle shape and the method
of packing [random loose packing (RLP) or random close
packing (RCP)]. For RCP of uniform spheres the packing
fraction (f1) was experimentally found to be 0.64 [8], being in
line with computer-generated values [9–14]. Also for RLP
of monosized spheres a reproducible packing fraction is
found [8,15–18], with f

rlp
1 � 0.54 as a generally accepted

value for this lower limit of random sphere packings. For a
number of nonspherical, but regular, particle (grain) shapes
the monosized packing fraction has been computed and or
measured for disks [19], thin rods [20], and ellipsoids [21].
For irregularly shaped particles much work has been done
on the prediction of the unimodal void fraction using shape
factors, etc., but for many irregular shapes it is still rec-
ommendable to obtain the monosized void fraction from
experiments.

Another complication arises when particles or atoms of
different sizes are randomly packed, which is often the case for
products processed from granular materials and in amorphous
alloys. For discrete and continuous geometric packings closed-
form solutions have been presented [22–24]. For continuous
normal and lognormal distributions of sands, Sohn and
Moreland [25] determined experimentally the packing fraction

as a function of the standard deviation. For discrete lognormal
distributions of steel spheres Dexter and Tanner [26] measured
the packing fraction as function of the standard deviation.
Yang et al. [11] and He et al. [12] reported computational
simulations of sphere packings. In this paper, a closed-form
equation is derived for the packing fraction of particles with
lognormal size distribution.

To this end, in Sec. II the theory of Furnas [27] on binary
mixes with large size ratio, i.e., two noninteracting fractions, is
recapitulated. Whereas Furnas addressed saturated packings,
i.e., packings where the composition is such that the
small fractions fits in the voids of the larger fraction, here
the packing fraction in the entire compositional range is
addressed. Subsequently, this model is applied to the case
of a ternary mix of noninteracting fractions, whereby the
three fractions obey a binomial distribution. Next, in Sec. III,
packings consisting of multiple, binomially distributed,
noninteracting, and discretely sized particles are considered.
It is furthermore shown that when the size ratio of subsequent
particle sizes is constant and tends to unity, these multiple
discrete size distributions can be transformed mathematically
to a continuously graded system with a lognormal distribution.
Subsequently, it is demonstrated that this limit also enables an
expression of the void fraction of the lognormal distribution. A
general closed-form equation is derived that provides the void
fraction as a function of standard deviation, the single-sized
void fraction of the particle shape considered (ϕ1), and the
gradient in void fraction in the limit of a monosized system to
a two-component system (β). These properties are physically
defined; both ϕ1 and β depend on particle shape and mode
of packing only. Finally, in Sec. IV, this original expression
for the void or packing fraction is compared thoroughly with
experiments and computer-generated packing data concerning
spherical particles and two sands and found to be in good
accordance.

II. PACKING OF PARTICLES WITH A LARGE SIZE RATIO

Furnas [22,27] was the first to model the packing fraction
of particle groups with a large size ratio, for which it can be
assumed that the particles are not interacting. In this section
this type of particle combinations is further elaborated.
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A. Saturated packings

Furnas [27] studied binary systems and it was concluded
that the greater the difference in size between the two
components, the greater the decrease in void volume. It was
seen that the binary void fraction h depends on diameter ratio
u (dL/dS) and on the relative volume fractions of large and
small constituents cL and cS , whereby for a binary packing
obviously holds,

cL = VL

VL + VS

= 1 − cS, (1)

where VL and VS are the volumes of the large and small
constituents in the packing, respectively. The binary packing
fraction is defined as

η(u, cL) = VL + VS

VT

= 1 − h(u, cL), (2)

with h as binary void fraction and VT as total volume of
the packing (entire space), including the voids. Furnas [27]
introduced the concept of noninteracting particle classes, i.e.,
particle groups where the smallest particle of one group is
much larger than the largest particle of the other group.
Combining the groups implies that they are not interacting.
Furnas [27] studied such binary mixtures of particle groups
with equal packing fractions.

Now let fL and ϕL be the packing fraction and void fraction,
respectively, of the large particles only and fS and ϕS of the
small component only. The saturated composition, cL = csat

L ,
constitutes a special mix where the concentrations of large
and small fractions are such that the small fraction fits exactly
in the voids of the large fraction. Hence, by combining two
noninteracting size groups, one obtains the total binary packing
and void fractions of the saturated packing as follows:

ηsat = fL + (1 − fL)fS ;

hsat = 1 − ηsat = (1 − fL) (1 − fS) = ϕLϕS, (3)

whereby ηsat and hsat stand for η(u > ub, cL = csat
L ) and

h(u > ub, cL = csat
L ), respectively. Obviously, this concept is

applicable only when the smaller ones do not affect the packing
of the larger size group. For such binary packing, the volume
fraction of the large fraction in the mix reads as follows:

csat
L = fL

ηsat
= fL

fL + (1 − fL)fS

= 1 − ϕL

1 − ϕL + ϕL(1 − ϕS)
,

(4)

see Eq. (3) and note that csat
S = 1 − csat

L . Furnas [27] called
mixes of binary particles that obey these values of cL and
cS “saturated mixtures,” and in such mixtures the sufficiently
small particles are added to just fill the void fraction between
the large particles. As noted, the analysis of Furnas [27] was
restricted to particle groups that both have the same packing
fraction, hence, ϕL = ϕS (or fL = fS). In Fig. 1, as an example,
both hsat and csat

L are indicated for ϕL = 0.4 and ϕS = 0.5, being
0.2 and 0.75, respectively, see Eqs. (3) and (4).
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FIG. 1. Binary void fraction, h(u, cL), of mixes with a large size
ratio (dL/dS = u > ub) as a function of the volume fraction of large
constituent (cL), with ϕL = 0.4 and ϕS = 0.5 as the void fractions
of the large and small constituents. The volume fraction (csat

L ) and
binary void fraction (hsat) pertaining to a saturated mix are indicated,
as well as linear interpolations [Eqs. (6) and (7)] and the curves A

or B [Eqs. (8) and (9), respectively] for all other compositions.

Furnas [22] subsequently extended the saturated binary
packing model to multiple particle packings, again with each
component having the same packing fraction. The major
consideration is that the holes of the larger group are filled with
the particles of the smaller groups. When the interstices of the
smaller particles are filled with smaller ones, the distribution
of the particle groups forms a geometrical progression: not
only the particles sizes but also the concentration of adjacent
size groups has a constant ratio, i.e., a geometric progression
is obtained. For particle groups which all have the same
individual packing or void fraction, viz. f1/ϕ1, for these
saturated or geometric packings the following holds:

ϕsat
n = ϕn

1 . (5)

For the binary packing of two groups with an identical
packing fraction, Eqs. (3) and Eq. (5) with n= 2 are compatible
indeed (considering that then ϕL = ϕS = ϕ1).

Experiments with mixtures of broken solids [27] and
steel balls [28] revealed that noninteraction between sub-
sequent size groups is obviously true when u → � but
that nondisturbance is also closely approximated when
dL/dS ≈ 7 − 10 (designated as ub). For angular particles,
Caquot [29] found empirically a comparable size ratio
(ub � 8–16).

B. Binary packing

In this paper the binary void fractions in the entire
concentration range need to be known, not only specifically at
the indicated saturation condition. Furnas [27] assumed linear
relations between the binary void fraction h and the volume
fraction cL in the ranges cL = 0 and csat

L and csat
L and 1, whereby

at cL = 0 and cL = 1 the same void fraction prevails, so
ϕL = ϕS .

This principle can also be applied to a binary system
of which the two components are having different packing
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fractions. The linear interpolations read as follows:

η(u > ub,cL) = (ηsat − fS)cL

csat
L

+ fS

= [fL + (1 − fL)fS](1 − fS)cL + fS ;(
0 � cL � csat

L

)
, (6)

η(u > ub,cL) = (ηsat − fL)(cL − 1)

csat
L − 1

+ fL

= [fL + (1 − fL)fS](1 − cL) + fL;(
csat
L � cL � 1

)
, (7)

whereby Eqs. (3) and (4) are inserted. Substituting cL = csat
L

into Eqs. (6) and (7) indeed yields η = ηsat, and cL = 0
and cL = 1 yield the packing fractions of the small and large
components, fS and fL, respectively. In Fig. 1 the void fraction
following from both lines are added, again using fL = 0.6
(ϕL = 0.4) and fS = 0.5 (ϕS = 0.5), the binary void fraction
h readily following from Eq. (2).

Expressions for the true packing or void fraction in
the entire compositional range were presented by Farr and
Groot [30], based on equal packing fractions of both large and
small size fractions (so ϕL = ϕS). Kyrylyuk et al. [31] derived
the packing fractions in case of ϕL �= ϕS . Here, an alternative
derivation of these expressions is presented, yielding the same
result.

First, the void fraction for cL ranging from zero to csat
L is

considered. This is the situation of a particle packing of small
particles and their intermediate voids, total volume VS/fS , to
which a volume VL of large particles is added which have
yet not attained their maximum packing fraction or minimum
void fraction, as is the case at the saturation point. The binary
packing and void fractions therefore read as follows:

η(u > ub,cL) = VL + VS

VL + VS/fS

= fS

1 − cL(1 − fS)
;

h(u > ub,cL) = (1 − cL)ϕS

1 − cLϕS

(
0 � cL � csat

L

)
, (8)

whereby Eq. (1) is inserted.
The concentration cL ranging from csat

L to unity concerns a
close packing of large particles, total volume VL/fL, to which
voids small particles are added, reads as follows:

η(u > ub,cL) = VL + VS

VL/fL

= fL

cL

;

h(u > ub,cL) = cL − 1+ϕL

cL

(
csat
L � cL � 1

)
, (9)

where again Eq. (1) has been used. For cL = csat
L Eqs. (8)

and (9) yield Eqs. (3). Furthermore, η and h in Eqs. (8) and (9)
obey Eq. (2). In Fig. 1, Eqs. (8) and (9) are added, where for
convenience they are termed A and B , respectively. Both
concave curves are drawn again using ϕL = 0.4 and ϕS = 0.5.

Furnas [27] assumed linear relations for the binary packing
fraction between the saturated composition and the packing
fractions of the two components, invoking identical packing
fractions. But in the experimentally constructed binary void
graphs also curved lines appear for u → � ([27], see also

Ref. [24]), similarly shaped as the concave curves A and B
presented in Fig. 1.

Recently, computer-generated packings of binary mixes of
unimodal spheres reveal that for u= 5, which is still a relatively
small size ratio, the numerical values approximate the concave
Eq. (9) already within 7% [32,33]. This computational study
thus also confirms that ub is close to 5, being in line with
the above-mentioned values from Refs. [27–29]. It is also
interesting to note that in Ref. [32] the composition was
expressed in the small sphere number fraction x and that their
xsat tends to unity for u → �, in line with Eq. (4) indeed [33].

C. Binomial distribution of binary and ternary packings

Here the packing of multiple discretely sized particles, with
a large size ratio, is studied where their volume fractions obey
a binomial distribution. For the binomial distribution of n

particle size classes and probability p, their volume fractions
for i = 1, 2, . . . , n, are given as

ci = (
n−1
i−1

)
pn−i(1−p)i−1. (10)

Henceforth, in this paper only symmetrical distributions are
considered, so p = ½. For the binary distribution, n = 2, then
it follows that c1 = c2 = ½. For particle groups each having a
void fraction ϕ1 = ϕL = ϕS (packing fraction f1 = fS = fL)
the following holds:

csat
L = 1

1 + ϕ1
, (11)

see Eq. (4). As 0 � ϕ1 � 1, Eq. (11) obviously yields csat
L �

½, so Eq. (8) (curve A in Fig. 1) applies for this symmetrical
binary binomial distribution. By substituting cL =½ in Eq. (8),
for the combined size groups the following holds:

f BN
2 = 2f1

1 + f1
; ϕBN

2 = ϕ1

2 − ϕ1
, (12)

where the symbols f BN
2 and ϕBN

2 replace η and h, respectively,
and the superscript BN refers to binomial and the subscript 2
to binary.

For a ternary binomial distribution, n = 3, c1 = c3 = ¼
holds, and c2 = ½, see Eq. (10), whereby p = ½. In Fig. 2 the
cumulative finer fraction F (lnd) of such a mix composition,
comprising discretely sized particles, is shown graphically.
The F of such discrete packing consists of multiple Heaviside
functions. At each di , F increases with ci , whereby ci follows
from Eq. (10). In Fig. 2 this is explained graphically for the
considered ternary packing. In a frequency distribution graph,
at each size group di , the population is given by ci δ(lndi -
lnd), with δ(x) being the Dirac function. For such a ternary
distribution with noninteracting sizes, again Fig. 1 is applicable
concerning its void fraction, as explained in what follows.

First, the binary packing of the two smallest components
only is considered, d2 and d3, which are each smaller than
d1, and each having a packing fraction ϕ1 = ϕL = ϕS , with
composition cL = 2/3 (as c3 =¼ and c2 =½). This is permitted
as the two smallest components are both noninteracting with
the large component (d1). Depending on the value of ϕ1, see
Eq. (11), cL is smaller or larger than csat

L , and, hence, either

curve A or B , respectively, of Fig. 1 applies. From Eq. (11)
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FIG. 2. Cumulative finer fraction F versus the logarithm of
the scaled particle size for a discretely sized ternary mix (with
d1/d2 = d2/d3 = u) having a binomial distribution (p = ½) of the
particle volumes and, hence, c1 = 0.25, c2 = 0.5, and c3 = 0.25.

it follows that for ϕ1 � ½, cL = 2/3 � csat
L and curve A is

applicable, whereas for ϕ1 � ½, cL � csat
L and curve B is

applicable.
Hence, substituting cL = 2/3 in Eqs. (8) and (9) produces

f23 = 3f1

1 + 2f1
; ϕ23 = ϕ1

3 − 2ϕ1
(0 � ϕ1 � 1/2);

f23 = 3f1

2
; ϕ23 = 3ϕ1 − 1

2
(1/2 � ϕ1 � 1). (13)

Next this binary arrangement is combined with the largest
component with size d1. This combination can be considered as
a bimodal mix of the two small components (namely combined
d2 and d3) with Eq. (13) as packing (void) fraction fS (ϕS) on
the one hand, and the large component d1 with packing (void)
fraction fL = f1 (ϕL = ϕ1) on the other, with composition
cL = ¼.

Equation (4) and using the two possible f23 [Eq. (13)] as
fS , and f1 as fL, reveals that for all ϕ1 holds cL = ¼ � csat

L ,

so curve A [Eq. (8)] applies as follows:

f BN
3 = 4f23

3 + f23
= 4f1

1 + 3f1
;

ϕBN
3 = ϕ1

4 − 3ϕ1
(0 � ϕ1 � 1/2), (14)

f BN
3 = 4f23

3 + f23
= 4f1

2 + f1
;

ϕBN
3 = 3ϕ1 − 1

3 − ϕ1
(1/2 � ϕ1 � 1), (15)

The obtained binary [Eq. (11)] and ternary [Eqs. (14)
and (15)] void fractions, referred to as ϕBN

n , of the binomial
arrangements of noninteraction groups are included in Table I,
which are a function of the void fraction ϕ1 of the individual
size group only.

III. BINOMIAL AND LOGNORMAL DISTRIBUTIONS

In this section, first the packing of binomially distributed
noninteracting particle groups is addressed. Next, the
binomial particle packing of single sized particles, invoking
a constant size ratio, is transformed into a continuous
lognormal-distributed packing. It will be seen that the binary
discrete packing, in the limit of the size ratio u tending to
unity, plays a key role in the derivation of the packing fraction
of this distribution.

A. Binomial distributions of single-sized particles
with a large size ratio

Using the same reasoning as for the binary and ternary
arrangements in the previous section, also the binomial
void fractions of multiple size groups, ϕBN

n , for which the
subsequent sizes do not interact, can be determined. The
expressions up to 10 size groups (n = 10) are included
(Table I), and the underlying computation for n = 8 is included

TABLE I. Void fraction ϕBN
n of particle mixes consisting of n particle classes with a large size difference between the subsequent classes

(u > ub), whereby the classes are binomially distributed, and each particle class has a void fraction ϕ1.

n ϕBN
n

1 ϕ1 (0 � ϕ1 � 1)

2
1
2 ϕ1

1− 1
2 ϕ1

(0 � ϕ1 � 1)

3
ϕ1

4−3ϕ1
(0 � ϕ1 � 1/2);

3ϕ1−1
3−ϕ1

(1/2 � ϕ1 � 1)

4
ϕ1

8−7ϕ1
(0 � ϕ1 � 1/3);

4ϕ1−1
7−4ϕ1

(1/3 � ϕ1 � 1)

5
ϕ1

16−15ϕ1
(0 � ϕ1 � 1/4);

5ϕ1−1
15−11ϕ1

(1/4 � ϕ1 � 2/3);
11ϕ1−5
11−5ϕ1

(2/3 � ϕ1 � 1)

6
ϕ1

32−31ϕ1
(0 � ϕ1 � 1/5);

6ϕ1−1
31−26ϕ1

(1/5 � ϕ1 � 1/2);
8ϕ1−3
13−8ϕ1

(1/2 � ϕ1 � 1)

7
ϕ1

64−63ϕ1
(0 � ϕ1 � 1/6);

7ϕ1−1
63−57ϕ1

(1/6 � ϕ1 � 2/5);
22ϕ1−7
57−42ϕ1

(2/5 � ϕ1 � 3/4);
21ϕ1−11
21−11ϕ1

(3/4 � ϕ1 � 1)

8
ϕ1

128−127ϕ1
(0 � ϕ1 � 1/7);

8ϕ1−1
127−120ϕ1

(1/7 � ϕ1 � 1/3);
29ϕ1−8

120−99ϕ1
(1/3 � ϕ1 � 3/5);

64ϕ1−29
99−64ϕ1

(3/5 � ϕ1 � 1)

9
ϕ1

256−255ϕ1
(0 � ϕ1 � 1/8);

9ϕ1−1
255−247ϕ1

(1/8 � ϕ1 � 3/7);
93ϕ1−37

219−163ϕ1
(3/7 � ϕ1 � 4/5);

163ϕ1−93
163−93ϕ1

(4/5 � ϕ1 � 1)

10
ϕ1

512−511ϕ1
(0 � ϕ1 � 1/9);

10ϕ1−1
511−502ϕ1

(1/9 � ϕ1 � 1/4);
23ϕ1−5

251−233ϕ1
(1/4 � ϕ1 � 3/7);

65ϕ1−23
233−191ϕ1

(3/7 � ϕ1 � 2/3);
128ϕ1−65
191−128ϕ1

(2/3 � ϕ1 � 1)
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FIG. 3. Void fraction ϕBN
n of binomially distributed combinations

of noninteracting particle classes as a function of the void fraction ϕ1

of each particle class for n = 3 and n = 10, taken from Table I, and
following Eq. (16) with ψn, taken from Table II (fitted value).

in the Appendix. In Fig. 3, as an example, the binomial void
fractions for n = 3 and 10 are set out versus ϕ1.

Note that for the derivation of these expressions each
particle class does not need to be monosized (so it may be
polydisperse), and their size ratio does need to be constant;
the only requirement is that each class has the same packing
(or void) fraction and that the size ratio between subsequent
groups is sufficiently large so they are all noninteracting.

Analogously to the void fraction of saturated (geometri-
cally) composed mixes, it appears that the void fraction of the
binomial arrangements also approximates a power function,

ϕBN
n = ϕ

ψn

1 . (16)

For the number of size groups n ranging from 2 to 10 this
power equation is fitted to the expressions of Table I, and
the coefficients ψn are included in Table II. The pertaining
regression coefficient is 0.996 for n = 2 and increases with
augmenting n and is 0.999 for n = 10. These values and their
trend confirm that the binomial expressions (Table I) can be
described by a power model, which becomes more accurate at

TABLE II. Values of ψn following a fit of Eq. (17) to the void
fractions of Table I, and gradients of these void fractions at ϕ1 = 0
and ϕ1 = 1, for varied n.

n ψn (fit) dϕBN
n

dϕ1

∣∣∣
ϕ1=0

dϕBN
n

dϕ1

∣∣∣
ϕ1=1

√
π (n−1)

2

√
πn

2

1 1.00 2−0 1 0.000 1.253
2 1.60 2−1 2 1.253 1.772
3 2.10 2−2 2 1.772 2.171
4 2.38 2−3 8/3 2.171 2.507
5 2.75 2−4 8/3 2.507 2.802
6 2.98 2−5 16/5 2.802 3.070
7 3.28 2−6 16/5 3.070 3.316
8 3.48 2−7 128/35 3.316 3.545
9 3.75 2−8 128/35 3.545 3.760
10 3.98 2−9 256/63 3.760 3.963

higher n (see also Fig. 3). In the following, in the limit of large
n, an analytical expression for ψn is derived.

First, the gradients of the binomial void fractions at
ϕ1 = 0 and ϕ1 = 1 are listed in Table II. These gradients
of approximate Eq. (16) at ϕ1 = 0 and ϕ1 = 1 read

dϕBN
n

dϕ1

∣∣∣∣
ϕ1=0

= 0;
dϕBN

n

dϕ1

∣∣∣∣
ϕ1=1

= ψn. (17)

The true gradient at ϕ1 = 0 is 21−n (Table II) and is therefore
exponentially tending to zero with increasing n, as is the case
with Eqs. (16) and (17).

For odd n, Table I reveals that near ϕ1 = 1

ϕBN
n = aϕ1 − b

a − bϕ1
, (18)

and, hence,

dϕBN
n

dϕ1

∣∣∣∣
ϕ1=1

= a + b

a − b
= 2n−1

(
n − 1

n−1
2

)

→
√

π (n − 1)

2
(n → ∞), (19)

as

a =
n−1

2∑
i=0

(
n−1

i

)
= 2n−2 + 1

2

(
n − 1

n−1
2

)
; b = 2n−1 − a, (20)

and the Catalan number Cn holds as follows [34]:

Cn = 1

n + 1

(
2n

n

)
→ 22n

(n + 1)
√

nπ
(n → ∞). (21)

For n = 4, 8, etc., Table I reveals that near ϕ1 = 1

ϕBN
n = aϕ1 − b

2a − b − aϕ1
, (22)

and, hence,

dϕBN
n

dϕ1

∣∣∣∣
ϕ1=1

= 2a

a − b
= 2n−1(

n − 1
n
2

) = 2n(
n
n
2

)

→
√

πn

2
(n → ∞), (23)

as

a = 2n−2;

2a − b = 1

2

n−1∑
i=0

(n−1

i

)
+

(
n − 1

n
2

)
= 2n−2 +

(
n − 1

n
2

)
,

(24)

and applying Eq. (21). Also for n = 2, 6, 10, etc. Eq. (22)
holds, but here Table I reveals that

a = 2n−3;

2a − b = 1

4

n−1∑
i=0

(n−1
i

)
+ 1

2

(
n − 1

n
2

)
= 2n−3 + 1

2

(
n − 1

n
2

)
,

(25)

and, hence, applying Eq. (21), again Eq. (23) is obtained.
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So for large n, it appears that ψn asymptotically tends to√
π (n − 1)/2 and

√
πn/2 for odd and even n, respectively,

with the difference vanishing with increasing values of n.
For finite values of n, Table I shows that

√
πn/2 matches the

exact value of ψn quite accurately for n = 2; the difference
is about 10%, and for n = 3 it is already reduced to 3%,
and it reduces further with increasing n. To conclude, where
multicomponent geometrical packings have a void fraction
of ϕn

1 for all n [23], binomial distributions tend to a void

fraction of ϕ
√

πn/2
1 for large n, whereby this expression also

approximately holds for values of n as low as 2. In the next
section the void fraction is derived in the case the number
of particle sizes is increased, and size ratio (u) between
subsequent particle sizes is equal and tending to unity, i.e., a
continuous lognormal size distribution is obtained.

B. Transformation into lognormal distribution

The void fraction of saturated packings consisting of
multiple noninteracting particle classes with a binomial distri-
bution was given by Eq. (16). Here, the void fraction of the
polydisperse continuous (lognormal law) packing is addressed.

For the binomial distribution, when all size ratios u are
constant and the particle groups are monosized, the standard
deviation lnσg and geometric mean size dg read as follows:

lnσg =
√

(n − 1)p(1 − p)lnu, (26)

ln(dg/dn) = (n − 1)plnu, (27)

with σg as geometric standard deviation.
Adding more monosized particle classes, each subsequent

class having the same size ratio, and letting u → 1 and
following the DeMoivre-Laplace limit theorem (e.g., see
Ref. [35]), the binomial distribution turns into a continuous
lognormal distribution. Here the logarithm of the particle
size class is namely binomially or normally distributed (as
size ratios are relevant), which means that a lognormal
distribution of the particle size is obtained for u → 1, for a
lognormal distribution is a continuous probability distribution
of a random variable whose logarithm is normally distributed.
Hence, the cumulative finer fraction (or distribution function)
of the particles volume reads as follows:

F (d) = 1√
2π lnσg

∫ d

−∞
exp

[
− (lnd − lndg)2

2ln2σg

]
d(lnd).

(28)

With dg (or d50) as geometric mean size of the distribution,
σg as the geometric standard deviation, and lnσg as the standard
deviation.

For small size ratio, so for u → 1, using cL = p [Eq. (10)],
the binary void fraction h(u, p) [23,24,34] reads as follows:

h(u, p) = ϕ1 − 4βϕ1(1 − ϕ1)(1 − p)p lnu, (29)

So far, the packing perturbation generated by a size ratio un-
equal to unity has been expressed both in u − 1 and (u3 − 1)/3
[23,24,34], while here lnu is chosen, and all three expressions
provide the same first-order perturbation and, hence, gradient
at u = 1, relevant for continuous packings, and are therefore
equivalent for u → 1.

TABLE III. Experimental values for monosized void and packing
fraction and β for various particle shapes and their mode of
packing [23]. The sphericity is the Wadell sphericity [25].

Material Packing Shape f1 ϕ1 β

Steel RCP Spherical 0.64 0.36 0.20
Sand (OR) RCP Sphericity = 0.86 0.624 0.376 0.25
Sand (MR) RCP Sphericity = 0.81 0.574 0.426 0.26
Quartz RCP Fairly angular 0.503 0.497 0.373
Feldspar RCP Plate-shaped 0.497 0.503 0.374
Dolomite RCP Fairly rounded 0.495 0.505 0.347
Sillimanite RCP Distinctly angular 0.469 0.531 0.395

Equation (29) readily reveals that near u = 1 the packing
extremum is obtained when the two class concentrations are
in parity, p = 0.5. Likewise ϕ1, for disordered packings, β

depends only on the packing mode of the mix (loose, dense,
etc.) and the particle shape, so it is a given and nonadjustable
parameter. This also holds for ordered packings of spheres in
which the spheres are randomly placed, in which case βϕ1 = −
¾ [36]. In Table III, known values of ϕ1 and β for disordered
packings are summarized.

As stated, in the limit of infinitesimal increments the
packing of discretely sized particles transforms to the log-
normal size distribution. This infinite-particle-sizes approach
can be employed to derive the void fraction of the lognormal
distribution, following a similar approach as in Ref. [23] for
geometric packings.

Equation (16) and Table II show that the void fraction is
reduced proportionally to the square root of the number of size
groups and is in one part of the packing the same as in any
other part. When the size ratio u between the adjacent sizes
is smaller than ub, the concept concerning smaller particles
packing perfectly in the voids of the larger ones does not hold
anymore, but also, in this case, the void fraction reduction
involved with the size ratio of adjacent size groups (of constant
ratio) is the same in any part of the packing. Accordingly, for
a system with n size groups and small u is proposed:

ϕBN
n (u, p) = ϕ1

(
h(u,p)

ϕ1

)ψn −ψ2+1

≈ ϕ1

(
h(u,p)

ϕ1

)√
πn/2−√

π +1

. (30)

Following this principle, adding more size groups to the
mix with a certain size range will reduce the void fraction.
But, on the other hand, its effect is less as the size ratio of
adjacent groups tends to unity (i.e., u → 1) and the resulting
void fraction of adjacent size groups, governed by h(u, p),
tends to ϕ1.

For geometric packings the power in the void fraction
reduction, ψn, appeared to be equal to n, so applying this
multiple interacting particle principle led to a power of n − 1.
This equation was successfully validated for a finite number
of spheres (n = 3) with finite size ratio (u = 2) [24] and for
an infinite number of particles with u ↓ 1, i.e., a continuous
distribution [23].

Now the effect of adding an infinite number of size groups,
resulting in a continuous lognormal packing on the void

052211-6



PACKING FRACTION OF PARTICLES WITH LOGNORMAL . . . PHYSICAL REVIEW E 89, 052211 (2014)

fraction can be quantified as well. Adding more size groups
to the mix will reduce the void fraction asymptotically with a
power

√
n, see Eqs. (16) and (30), with ψn = √

πn/2 for large
n. However, its effect is lessened as the correction of ϕ1 tends
to unity as h(u, p), tends to ϕ1, see Eq. (29). For a system with
n size groups, using Eq. (26) and p = ½, Eqs. (29) and (30)
yield the following:

ϕLN = ϕ1
Lim

n → ∞

[
1 − 2β(1 − ϕ1)lnσg√

n − 1

]√
πn/2−√

π +1

= ϕ1exp[ −
√

2πβ(1 − ϕ1)lnσg] = ϕ1σ
−√

2πβ(1−ϕ1)
g .

(31)

For the outcome of the limit it is not relevant whether
for ψ2 in Eqs. (30) and (31) is taken the value 1.60, 1.772
or 2 (Table II). Equation (31) provides the void fraction of
a continuous lognormal distribution, which depends on the
void fraction of the single-sized particles (ϕ1), the standard
deviation (lnσg), and the maximum gradient of the single-sized
void fraction on the onset to binary packing (β), which are all
specified properties. The packing fraction readily follows as

f LN = 1 − ϕ1exp[ −
√

2πβ(1 − ϕ1)lnσg]

= 1 − ϕ1σ
−√

2πβ(1−ϕ1)
g . (32)

The geometric mean size does not feature in Eqs. (31)
and (32) because its variation only implies a multiplication of
the size of all particles with the same factor. As void fractions
are determined by relative particle sizes, this does not affect
the void fraction. Equation (31) furthermore indicates that the
void fraction of the system tends to the monosized void fraction
when the standard deviation tends to zero, i.e., the distribution
tending to a monosized distribution, as would be expected.
For small lnσg → 0, Eq. (31) can be expanded as up to the
quadratic term as follows:

ϕLN = ϕ1[1 −
√

2πβ(1 − ϕ1)lnσg + π [β(1 − ϕ1)lnσg]2

+O(ln3σg)]. (33)

By using f LN = 1 − ϕLN, the approximate solution for
the packing fraction is also obtained. Equation (33) reveals
that the second-order term has a sign opposite that of the
first-order term. This reflects that the initial linear void fraction
reduction (packing increase) flattens with increasing lnσg

(more polydispersity), which is in line with the asymptote
that is approached for infinite lnσg , namely a void fraction of
zero (a packing fraction of unity).

IV. COMPARISON WITH REPORTED DATA

A thorough verification of Eq. (30), concerning a finite num-
ber (n = 3) of binomially distributed interacting particles with
finite size ratio (u = 2) is presented here. Furthermore, a verifi-
cation of Eqs. (31) and (32) is possible by comparing them with
computational and experimental packing data of lognormal
distributions reported in the literature [11,12,25,26,37]. This
data concern packings of spheres and nonspherical particles,

packed from random loose to random close. The monosized
packing values readily follows from their packing fraction at
lnσg = 0. Likewise ϕ1, for disordered packings, β depends
only on the packing mode of the mix (loose, dense, etc.) and
the particle shape, so it is a given and nonadjustable parameter
as well. It is assumed that the retrieved data concerning all
simulated and measured polydisperse systems reported in the
literature have the same degree of compaction as in the per-
taining monosized case, which is also assumed implicitly by
Refs. [11,12,25,26,37], so ϕ1 and β are applicable for all lnσg .

A. Discretely sized sphere packings with finite size ratio

The empirical ternary (monosized) sphere packing results
of Jeschar et al. [38] are considered, but they did not
specify how their packings were prepared and measured. They
obtained ϕ1 = 0.366 for the monosized packing of spheres
with diameters 7 mm (d3), 14 mm (d2), and 28 mm (d1).
These values are compatible with RCP values from other
experiments [8] and with computer-generated values [9–14].
Equation (30) is, however, applicable to any mode of packing,
from random loose to random close packed. To apply the
current multiple particles packing model, unimodal, binary,
and ternary packings only need to be prepared and compacted
in a comparable way.

The binary and ternary packing results from Ref. [38] are
summarized in a ternary plot, which can also be found else-
where [24]. The sides of the triangle show that the binary pack-
ings of 7 and 14 mm have the same void fraction as the mixes
of 14 and 28 mm packing at equal compositions, which would
be expected as the size ratios of these binary mixtures are equal
(d1/d2 = d2/d3 =u= 2). These measured binary void fractions
h are included in Table IV for various compositions (cL or p).

The compatible unimodal void fractions as measured with
the three individual spheres sizes, as well as the compatible
binary void fractions measured with d1/d2 and d2/d3 mixes,

TABLE IV. Binary void fraction of monosized spheres, h(u,
p), as measured by Ref. [38] concerning u = 2, for which the
probability corresponds to the volume fraction of large constituent
(corresponding to cL), the measured ternary void fraction j (u, p) [38],
and the ternary void fraction j (u, p) computed using Eq. (30). The
monosized void fraction ϕ1 = 0.366.

p h [38] j [38] j [Eq. (30)]

0 0.366 0.366 0.366
0.1 0.358 0.356
0.2 0.351 0.346
0.25 0.335
0.3 0.346 0.339
0.4 0.340 0.331
0.5 0.335 0.332 0.324
0.6 0.335 0.324
0.7 0.335 0.321 0.324
0.75 0.322
0.8 0.341 0.332
0.85 0.325
0.9 0.352 0.347
1 0.366 0.366 0.366
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FIG. 4. (Color online) Scaled ternary void fraction of spheres
(u = 2) versus the probability as measured [38] and as computed by
Eq. (30) with substituting n = 3 and using the scaled binary void
fraction (u = 2) as measured [38]. The values are summarized in
Table IV.

indicate that Jeschar et al. [38] conducted all their experiments
in a reproducible and robust manner.

Using the void fraction of binomial ternary packings (n= 3)
that can be extracted from [38], it can now be verified if
Eq. (30) is applicable. In Table IV the compositions of ternary
binomial packings with five different p are included, for which
ci follows from Eq. (10). The pertaining ternary void fraction
j (u, p) of each packing as measured by Ref. [38] is taken
from the ternary diagram and is included in Table IV as well.
Finally, the ternary void fraction is computed using Eq. (30),
substituting n = 3 yields a power of 1.40 (=√

3π/2 − √
π

+ 1), and the corresponding binary void fraction h(u, p) is
also taken from Table IV. Comparing the values predicted by
Eq. (30) and the measured values, see Table IV, reveals that the
ternary packing fraction can be predicted accurately from the
binary void fraction h(u, p) using Eq. (30). In Fig. 4 the scaled
ternary void fraction as measured in Ref. [38] and computed
using Eq. (30), and taking the values from Table IV, are shown
graphically. Also, this figure clearly shows the applicability
of Eq. (30) in predicting the void fraction of multiple sphere
packings (here n = 3) using the void fraction of the binary
packing. It is also noteworthy to mention that the agreement is
even better when the expression with the original power, ψ3

− ψ2 + 1, in Eq. (30) is used. This power amounts to 1.5; see
Table II for the applicable ψ2 and ψ3 values.

B. Continuous sphere packings

For mixtures of spheres with lognormal distribution, the
packing fractions of arrangements from random loose to
random close packing are reported. Spheres (and nonspherical
particles) possess a monosized packing fraction that depends
on the method of packing (from RLP to RCP). For RCP of
uniform spheres the packing fraction (f1) was experimentally
found to be 0.64 [8], in line with computer-generated val-
ues [9–13]. The βrcp of RCP is about 0.20 and in Ref. [36] as
β of a nonclose random packing was proposed,

βrp
(
1−f

rp
1

) =βrcp
(
1−f

rcp
1

)
. (34)
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LNϕ

glnσ

(a)

(b)

(c)

FIG. 5. (Color online) (a) Computer-generated void fraction of
random close packed spheres ϕLN, with a lognormal size distri-
bution, versus the standard deviation [11,12]. Equation (31) with
ϕ1 = 0.37 and where β = 0.195 is also set out. (b) Experimentally
measured [26,37] and computer-generated [12] packing fraction of
spheres, with a lognormal size distribution, versus the standard
deviation. Equation (32) with ϕ1 = 0.409 and where β = 0.176 is also
set out, as well as with

√
2πβ(1 − ϕ1) = 0.19, which was conjectured

in Ref. [26]. (c) Computer-generated void fraction of random loose
packed spheres ϕLN [11], with a lognormal size distribution, versus
the standard deviation. Equation (31) with ϕ1 = 0.466 and where
β = 0.155 and β = 0.21 are also set out.

Simulations of lognormal size distributed spheres which
were close to RCP were reported by Refs. [11,12], and the
resulting void fraction can be found in Fig. 5(a), where
f1 = 0.63 (ϕ1 = 0.37) and, hence, Eq. (34) yields β = 0.195.
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The monosized packing values readily follow from their
packing fraction at lnσg = 0. In this figure also Eq. (31)
is drawn, using ϕ1 = 0.37 and β = 0.195. One can see
that in a large range of standard deviation lnσg , Eq. (31) is
in fair agreement with the computer-generated values of the
void fraction. The simulations of Ref. [12] indicate a lower
void fraction for small lnσg , which might be explained by the
employed computational method. The simulations in Ref. [11],
for instance, approached the commonly accepted monosized
RCP void value of about 0.36 (0.363 [11] versus 0.375 [12]).
Furthermore, the computational method used in Ref. [11]
correctly predicts an almost constant coordination number (of
value 6) with increasing lnσg , and in Ref. [12] it drops signif-
icantly. The finding in Ref. [11] is compatible with those in
Refs. [39,40] concerning coordination numbers in continuous
distributions (among others the lognormal distribution).

Packings with a lower packing fraction, f1 = 0.59 (ϕ1 =
0.41) and β = 0.176 [Eq. (34)], were considered by both
Ref. [26] and Ref. [12], the former experimentally and the
latter computationally. In Fig. 5(b) the reported packing
fractions f LN are included. The actual standard deviations,
corresponding to the packing fractions measured by Dexter
and Tanner [26], were computed using their given mix
compositions. It appeared that this computed lnσg were slightly
smaller than the values given by the authors [26], who
confirmed that their targeted largest standard deviations could
not be fully realized due to the limited range of available ball
sizes. As the difference augments with increasing lnσg , it can
most probably be attributed to the truncation of the composed
distributions indeed. Table V lists the standard deviations
given in Ref. [26], the measured packing fraction, as well
as the actual standard deviation computed here based on their
“Table 1”.

Substituting f1 = 0.59 (ϕ1 = 0.41) and β = 0.176 in Eq. (32)
yields −0.26 lnσg as the exponent featuring in this equation.
The authors [26] also suggested an empirical correlation,
which is similar to Eq. (32), but with −0.19 lnσg as the
exponent of the Euler number. Both equations are shown in
Fig. 5(b), and while they both approach unity for infinitely
large lnσg , Eq. (31) with −0.26 lnσg matches the empirical
data better. In this graph the simulations by Ref. [12] are also
included, and it is obvious that they predict an even larger
packing fraction increase with augmenting lnσg , which was
also seen in Fig. 5(a).

The packing of spheres with a wider lognormal distribution
were measured by Hunger [37] using a standardized Rigden

TABLE V. Standard deviations and packing fractions of the
composed lognormal sphere packings as given by Ref. [26] and
their recomputed standard deviations based on the size distribution
provided by these authors.

lnσg [26] f LN [26] lnσg

0 0.591 0
0.230 0.598 0.234
0.345 0.619 0.345
0.461 0.627 0.438
0.576 0.632 0.501
0.691 0.642 0.541

device for compaction. Glass beads with d10 = 14.8 μm and
d90 = 66.6 μm, whereby dx is defined as exp(F−1(x%)), with
F−1 as the inverse distribution function or quantile function.
For the powder coal fly ash (type a) it was verified that its
particles were spherical indeed [37], and for this material
d10 = 1.6 μm and d90 = 59 μm. The measured packing
fractions of compacted glass beads and fly ash amounted to
0.63 and 0.74, respectively.

The quantile function of Eq. (28) reads

F−1(x%) = lndg +
√

2 lnσg erf−1(2x% − 1), (35)

with erf−1 as inverse error function. Using Eq. (35) it follows
from F−1(90%) − F−1(10%) that

lnσg = ln(d90/d10)

2
√

2erf−1(0.8)
= ln(d90/d10)

2.563
, (36)

as erf−1(−x) = − erf−1(x) and erf−1(0.8) = 0.906. The
resulting standard deviations of glass beads and fly ash are
0.59 and 1.41, respectively. The standard deviations and the
respective packing values of both materials are included in
Fig. 5(b).

The standard deviation of glass beads is nonzero, while
their packing fraction (0.63) is smaller than the random close
packing fraction of monosized spheres (�0.64). From this
one can conclude that with the Rigden device a close packing
is obtained but that random close packing is not achieved.
The agreement of the glass beads value with the steel balls
packing values of Dexter and Tanner [26], see Fig. 5(b), at
equal standard deviations indicates that similar compaction
rates are obtained. Figure 5(b) furthermore reveals that Eq. (32)
is in line with the values of both materials, and the fly ash data
are particularly interesting as this material features a relatively
large standard deviation.

Random loose packings of lognormal distributions were
simulated by Ref. [11], for which they generated f1 = 0.53
(ϕ1 = 0.47) and, hence, β = 0.155 [Eq. (34)]. In Fig. 5(c)
their void fractions and the values computed using Eq. (31)
are depicted. Again it can be seen that simulations of ϕLN

and Eq. (31) agree fairly well and that the simulations in
Ref. [11] predict a larger void fraction reduction (packing
increase) than Eq. (31), which was also seen in Fig. 5(a).
Actually, Fig. 5(c) shows that the simulation of Ref. [11]
matches very well with Eq. (31) when β = 0.21 is substituted,
a β value which is larger than that of RCP. As β is expected
to be smaller when the packing is less close [23,36], the
simulations of Ref. [11] feature a larger void fraction reduction
than expected. This might indicate that the spheres are closely
packed but that the lower void fraction is caused by larger
voids created by bridging. This conjecture is supported by
their mean coordination number of 6, which is close to that
of RCP. In other words, their loose packing simulations have
more similarities to their RCP pendants than expected.

Considering Figs. 5(a)–5(c), one can see that Eqs. (31)
and (32) provide a good prediction of the sphere void or
packing fraction versus a wide range of standard deviations
and for various packing modes. To apply these analytically
exact expressions, no fitting parameters were needed.
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FIG. 6. Experimentally measured packing fraction of two sands
(OS and MR), with a lognormal size distribution for different
geometric mean sizes dg (in mm), versus the standard deviation [25].
Equation (32) with f1 = 0.576 and β = 0.26 (MR), and with
f1 = 0.624 and β = 0.25 (OS).

C. Continuous packings of irregularly shaped particles

Sohn and Moreland [25] measured the packing fraction of
two sands with a lognormal size distribution. Systems of any
desired mean size and standard deviation were synthesized by
the addition of appropriate weights of closely sized fractions,
obtained by sieving. Dense packings were obtained by tapping
until no further volume reduction was observed. One sand
(“MR”) possessed a Wadell sphericity of about 0.81 and
the other, more spherical, sand (“OS”) a mean sphericity
of 0.86. With the MR sand, for three different geometric
mean sizes (viz. dg = 0.5, 1, and 2 mm), the packing was
measured for different standard variations (Fig. 6). One can
see that the scatter among the three different means sizes
is small, showing that the packing fraction is a function of
the standard deviation only. For the OS the packing fraction
was measured for different standard deviations, and here one
geometric mean size only, namely dg = 0.3 mm, was taken.
Also these values are included in Fig. 6. With MR sand
relatively large standard deviations were achieved (lnσg up
to 1.4).

From the packing fraction values close to lnσg = 0 one
can conclude that the monosized packing fractions (f1) of MR
and OS are approximately 0.576 and 0.624, respectively. The
higher sphericity of OS is reflected in its higher monosized
packing fraction. The β of these sands is not known, but it
can be conjectured that they lie between 0.2 (RCP of spheres)
and 0.39 (RCP of distinctly angular particles), see Table III. In
Fig. 6, Eq. (32) is drawn using the aforementioned values of
f1, and β equal to 0.25 and 0.26 for OS and MR, respectively.
One can see that for all standard deviations, Eq. (32) is able
to well predict the packing density in the entire lnσg range
considered. In contrast to the sphere packings, β is now fitted
as its value is unknown for the considered OS and MR sands.
But it is seen that the β values correspond to the packing mode
(RCP) and the sphericity of OS and MR sands, 0.25 and 0.26,
respectively, and lie within the expected range, viz. between
0.2 and 0.39 (Table III).

V. CONCLUSIONS

In the present paper the void fraction of equally shaped
polydisperse particles, with monosized void fraction ϕ1 and
having a lognormal size distribution, is addressed. First,
the binary packing fraction of particle groups with large
size ratio (noninteracting groups) and two different single
packing fractions is considered for the entire compositional
range. Subsequently, these equations are used to assess the
packing fraction of n noninteracting size groups with a
symmetrical binomial volume distribution. It appears that for

large n, the void fraction asymptotically tends to ϕ
√

πn/2
1 ,

with ϕ1 as the void fraction of one particle group. It
appears that this expression is also accurate for n � 2
(Table II).

Next binomially distributed particles are considered, where
each group consists of one particle size and subsequent particle
sizes have a constant size ratio u. This ratio is reduced to
unity, and the number of size groups is taken to be infinity.
This limit yields a continuous lognormal size distribution.
Taking this limit also yields a closed-form expression for the
void fraction of this particle size distribution [Eq. (31)]. This
void fraction depends on the monosized void fraction ϕ1, the
standard deviation lnσg of the distribution, and the contraction
parameter β. This latter property governs the contraction that
disordered packings undergo when a monosized distribution
becomes a binary distribution of discretely sized particles (so
near u = 1), governed by Eq. (29). Likewise, the unimodal void
fraction, ϕ1, β is a nonadjustable property that is governed by
particle shape and mode of packing only. For a number of
particle shapes and modes of packing its value is extracted
from computer simulations and experiments and their values
are summarized in Table III. The positive magnitude of β is
a measure for the packing fraction increase (or void fraction
decrease) when disordered monosized packings become poly-
disperse, as is the case with the continuous lognormal size
distributions considered here and which was also seen with
geometric (power-law) size distributions [23]. Furthermore,
for RCP the β values of spheres and irregular particles range
significantly (Table III). This difference in β is smaller among
the different particle shapes when the particles are packed
in loose state (as is also the case for the monosized packing
fraction) [23,34]. On the other hand, for crystalline or ordered
packings, β has a negative value, reflecting the expansion of
these packing arrangements when the monosized situation is
abandoned [36]. As Eqs. (16) and (29) also hold for ordered
packings, Eq. (31) is also applicable when their particle sizes
are lognormally distributed.

The obtained closed-form expressions for the packing or
void fraction of lognormal size distributions is found to be in
good quantitative agreement with experimental and computer-
generated packing data. This comparison concerns RLP and
RCP of spheres with a wide range of standard deviations. This
agreement is achieved by using the known values of ϕ1 and
β, without the need of any adjustment. Also, for irregularly
shapes particles, two sands with different angularities, good
agreement is obtained in the entire standard deviation range.
Here β was not known a priori and, hence, needed to be
assessed, but their values are lying within the narrow range
expected beforehand.
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APPENDIX

In this Appendix the derivation of the equations presented
in Table I, for the case n = 8, is presented. These expressions
concern the packing of monosized particles, with constant size
ratio u, binomially distributed according to Eq. (10) with p =½
as the distribution is symmetrical. The size ratio is such that
all particle size classes are noninteracting, so di/di+1 = u >

ub, and, hence, that Eqs. (8) and (9) are applicable.
As all size fractions are noninteracting, first only the two

largest size fractions, with volume fractions c1 = 1/128 and
c2 = 7/128, are combined, each having a packing fraction
ϕ1 = ϕL = ϕS, and a binary composition cL = 1/8 and
cS = 7/8. Subsequently, Eq. (4) yields csat

L = 1/(1 + ϕ1) and

as 0 � ϕ1 � 1, cL < csat
L . Accordingly, curve A , i.e., Eq. (8),

of Fig. 1 is applicable. Using Eq. (8) yields

ϕ12 = 7ϕ1

8 − ϕ1
, (A1)

where ϕ12 reflects the void fraction of sizes 1 and 2 and which
is used instead of symbol h from Eq. (8).

Next, this binary packing is combined with smaller size
fraction 3, with volume fraction c3 = 21/128 and void fraction
ϕS = ϕ1. The large fraction, combined sizes 1 and 2, have a
volume fraction of 8/128 (= c1 + c2) and a void fraction
ϕL = 7ϕ1/(8 - ϕ1), see Eq. (A1). Equation (4) yields csat

L =
8/(8 + 7ϕ1). For this binary mix of c3 on the one hand and
c1 + c2 on the other, holds cL = 8/29, and as 0 � ϕ1 � 1,
cL < csat

L . Accordingly, curve A , i.e., Eq. (8), of Fig. 1 is
again applicable. Using Eq. (8) yields as a void fraction of the
combined sizes 1, 2, and 3,

ϕ1−3 = 21ϕ1

29 − 8ϕ1
. (A2)

The three size fractions are combined with size fractions
4 and 5. As an intermediate step, size fractions 4 and 5 are
combined first, having volume fractions c4 = c5 = 35/128
and void fraction ϕL = ϕS = ϕ1. Equation (4) yields csat

L =
1/(1 + ϕ1). For this binary mix, with composition cL =½ and
considering 0 � ϕ1 � 1, cL � csat

L holds. Accordingly, curve

A and Eq. (8) are applicable,

ϕ45 = ϕ1

2 − ϕ1
, (A3)

Now small sizes 4 and 5 are combined with larger sizes 1–3.
Equation (4) with ϕL = ϕ45 and ϕS = ϕ1−3 yields csat

L = 29(2
- ϕ1)/(58−16ϕ1), in which Eqs. (A2) and (A3) are substituted.
The volume fraction of the large fraction cL in the binary mix
is 29/99 (as c1 + c2 + c3 = 29/128 and c4 + c5 = 70/128). It
can readily be verified, as 0 � ϕ1 � 1, that cL = csat

L , so curve

A , described by Eq. (8), can be applied, yielding

ϕ1−5 = 35ϕ1

99 − 64ϕ1
. (A4)

Equation (A4) gives the void fraction of combined size
fractions 1 to 5.

Next, the two smallest fractions, 8 and 7, are combined with
volume fractions c8 = 1/128 and c7 = 7/128, each having a
packing fraction ϕ1 = ϕL = ϕS, and a binary composition
cL = 7/8 and cS = 1/8. Equation (4) yields csat

L = 1/(1 + ϕ1).

Hence, for ϕ1 � 1/7 it follows that cL < csat
L and curve A

and Eq. (8) hold, whereas for ϕ1 � 1/7 holds cL � csat
L and,

consequently, curve B and Eq. (9) are applicable,

ϕ78 = ϕ1

8 − 7ϕ1
(0 � ϕ1 � 1/7), (A5)

ϕ78 = 8ϕ1 − 1

7
(1/7 � ϕ1 � 1), (A6)

whereby cL = 7/8 and ϕL = ϕS = ϕ1 are used.
These two combined fraction are combined with fraction 6,

with volume fraction c6 = 21/128 and void fraction ϕL = ϕ1.
The small fraction, consisting of sizes 7 and 8, has a volume
fraction of 8/128 (= c7 + c8), and their void fraction, ϕS =ϕ78,
depends on ϕ1 and is given by Eqs. (A5) and (A6). For this
binary mix, of c6 on the one hand and c7 + c8 on the other,
holds cL = 21/29.

First, the case 0 � ϕ1 � 1/7 is examined. Equation (4),
with ϕL = ϕ1 and ϕS = ϕ78 [Eq. (A5)], yields csat

L = (8 −
7ϕ1)/(8 + ϕ1). For 0 � ϕ1 � 1/7 it follows that cL < csat

L , so
Eq. (8) applies as follows:

ϕ6−8 = ϕ1

29 − 28ϕ1
(0 � ϕ1 � 1/7), (A7)

where cL = 21/29 and ϕS = ϕ78 [Eq. (A5)] are substituted.
Second, the case (1/7 � ϕ1 � 1) is considered. Equation (4),
with ϕL = ϕ1 and ϕS = ϕ78 [Eq. (A6)], yields csat

L = 7/(7
+ 8ϕ1). Hence, for 1/7 � ϕ1 � 1/3 it follows that cL < csat

L

and curve A and Eq. (8) hold, whereas for 1/3 � ϕ1 � 1,

cL � csat
L holds and, consequently, curve B and Eq. (9) are

applicable as follows:

ϕ6−8 = 8ϕ1 − 1

28 − 21ϕ1
(1/7 � ϕ1 � 1/3), (A8)

ϕ6−8 = 29ϕ1 − 8

21
(1/3 � ϕ1 � 1), (A9)

where cL = 21/29, ϕL = ϕ1, and ϕS = ϕ78 [Eq. (A6)] are
substituted.

Finally, all eight size fractions are combined, the five largest
sizes with total volume fraction cL = 99/128 (= c1 + · · · +
c5) and their void fraction governed by Eq. (A4) and the three
smallest sizes with total volume fraction cS = 29/128 (= c6 +
c7 + c8) and their void fraction governed by Eqs. (A7)–(A9).

First, the case 0 � ϕ1 � 1/7 is addressed. Equation (4),
with ϕL = ϕ1−5 [Eq. (A4)] and ϕS = ϕ6−8 [Eq. (A7)], yields
csat
L = (29 − 28 ϕ1)/(2871 − 1757ϕ1). For 0 � ϕ1 � 1/7 it
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follows that cL = 99/128 < csat
L , so Eq. (8) applies,

ϕBN
8 = ϕ1

128 − 127ϕ1
(0 � ϕ1 � 1/7). (A10)

This is the void fraction of a packing with a binomial size
distribution in the given range of the single component void
fraction ϕ1. Next the case 1/7 � ϕ1 � 1/3 is considered.
Equation (4), with ϕL = ϕ1−5 [Eq. (A4)] and ϕS = ϕ6−8

[Eq. (A8)], yields csat
L = 99(28 − 21ϕ1)/(2772 − 1064ϕ1). For

1/7 � ϕ1 � 1/3 it follows that cL = 99/128 < csat
L , so Eq. (8)

applies as follows:

ϕBN
8 = 8ϕ1 − 1

127 − 120ϕ1
(1/7 � ϕ1 � 1/3). (A11)

For the case 1/3 � ϕ1 � 1, Eq. (4), with ϕL = ϕ1−5

[Eq. (A4)] and ϕS = ϕ6−8 [Eq. (A9)], yields csat
L = 297/(297

+ 145ϕ1). Hence, for 1/3 � ϕ1 � 3/5 it follows that cL < csat
L

and curve A and Eq. (8) hold, whereas for 3/5 � ϕ1 � 1,

cL � csat
L holds and, consequently, curve B and Eq. (9) are

applicable as follows:

ϕBN
8 = 29ϕ1 − 8

120 − 99ϕ1
(1/3 � ϕ1 � 3/5), (A12)

ϕBN
8 = 64ϕ1 − 29

99 − 64ϕ1
(3/5 � ϕ1 = 1), (A13)

where cL = 99/128 and ϕL and ϕS follow from Eqs. (A4)
and (A9), respectively. Equations (A10)–(A13) govern the
void fraction of particle packings consisting of eight binomi-
ally distributed and noninteracting sizes, where each individual
fraction has a void fraction ϕ1. The expressions depend on the
magnitude of ϕ1, and the four expressions are included in
Table I.
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