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We study closed dense collections of freely cooling hard spheres that collide inelastically with constant
coefficient of normal restitution. We find inhomogeneous states (ISs) where the density profile is spatially
nonuniform but constant in time. The states are exact solutions of nonlinear partial differential equations that
describe the coupled distributions of density and temperature valid when inelastic losses of energy per collision
are small. The derivation is performed without modeling the equations’ coefficients that are unknown in the
dense limit (such as the equation of state) using only their scaling form specific for hard spheres. Thus the IS
is the exact state of this dense many-body system. It captures a fundamental property of inelastic collections
of particles: the possibility of preserving nonuniform temperature via the interplay of inelastic cooling and heat
conduction that generalizes previous results. We perform numerical simulations to demonstrate that arbitrary
initial state evolves to the IS in the limit of long times where the container has the geometry of the channel. The
evolution is like a gas-liquid transition. The liquid condenses in a vanishing part of the total volume but takes
most of the mass of the system. However, the gaseous phase, which mass grows only logarithmically with the
system size, is relevant because its fast particles carry most of the energy of the system. Remarkably, the system
self-organizes to dissipate no energy: The inelastic decay of energy is a power law [1 + t/tc]−2, where tc diverges
in the thermodynamic limit. This is reinforced by observing that for supercritical systems the IS coincide in most
of the space with the steady states of granular systems heated at one of the walls. We discuss the relation of our
results to the recently proposed finite-time singularity in other container’s geometries.
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I. INTRODUCTION

In the past decades a lot of attention was devoted to the study
of formation of structures in closed systems with dissipative
interactions (ordering). This formation is often associated with
decrease of entropy due to the system’s interaction with the en-
vironment. The latter is described effectively by the dissipative
part of the interactions. In this work we consider the dissipative
system of hard spheres with inelastic collisions that cools
freely. This serves as basic model of the granular material,
which is the dissipative system of macroscopic particles which
interaction involves friction, like sand. We demonstrate the
formation of stable spatial structure in this system.

The inelasticity of the collisions of the spheres, which
model the sand grains, mimics the friction, describing effec-
tively the transfer of energy to the inner degrees of freedom
of the particles that play the role of the environment for the
translational degrees of freedom [1,2]. We use the popular
model where the normal component of the relative velocity of
the particles is depleted after the collision by a positive constant
r < 1 (which is called coefficient of normal restitution; r = 1
for the elastic collisions).

We consider the case where the inelasticity is small, 1 −
r � 1, so the energy is “almost” conserved in each collision.
In this case, the inelasticity effect becomes significant only
after a long time of evolution. Over the mean free time (or
the liquid relaxation time in the dense regions), however, the
inelasticity is negligible so the collection reaches the state of
the local thermal equilibrium [3,4]. This is characterized by the
local values of the density, temperature, and velocity that vary
throughout the system and evolve according to the equations
of the fluid mechanics.

The fluid-mechanical equations of the collection of in-
elastically colliding hard spheres contain a correction due to

inelasticity. This brings finite effect over the time scale of the
order of (1 − r)−1 times the mean free time. During this time
scale the energy depletion due to the inelasticity is of order 1,
so the system’s state completely differs from that of the elastic
hard spheres.

In this paper we use the fluid-mechanical equations of gran-
ular materials to demonstrate new states of dense collections of
inelastically colliding hard spheres where the liquid phase is
present in the system. These states are states of mechanical
equilibrium where the pressure is spatially uniform (this
uniform pressure decays in time though due to inelasticity).
The forces on each fluid element are balanced so the fluid
is macroscopically at rest and the density profile is time
independent. Thus these states can be said to be closest to
the equilibrium states of collections of elastically colliding
hard spheres (the thermal equilibrium is impossible due to
the dissipation). The density, however, is inhomogeneous:
The inelastic cooling opens the possibility of having stable
inhomogeneous spatial profiles of density, which is absent in
elastic systems.

This possibility of having states of free granular systems
with inhomogeneous stationary profile of density [called
inhomogeneous states (ISs)] was first discussed in Refs. [5,6].
Previously similar states were observed to hold in thermally
agitated systems where one of the walls is kept at a constant
temperature [7]. In both kinds of ISs the heat flux caused by
the inhomogeneity of temperature is balanced by the inelastic
cooling, which is also inhomogeneous. The states differ in
that the states of forced systems are steady while the states
of the free granular systems dissipate energy. It is remarkable
that the ISs of free systems coincide with the steady states
of forced systems in the major part of the volume in the
regime of the supercritical systems; see the discussion in
Sec. XIII.
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For free systems the spatial profile of the temperature is
preserved up to the depletion of the overall amplitude. This
spatial structure stably exists when the entropy monotonously
decreases to −∞ (the decrease stops eventually when the inner
degrees of freedom start to return energy to the translational
ones at the collisions), cf. Refs. [8–10]. However, the consid-
eration of the thermodynamic limit of the IS, presenting the
highest interest, is not possible within the dilute limit: it was
found that the maximal density of the IS grows exponentially
with the system size, so the density becomes comparable with
the density of dense packing for large sizes of the system
(thermodynamic limit). Thus the study of the thermodynamic
limit necessitates considering dense regions. There, usually,
the study can be performed only phenomenologically due to
the strong coupling between the particles (for example, even
the precise equation of state is unknown for liquids).

We succeed in deriving the dense ISs that hold in the
thermodynamic limit without approximations. That is, the ISs
are derived for granular liquids, taking into account the finite
size of the particles and the corresponding excluded volume
effects. The derivation uses a description that works uniformly
both for gas and liquid phases, including the possibility
of coexistence of the phases. This is despite the fact that
the constitutive relations that appear in the fluid-mechanical
equations (such as the equation of state) are not known
explicitly in the liquid phase. We note that the particular scaling
form of those functions, which holds due to the absence of the
intrinsic energy scale for hard spheres, admits the IS solutions.
Due to the robustness of this observation, one can expect that
the existence of the IS is a fundamental property of granular
materials.

The ISs have unusual properties. These are states of coex-
istence of liquid and gas phases. The phases are described by
the time-independent density profile that varies continuously
in space from large values in the liquid phase to low values in
the gaseous phase.

Probably the most striking property of the IS is its particular
organization of particles in space due to which the system
does not dissipate energy in the thermodynamic limit. This
is not because the particles freeze: The temperature is finite.
However, the flow of energy in space due to the inhomogeneity
of temperature compensates the local energy losses due to
inelastic collisions so the energy obeys [1 + t/tc]−2, where tc
diverges in the thermodynamic limit. In particular, since the
local energy dissipation rate is determined completely by the
local density and temperature, this signifies that these fields
“know” of the system size in the IS.

This is in sharp contrast to the well-known homogeneous
cooling states (HSs) [11], where the decay obeys the same
law [1 + t/tc]−2, but tc is a local property independent of the
size of the system. Furthermore, the total entropy decreases
due to the dissipation logarithmically in time. This decrease is
proportional to the number of collisions that occurred in the
system. Thus, roughly, the entropy decreases in each collision
by the same, time-independent, amount.

Our derivation of the ISs holds for systems where on
average the system is dilute, so the fraction of space occupied
by the gas phase is close to unity. (This is, in particular, the
case of the clustering instability of the HSs of granular gases,
see below). However, the small fraction of space occupied by

the liquid contains the fraction of the total mass that is close to
unity. In contrast, the energy of the system is predominantly
contained in the gaseous state, where the particles’ speed is
higher. Thus in the IS both phases are present significantly, one
carrying the mass and the other the energy of the total system.

Further insight into the physics of the IS is reached by
considering the development of the solution in the intrinsic
time variable which is the number of collisions of the particles
that occurred by time t . In this variable rescaling of the fields
by a time-dependent factor turns the IS into time-independent
solution. To demonstrate this, we provide a time-dependent
transformation that transforms the original equations, which do
not have explicit time dependence, into the equations that also
do not have explicit time dependence. The IS is the stationary
solution in rescaled variables. We use this transformation to
demonstrate that the evolution of small perturbations of the IS
obeys the power-law behavior in time.

Once the IS solutions are derived, the question is if they
are stable. The study of this question in the dilute case has a
long history. It started from the study of the stability of the
HS [11]. This state plays the role of the equilibrium state
for systems with size smaller than an intrinsic instability
length lcr times π , which relax to the HS universally at
large times. The scale lcr is of order of the mean free
path over

√
1 − r . However, the HS is unstable for larger

systems due to the famous clustering instability [11–15]. That
instability, obtained by linearizing the equations around the
HS, demonstrated the formation of clusters in the system that
spontaneously break the translational symmetry. It was shown
in Refs. [5,6] that when the system size passes the instability
length (supercritical systems), simultaneously with uniform
solutions getting unstable, the ISs appear (that do not exist at
the smaller length). Based on the analogy with instability in
the Newtonian fluids, one can expect that the IS plays the role
of the HS for supercritical systems and constitutes the result
of evolution at large times. This was shown to be the case for
systems that are not too large for the channel geometry of the
particles’ container [5].

In the latter case, the fluid-mechanical fields depend only
on the coordinate along the channel [16–20]. The limit of fast
sound was considered in Ref. [5], where the sound propagation
time ts across the system is much smaller than the characteristic
time of the decay of energy due to inelasticity. Then, since ts
is the characteristic time of relaxation of the pressure to the
equilibrium uniform value, the inelastic evolution happens on
the background of the pressure that is constant in space (but
not in time). As a result, one can reduce the compete system
of fluid-mechanical equations to one integrodifferential scalar
equation. The numerical study of that equation demonstrated
that the ISs are stable. Furthermore, the ISs provide universal
result of the long-time evolution of the granular gas. In
particular, they determine the ultimate result of the clustering
instability of the HS [11–15].

Thus the IS provided the first consistent prediction on the
long-time result of the nonlinear development of the instability
in a certain limit. This limit, though, demands that the length
of the channel is not too large, so it cannot be used to study
the thermodynamic limit. The consideration of the latter limit
demands considering the full system of the fluid-mechanical
equations, and it was not performed previously.
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In this work we perform the numerical simulation of the
complete system of the fluid-mechanical equations of the dilute
granular gas in the channel (so the integral equation simulated
in Ref. [5] is a reduction of this system in the limit of moderate
system size). We demonstrate that the IS is the result of the
long-time evolution of the system for arbitrary lengths of the
channel. Since for arbitrarily large but fixed sizes of the system,
the dilute gas holds in the limit of small sizes of the particles,
our result signifies that the IS is the result of the long-time
evolution of the system in the thermodynamic limit taken after
the limit of zero particle size.

To complete the proof that the IS is the universal result
of the long-time evolution of the collection of inelastic hard
spheres in the channel, one has to deal with the finite particles’
size. The maximal density on the IS of the dilute gas grows
exponentially with the size of the system, so the consideration
of the thermodynamic limit of the collection of (real) finite-
size particles necessitates the study of the fluid-mechanical
equations not constrained by the diluteness assumption. We
perform this study using the following consideration.

Our derivation of the IS does not assume that the fluid
is dilute. Though the form of the coefficients of the fluid-
mechanical equations is not known in the dense case, we
demonstrate that the structure of the solution can be determined
independently of that form if the system is dilute on average
(that is, if the spheres were distributed uniformly they would
form the dilute gas). The IS in this case consists of the gas
phase that occupies the volume’s fraction close to unity and
the liquid phase that occupies the remaining volume. The liquid
phase produces effectively a wall boundary condition for the
gas where the wall is located at the boundary between the
phases.

This structure of the IS in the dense case is indicating
strongly that it is stable. Indeed, the gas phase is locally
stable in view of the stability of the dilute IS that was proved
numerically. The liquid phase is locally stable too because the
excluded volume effects do not allow significant growth of
the density in the liquid state. Thus the IS is stable locally. If
to discard the unlikely possibility of nonlocal mechanism of
instability (note that the mechanism of instability of the HS
is local [11–15]), then this completes the demonstration that
the IS is the universal result of the long-time evolution in the
channel.

The IS solutions considered in this work depend on one spa-
tial coordinate only (we stress that microscopically the system
is fully three or two dimensional), describing the physics of
granular materials in channels. The IS solutions that depend
on two or three variables exist too, so it is natural to pose the
question of their role in situations where the fluid-mechanical
flows depend on two or three coordinates, which is the situation
of box geometry. Since the physics of the IS solutions consists
of the balance of the Laplacian term describing heat conduction
and local nonlinearity corresponding to the inelastic cooling,
then the role of dimension should be important because it is
important for the Laplacian. Recent numerical results indicate
that in higher dimensions the ISs are unstable. The work of
Ref. [21] reports that two-dimensional fluid mechanics of
granular gases produces finite-time singularities of density.
This increases the importance of considering the dense ISs
introduced in this work. Indeed, finite particles’ size effects

will necessarily regularize the singularity of the density, cf.
Ref. [20]. The corresponding study concerning whether the
dense IS is the result of the long-time evolution of supercritical
systems in the higher-dimensional case is a topic for future
work.

It is assumed in our study that the initial conditions do
not contain the solid-state phase and that the solid phase does
not form in the system as a result of the evolution. This is
reasonable due to the growth of the pressure in the liquid
state. This guarantees the applicability of the fluid-mechanical
description. It is to be stressed that the fluid-mechanical
equations that we use are valid both in the dilute (gaseous)
and in the dense (liquid) phases of the matter. Though the
form of the coefficients (e.g., viscosity, heat conductivity, and
equation of state) is not known precisely in the dense region, we
succeed in dealing with the equations based on the separability
of the dependence of the coefficients on the temperature and
density that holds for hard-core particles. The result applies to
the two-dimensional fluid of hard disks, too.

The following text is structured as follows. In the next
section we derive the general form of the fluid-mechanical
equations of the hard spheres that collide inelastically. We
show that these equations have a particular scaling form that
holds due to the absence of energy scale in the the hard
spheres’ interaction. In Sec. III we derive the IS solutions
of the fluid-mechanical equations and demonstrate their basic
properties (that do not depend on the dimension). The fol-
lowing section introduces the time-dependent transformation
of the fluid-mechanical equations that transform the IS to the
time-independent solution of a system with no explicit time
dependence, implying power-law behavior of the perturbations
of the IS. In Sec. V we provide the implicit form of the IS that
depends on one spatial coordinate in terms of coefficients of the
dense fluid. The next section provides the qualitative structure
of the solution, which is relevant for the later consideration of
the dense case. The following section describes the low-density
limit of the IS not confined to the case of the dependence on
one coordinate. The study of the IS of the dilute gas that
depend on one coordinate only is performed in Sec. VIII.
Though this case was solved previously [5,6], we provide the
solution to stress its thermodynamic limit and to make the
paper self-contained. The IS in the dilute case serves as the
basis for the study of the IS in the dense case in Sec. XI.
Section IX deals with introducing the Lagrangian form of the
fluid-mechanical equations that is considerably more suitable
for the numerical simulation. The latter is reported in Sec. X.
It is shown that the IS provide the result of the long-time
evolution of initial conditions that are arbitrary. Section XII
discusses the recent conjecture on the finite-time singularity of
the density of the dilute gas in the light of the dense IS obtained
here. Finally, in the Conclusion, we discuss the implications
of our results on the general study of the granular materials.
Further questions risen by our results are considered.

II. FLUID MECHANICS OF DENSE COLLECTIONS OF
INELASTICALLY COLLIDING HARD SPHERES

The fluid of elastic hard spheres has an exceptional feature
that in the equilibrium the only energy scale is the temperature
T (in usual fluids there is an energy scale that characterizes the
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interactions). Thus, the intensive quantities, like the pressure p

or the thermal conductivity κ (determined by the equilibrium
properties via the Kubo formula), are determined completely
by the density ρ, the particles’ diameter σ , and T (we set the
particles’ mass equal to 1 with no loss). The only one of those
quantities that contains the units of time is T . This allows
us to use the dimensional analysis to determine uniquely the
dependence of the intensive quantities on T . In this way, one
fixes the temperature dependence in the constitutive equations
for the functions that appear in the fluid-mechanical equations.

The inelasticity described by the dimensionless constant
coefficient of the normal restitution r does not introduce a
new energy scale. This is a unique property of the considered
model of the inelasticity, while other models typically contain
an energy scale characterizing the inelastic part of the
interactions. Thus, the equations of hydrodynamics of the
granular fluid of hard spheres also have coefficients whereby
the dependence on T is fixed for any density.

We now discuss the description of the fluid mechanics of
inelastic hard-sphere fluids. This form holds both for the dilute
gases and for the dense fluids. We assume that inelasticity is
small, i.e., 1 − r � 1. Only under this assumption can one
use the fluid mechanics, at least in its traditional form, that
assumes the local thermal equilibrium. When 1 − r � 1 the
local relaxation to equilibrium that happens within a local
relaxation time τrel is weakly influenced by the inelasticity. In
particular, the inelastic energy depletion that happens within
τrel is small. Further evolution of the system consists of
the evolution of the fields that describe the variation of the
parameters of the local thermal equilibrium in space, i.e., the
density ρ(x,t), the velocity v(x,t), and the temperature T (x,t).
The evolution of these fields is derived from the local balance
of mass, momentum, and energy. The equations are obtained
by expressing the latter and their currents via ρ(x,t), v(x,t),
and T (x,t). The inelasticity produces a local term in the energy
equation that describes inelastic energy losses.

We now describe the equations. The inelasticity does not
change the local laws of conservation of mass and momentum.
Using isotropy and Galilean invariance, one finds the following
general form of the fluid-mechanical equations [3,4]:

∂ρ

∂t
+ ∇ · [ρv] = 0, ρ

[
∂vi

∂t
+ (v · ∇)vi

]
= −∇ip + ∂σik

∂xk

,

σik = η

(
∂vi

∂xk

+ ∂vk

∂xi

− 2

d
δik∇ · v

)
+ ζ δik∇ · v,

(1)

where σik is the viscous momentum flux (cf. Ref. [3]), d = 2
corresponds to the case of hard disks, and d = 3 corresponds
to the case of hard balls. Using the dimensional analysis we
have the following general form of the intensive quantities p,
η, and ζ :

p = T F1(ρ,r), η =
√

T F2(ρ,r), ζ =
√

T F3(ρ,r), (2)

where Fi(ρ,r) are certain functions. Though this is not
necessary to demonstrate the IS, we use 1 − r � 1 to set
r = 1 in the equations above. It will be clear below that to the
leading order in 1 − r the difference of r from 1 needs to be
accounted for only in the energy-loss term. The reason is that

this is the only term for which there is a degeneracy at r = 1,
where it vanishes identically. Its smallness is compensated by
the large time of evolution (however small, the inelasticity
will produce the final state which completely differs from the
r = 1 case). The rest of the terms in the equations have a finite
limit at r → 1, so their effect is perturbative. Below we define
Fi(ρ) ≡ Fi(ρ,r = 1).

The function F1(ρ) gives the pressure of the fluid of elastic
hard spheres and can be expressed with the help of the free
energy Ffree of that fluid. For N particles,

Ffree = Fid + NT F (ρ), (3)

where Fid is the free energy of the ideal gas. The function F (ρ)
is determined by the configuration integral and its meaning is
that it gives the deviation of the entropy per particle s from the
one of the ideal gas,

s = − 1

N

(
∂Ffree

∂T

)
= sid − F (ρ), (4)

where N is the number of spheres and sid = ln[T 1/(γ−1)/ρ] +
const is the entropy per particle for the ideal gas. The function
F (ρ) vanishes in the limit ρ → 0 and its Taylor expansion
starts from the linear term. For the equation of state one obtains

p = ρ2

N

(
∂Ffree

∂ρ

)
= ρT + ρ2F ′(ρ)T , (5)

and thus we have

F1(ρ) = ρ + ρ2F ′(ρ). (6)

To write down the remaining fifth equation of the fluid
mechanics, we first write the equation for the usual fluid of
elastic hard spheres and then introduce the energy-loss term
due to inelasticity. The energy balance equation can be written
in the form [3]

ρT

(
∂

∂t
+ v · ∇

)
s = σik

∂vi

∂xk

+ ∇ · [κ∇T ], (7)

where κ is the thermal conductivity. One can write κ =√
T F4(ρ) similarly to Eqs. (10).
For the fluid of inelastic hard spheres the pressure has a

particular role. The fluid tends to make the pressure uniform,
which makes it a convenient variable to work with. To
pass from s to p we insert ρT = p/[1 + ρF ′(ρ)] into the
expression for the entropy of the ideal gas sid, which gives

s = ln p

γ − 1
− ln[1 + ρF ′(ρ)]

γ − 1
− γ ln ρ

γ − 1
− F (ρ). (8)

Putting this into Eq. (7), with γ = 5/3 for the three-
dimensional fluid of hard balls and γ = 2 for the two-
dimensional fluid of hard disks and using the continuity
equation, one finds(

∂

∂t
+ v · ∇

)
p = −F5(ρ)p∇ · v + (γ − 1)F1(ρ)

ρ

×
(

σik

∂vi

∂xk

+ ∇ · [
√

T F4(ρ)∇T ]

)
, (9)
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where F5(ρ) is defined by

F5(ρ) = γ + 2γρF ′(ρ) + ρ2F ′′(ρ) + (γ − 1)ρ2F ′2(ρ)

[1 + ρF ′(ρ)]
.

(10)

To include inelasticity one should introduce into the equation
the energy-loss term where the form can be fixed by dimen-
sional analysis. We obtain the following:(

∂

∂t
+ v · ∇

)
p

= −F5(ρ)p∇ · v − �(ρ)ρ1/2p3/2

+ (γ − 1)F1(ρ)

ρ
∇ ·

[√
p

F1(ρ)
F4(ρ)∇

(
p

F1(ρ)

)]

+ (γ − 1)F1(ρ)

ρ
σik

∂vi

∂xk

, (11)

where �(ρ) tends to a positive constant � in the dilute limit
[1]. The system of Eqs. (1) and (11) is the complete system of
equations of the granular fluid of hard balls. This has a special
dependence on the fields of p and ρ, where both the cooling
and the thermal conductivity terms depend on p as p3/2. It
turns out that, based on this form only, one can find a new type
of solution, compared to the usual fluid of elastic hard spheres,
that holds due to the inelasticity.

III. INHOMOGENEOUS SOLUTIONS

We look for the solution to Eqs. (1) and (11) that obeys v ≡
0. The continuity equation implies that these solutions describe
a stationary distribution of particles in space, ρ = ρ(x). The
momentum equation gives that the pressure must be spatially
uniform and it can depend only on time, p = p(t). Finally,
Eq. (11) under the assumption ρ = ρ(x) and p = p(t) can be
written as follows:

1

p3/2

dp

dt
= −�(ρ)ρ1/2 + (γ − 1)F1(ρ)

ρ
∇ ·

[
F̃4(ρ)√

ρ
∇ 1

ρ

]
,

(12)

where we defined F̃4(ρ) ≡ F4(ρ)F ′
1(ρ)ρ5/2/F

5/2
1 (ρ). Since the

left-hand side of Eq. (12) by assumption is a function of time,
while the right-hand side is the function of coordinate, then the
solutions exist if both sides are equal to a constant −c, where
minus is written for further convenience,

1

p3/2

dp

dt
= −c,

(γ − 1)F1(ρ)

ρ
∇ ·

[
F̃4(ρ)√

ρ
∇

(
1

ρ

)]

−�(ρ)ρ1/2 = −c. (13)

Dividing the above equation by F1(ρ)/ρ and integrating over
space we find

c = 〈�(ρ)ρ3/2F−1
1 (ρ)〉

〈ρF−1
1 (ρ)〉 , 〈f 〉 ≡ 1



∫


f (x)dx,

where  is the system volume, the angular brackets stand
for spatial averages, and we assumed that either the heat
flux vanishes at the boundary or that the periodic boundary

conditions hold, so the boundary terms vanish. We obtain that
the pressure obeys the power-law

p(t) = p(0)

[1 + t/tc]2
, tc ≡ 2

〈
ρF−1

1 (ρ)
〉

〈
�(ρ)ρ3/2F−1

1 (ρ)
〉
p1/2(0)

, (14)

where the density field obeys the nonlinear partial differential
equation (PDE)

(γ − 1)F1(ρ)

ρ
∇ ·

[
F̃4(ρ)√

ρ
∇

(
1

ρ

)]
− �(ρ)ρ1/2

= −〈�(ρ)ρ3/2F−1
1 (ρ)〉

〈ρF−1
1 (ρ)〉 . (15)

Introducing

K(ρ) ≡ −
∫

F̃4(ρ)dρ

ρ5/2
, ∇K = F̃4(ρ)√

ρ
∇

(
1

ρ

)
, (16)

one can rewrite Eq. (15) in the form

∇2K = f [ρ(K)], (17)

where ρ(K) is the inverse function of K(ρ) and

f (ρ) ≡ F̃ (ρ) − 〈F̃ (ρ)〉
[1 + ρF ′(ρ)]〈[1 + ρF ′(ρ)]−1〉

F̃ (ρ) ≡ �(ρ)ρ3/2

F1(ρ)(γ − 1)
. (18)

The previous work [5,6] characterized the solutions in the
limit of the dilute gas where one can neglect the term with F ′
and F̃ (ρ) ≈ �ρ1/2/(γ − 1) [where � = �(ρ = 0)]. One finds
f (ρ) ≈ �[〈ρ1/2〉 − ρ1/2]/(γ − 1). Solutions in the dilute case
that depend on one coordinate were worked out in detail in
Ref. [5], while the higher-dimensional case for the spherically
symmetric situation in was considered in Ref. [6]. It is clear
that there are nonspherically symmetric solutions that depend
on two or three coordinates; however, the discussion of these
solutions is beyond the scope of this work.

Studying the solutions in the dense case, one can consider
the model equation of state F ′(ρ) = πg(ρ)/

√
3 of Carnahan

and Starling [22] where

g(ρ) = 1 − 7πρ/[32
√

3]

(1 − πρ/[2
√

3])2
(19)

is the equilibrium pair correlation function of hard disks at
contact (we use here units with σ = 1 and consider d = 2, the
study of d = 3 is similar). The corresponding expression for
the cooling coefficient �(ρ) derived in Ref. [23] in the spirit
of Enskog theory is �(ρ) = �g(ρ); thus

F̃ (ρ) = �g(ρ)ρ1/2

(γ − 1)[1 + πρg(ρ)/
√

3]
. (20)

The simplest solution is the uniform solution ρ = ρ0 where
ρ0 is a constant,

p(t) = p(0)

[1 + t/tc]2
, tunif

c = 2

�(ρ0)ρ1/2
0 p1/2(0)

. (21)

This solution is the well-known HS in the dilute gas limit
ρ0σ

3 � 1, where �(ρ0) tends to a constant � �= 0, see
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Ref. [11]. However, we could not find in the literature these
solutions in the dense case, where ρ0σ

3 ∼ 1 and �(ρ0) differs
from � appreciably. This solution is quite notable because
�(ρ) = �g(ρ) diverges when the density approaches the
density of the dense packing, see Eq. (19), so the cooling
becomes infinitely fast. Further, while the instability of the
uniform solutions for the gases is well known, see Refs. [12–
15], there is no corresponding study for the dense fluid. It
is clear, though, that the instability of perturbations with a
large-enough wavelength (whereby its existence demands the
system size to be sufficiently large), which was proved for
the gases, holds for dense fluids, too, because the instability
mechanism does not depend on the diluteness [12–15,24]. The
study of the dependence of the critical length on ρ0 in the dense
case is left for future work. Here we confine the consideration
to the dilute case where the total number of particles is such
that Nσ 3/ � 1, which guarantees that the uniform state is
unstable.

Thus for large system size the unstable uniform solutions
have little practical value. However, there are also inhomoge-
neous solutions to Eq. (17), see Ref. [6]. These can provide
the final state of the fluid at large system size, see below and
Ref. [5], giving importance to their consideration. Before we
discuss those solutions we consider the behavior of the energy
and the entropy on the IS that can be found independently of
the form of the density.

The thermal energy density is equal ρT (the one of ideal
gas), so the total system’s energy E(t) obeys

E(t) = p(t)
∫

dx
1 + ρF ′(ρ)

= E(0)

[1 + t/tc]2
, (22)

where we used that the integral is a constant that can be fixed
using the initial value of E(t). We used that the system has
no macroscopic kinetic energy. While the energy decay is
necessary, whether the entropy decays or grows is less obvious.
The energy losses cause the entropy to decrease, but the spatial
inhomogeneity leads to the increase of entropy. We use that s =
ln[p1/(γ−1)] plus a function of the density. Since the density in
the IS is time independent, the entropy is then

S(t) =
∫

ρ ln p

γ − 1
dx + B = N ln p(t)

γ − 1
+ B

= S(0) − 2N ln[1 + t/tc]

γ − 1
, (23)

where B is a constant determined by S(0). Thus the IS are
the states for which the entropy decreases logarithmically to
minus infinity as t grows. The system continuously organizes
with chaotic disorder decreasing due to the energy decrease.
Of course, as the fluid cools down, eventually the effective
description breaks down as a physically realistic description
so the physical entropy stays finite (when the inner degrees
of freedom have energy comparable with the one of the
translational degrees of freedom they will stop to be the energy
sink described by inelasticity but will exchange energy with
the translational degrees of freedom).

Finally, we consider the total number of particles’ collisions
Nc(t) that occurred by the time t . By dimensional analysis, the
local rate of collisions �(t) obeys �(t) = L(ρ)p1/2, where

L(ρ) is a function of ρ. We find

dNc

dt
=

∫
L(ρ)p1/2dx = const

1 + t/tc
, (24)

which simply says that the local rate of collisions is pro-
portional to the typical relative velocity of the particle T 1/2.
Integration yields

Nc(t) = const × tc ln[1 + t/tc]. (25)

The number of collisions grows only logarithmically in time.
The particles collide more and more rarely with time due to
the decrease of their velocity.

It is observed that the decrease of the entropy is proportional
to the number of collisions that occurred in the system,

S(t) − S(0) = − 2NNc(t)

const × tc(γ − 1)
. (26)

Thus on the IS the entropy decreases by roughly the same
quantity in each collision.

We showed in this section that the fluid-mechanical
equations of dense granular fluids of hard spheres have exact
solutions for which the pressure is spatially uniform and the
generally inhomogeneous profile of the density exists in space.
The solutions hold due to the special combination of scalings
where the pressure is proportional to T , while both the cooling
and the heat conduction scale as T 3/2. The density profile is
preserved via the balance of inhomogeneous cooling and heat
conduction which sum to a spatially independent value. Due
to the robustness of this balance we expect that the IS are
general and present also when 1 − r is not small and the fluid
mechanics does not hold.

The decay of the pressure and of the energy in the IS
obeys a universal power law with exponent 2 independently
of the details of the density profile. The entropy decreases
logarithmically in time and proportionally to the number of
particle collisions that occurred in the system. The number of
collisions Nc(t) turns out to be the natural time variable in
which to consider the evolution, as we now show. Below we
use the arbitrariness in the choice of the initial moment of time
to set p(0) = 1 in the IS.

IV. BEHAVIOR OF SMALL PERTURBATIONS OF THE IS

The system of Eqs. (1) and (11) admits a time-dependent
transformation of variables such that in the new variables the
system is still time independent. The unique property of this
transformation is that the IS become time independent in the
new variables. In particular, the transformation allows us to
conclude that the linearized perturbations around the IS have
a power-law behavior in time.

For an arbitrary constant C, we pass to the new functions
ρ ′, p′, and v′ defined by

p = p′

[1 + Ct]2
, ρ = C2ρ ′, v = v′

C[1 + Ct]
, (27)

and the new space and time variables

τ = ln[1 + Ct],
∂

∂t
= C

1 + Ct

∂

∂τ
, x′ = C2x. (28)
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We have

∂v

∂t
= 1

[1 + Ct]2

∂v′

∂τ
− v′

[1 + Ct]2
, (29)

∂p

∂t
= C

[1 + Ct]3

∂p′

∂τ
− 2Cp′

[1 + Ct]3
. (30)

In the new variables the system of (1) and (11) becomes

∂ρ ′

∂τ
+ ∇′ · [ρ ′v′] = 0, ρ ′

[
∂v′

i

∂τ
− v′ + (v′ · ∇′)v′

i

]
= −∇′

ip
′ + ∂σ ′

ik

∂x ′
k

,
∂p′

∂τ
− 2p′ + v′ · ∇′p′

= −F5(C2ρ ′)p′∇′ · v′ − �(C2ρ ′)ρ ′1/2p′3/2

+F6(C2ρ ′)
(

σ ′
ik

∂v′
i

∂x ′
k

+ ∇′ ·
[√

p′

ρ ′[1 + ρ ′F ′(ρ ′)]
F4(C2ρ ′)∇′

(
p′

ρ ′[1 + ρ ′F ′(ρ ′)]

)])
,

where

σ ′
ik =

√
p′

ρ ′[1 + ρ ′F ′(ρ ′)]
F2(C2ρ ′)

(
∂v′

i

∂x ′
k

+ ∂v′
i

∂x ′
k

− 2

3
δik∇′ · v′

)
+

√
p′

ρ ′[1 + ρ ′F ′(ρ ′)]
F3(C2ρ ′)δik∇′ · v′.

Importantly, the IS solution is time independent in the new
variables and reads as follows:

ρ ′(x′) = 1

C2
ρ0

(
x′

C2

)
, C = c

2
, v′ = 0,

p′−1/2 =
〈
F−1

6 (C2ρ ′)�(C2ρ ′)ρ ′1/2
〉

2
〈
F−1

6 (C2ρ ′)
〉 = const, (31)

as can be verified from Eq. (15) on ρ0. It should be noted that
though the transformation allows for any value of C, different
values of C do not generate new solutions. Rather they describe
the generation of the new solutions using the translational
invariance in time: The IS remain the solutions if t is changed
to t plus a constant. For example, for C = 1, one recovers the
previous solution with p1/2(0) such that tc = 1.

The described transformation is useful for studying the
behavior of small perturbations of the IS. There one can
choose C = 1/tc, so τ (t) = (γ − 1) [S(0) − S(t)] /(2N ) is
proportional to the change of the entropy. In the new variables
the eigenmodes of the linearized operator that describes the
behavior of small perturbations near the IS behave exponen-
tially in time. Thus the behavior of the modes is a power law
in physical time.

Clearly, τ (t) can also be taken as the number of collisions
Nc(t). Thus the IS are time independent in the rescaled fields
when considered as a function of the number of collisions that
occurred since the initial moment of time.

V. IS DEPENDING ON ONE COORDINATE

The density field in the IS obeys the nonlinear PDE (17) [or
(15)] that must be solved either with von Neumann boundary
conditions (that describe the demand that the heat does not flow
through the boundary) or with periodic boundary conditions.
It is not possible to find the solution without specifying the
form of f (K) except for the case where the density depends
on one spatial coordinate x only. In this case Eq. (17) describes
one-dimensional mechanical motion where f (K) is the force

(cf. the radially symmetric solution provided in [6]),

d2K

dx2
= −∂U [ρ(K)]

∂K
= −ρ5/2∂ρU

F̃4(ρ)
[ρ = ρ(K)];

∂ρU = − F̃4(ρ)f (ρ)

ρ5/2
= F̃4(ρ)F̃ (ρ)

ρ5/2
− F̃4(ρ)〈F̃ (ρ)〉

ρ3/2F1(ρ)〈ρ/F1(ρ)〉 .
(32)

One has

U =
∫

F̃4(ρ)F̃ (ρ)

ρ5/2
dρ − 〈F̃ (ρ)〉

〈ρ/F1(ρ)〉
∫

F̃4(ρ)dρ

ρ3/2F1(ρ)
. (33)

It follows that the “energy”

E ≡ 1

2

(
dK

dx

)2

+ U (ρ[K(x)]) = F̃ 2
4

2ρ5

(
dρ

dx

)2

+ U [ρ(x)]

is conserved. This can be verified directly from the one-
dimensional version of Eq. (15),

d

dx

[
F̃4(ρ)

ρ5/2

dρ

dx

]
= f (ρ). (34)

The resulting solution for ρ(x) is implicitly given by

x =
∫

F̃4(ρ)dρ

ρ5/2
√

2[E − U (ρ)]
, (35)

where the constant of integration and E should be determined
using the boundary conditions. The physical significance of
solutions depending on one coordinate only is obtained by
considering the evolution of the fluid in a long channel.
Provided the channel is sufficiently narrow in the transverse
direction it will remain macroscopically uniform in those
directions due to the stabilizing action of the heat conduction
that is dominant at small scales (the same mechanism makes
the uniform cooling state stable for small systems). Thus for
long channels the fluid-mechanical fields depend on t and x

only. The solutions to Eq. (15) are natural candidates for the
steady state of the system.
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To perform the study of the IS and their role in the evolution
of the system, it is necessary to have explicit expressions for the
coefficients of the fluid mechanics of the fluid. The coefficients
are known in the dilute limit, while in the case ρσ 3 ∼ 1, one
has to use certain approximations. Since the understanding is
lacking in the case of the dilute gas already, then below we
study if the IS provide the long-time state of the system in
the case of the dilute granular gas in the long channel. Later
we use this result to demonstrate the stability of the IS in the
dense case, too.

In the case of the dilute gas one can write down the IS
and the fluid-mechanical equations explicitly. While the ISs
form is known in the case of the gas [5,6], its stability is only
known for channels of moderate length L � lcr/

√
1 − r that

correspond to the fast sound limit, see Ref. [5] and below.
Here πlcr is the instability length that separates large systems
where the uniform cooling state is unstable from the small ones
where it is stable. In this work we settle positively the question
whether the IS present the state of the gas at large times when
L is large but not necessarily bounded by lcr/

√
1 − r .

In the limit of small density we have F̃4 ≈ κ0/(γ − 1),
where κ0 is the thermal conductivity of the dilute gas, F̃ ≈
�ρ1/2/(γ − 1), where � = �(ρ = 0). We find

U = − κ0�

(γ − 1)2ρ
+ 2κ0�〈ρ1/2〉

3(γ − 1)2ρ3/2
,

(36)

K(ρ) = 2κ0

3(γ − 1)ρ3/2
, ρ1/2 =

[
2κ0

3K(γ − 1)

]1/3

.

We find that Eq. (32) becomes

2κ0

3(γ − 1)

d2

dx2

1

ρ3/2
= ρ5/2∂ρU

F̃4(ρ)
= �[ρ1/2 − 〈ρ1/2〉]

(γ − 1)
.

The solution to this equation was found in Ref. [5], where the
consideration relied on the use of the mass coordinate frame.
In the next section we describe the qualitative structure of
the solution in the real space which will serve the basis for
the study of the dense case. The quantitative description that
reproduces the results of Ref. [5] together with further details
relevant to this work is performed in Sec. VIII.

VI. QUALITATIVE STRUCTURE OF THE IS IN
ONE-DIMENSIONAL CASE

In this section we describe qualitatively the IS in the dilute
one-dimensional case. Note that the study is quite similar to
the consideration of soliton solutions in nonlinear physics. We
use that

d2K

dx2
= − ∂U

∂K
,

U =
(

2

3

)1/3
�κ

1/3
0

(γ − 1)4/3

[
K〈K−1/3〉 − 3K2/3

2

]
is identical in form to the Newton law of motion, where
x is “time” and K(x) is the “coordinate.” We consider
the behavior of U (K) in the physically allowed domain of
variation of K which is K � 0. The potential has a minimum at

K0 = 〈K−1/3〉−3 which is negative, U (K0) < 0. We have

U ≈ −
(

2

3

)1/3
�κ

1/3
0

(γ − 1)4/3

3K2/3

2
, 0 < K � K0;

U ≈
(

2

3

)1/3
�κ

1/3
0

(γ − 1)4/3
K〈K−1/3〉, K0 � K.

The uniformly cooling solution corresponds to the particle
fixed in the minimum of the potential K(x) ≡ K0 = 〈K〉. The
IS result from considering the finite periodic motion of the
particle between the smaller and larger solutions K1(E) and
K2(E) of the equation E = U [K], where U (K0) < E < 0,

x =
∫ K2(E)

K

dK ′
√

2[E − U (K ′)]
,

where the origin is chosen so the minimum of the density ρ,
which corresponds to the maximum K2(E) of K , is at x = 0.
When E is slightly larger than U (K0) the motion is harmonic,
so its period is finite. When E increases, the period of the
motion increases, becoming infinite when E tends to zero from
below. The period becomes infinite because K0 ∝ 〈ρ1/2〉−3 ∝
L3/2 diverges in the thermodynamic limit; see the computation
in the next sections. Since K2(E = 0) = 27K0/8, then the
period’s divergence occurs due to the square-root divergence
of the integral in Eq. (59) at large K .

The physical solution is determined from the condition that
half the period of the periodic motion is equal to the size of
the channel L,

L =
∫ K2(E)

K1(E)

dK ′
√

2[E − U (K ′)]
.

Here we consider the no-heat-flux boundary conditions (b.c.)
within which ρ ′(x) vanishes at the ends of the channel,
implying that K ′(x) is also zero there (thus the ends of the
channel correspond to the turning points in the solution). The
solutions obtained by considering the full period of the motion
(or any integer number of half-periods) obey the b.c., too, but
they are not stable, see Ref. [5] and below.

Thus the IS exists for the channel length in the interval
Lmin < L < ∞, where Lmin corresponds to the finite period
of the harmonic motion near the minimum of the oscillator
(Lmin = πlcr, see Ref. [5] and the next section). The density
grows monotonously from its minimum at x = 0 to the maxi-
mum at x = L. In the thermodynamic limit the minimum tends
to zero (corresponding to divergence of K2[E = 0]), while the
maximum tends to infinity (corresponding to K1[E = 0] = 0).
In particular, the dilute gas assumption breaks down in the
thermodynamic limit. The resulting changes in the solution
and omitted details are provided in the following sections.

VII. IS EQUATIONS IN THE DILUTE GAS LIMIT

In the limit of small density the fluid-mechanical equations
take a simpler form, where the viscosity coefficients and the
thermal conductivity become proportional to

√
T , while �

052210-8



INHOMOGENEOUS QUASISTATIONARY STATE OF DENSE . . . PHYSICAL REVIEW E 89, 052210 (2014)

becomes a constant. Using Eq. (10), we find

∂ρ

∂t
+ ∇ · [ρv] = 0,

ρ

[
∂vi

∂t
+ (v · ∇)vi

]
= −∇ip + ν

∂

∂xk

[√
p

ρ

(
∂vi

∂xk

+ ∂vk

∂xi

− 2

d
δik∇ · v

)]
, (37)

(
∂

∂t
+ v · ∇

)
p = −γp∇ · v − �ρ1/2p3/2 + 2κ0

3
∇2

(
p

ρ

)3/2

+ (γ − 1)ν
√

p

ρ

[
∂vi

∂xk

∂vi

∂xk

+ ∂vk

∂xi

∂vi

∂xk

− 2

d
(∇ · v)2

]
,

where � = 2π (d−1)/2(1 − r2)σd−1/[d �(d/2)] (see, e.g.,
Ref. [24]), �(. . . ) is the gamma function, ν = (2σ

√
π )−1 and

κ0 = 4ν in d = 2, and ν = 5(4σ 2√π )−1 and κ0 = 5ν/2 in
d = 3 [1].

Equations (37) differ from the fluid mechanics of a dilute
gas of elastically colliding spheres only by the presence of
the inelastic loss term −�ρ1/2p3/2 which is proportional to
the average energy loss per collision, ∼(1 − r2)p, and to the
collision rate, ∼ρ1/2p1/2 (note that p = ρT , where T is the
temperature). As discussed above, the inequality 1 − r � 1
guarantees that the characteristic cooling time 1/�ρ1/2p1/2

inferred from the equation on pressure is much larger than the
mean free time 1/(σd−1ρ1/2p1/2).

As already mentioned, the system of Eqs. (37) has well-
known homogeneous cooling solutions [11]. These solutions
are described by Eqs. (21) with the cooling time tc provided
by the reduced expression

tc ≡ 2

�ρ
1/2
0 p1/2(0)

. (38)

The solutions are known to be unstable with respect to the
sinusoidal perturbations where wave vector k is smaller than
1/lcr and the critical length lcr is given by

lcr =
√

2κ0

�ρ2
0

, (39)

see Refs. [12–15]. Such wave vectors exist when the system
size exceeds πlcr for no-flux b.c. and when the system
size exceeds 2πlcr for periodic boundary conditions (p.b.c.).
Small perturbations with large wavelength get enhanced and
particles start to form clusters (the rotational modes that
behave differently are not relevant for the present work).
Correspondingly this instability is often called the clustering
instability.

The length lcr also has a special physical meaning with
respect to the IS, see the previous section. For system size
below πlcr all the IS are homogenous, so the uniformly cooling
states are the only states of the macroscopic rest of the system.
In contrast, for larger system sizes, while the uniformly cooling
state continues to hold, inhomogeneous solutions appear as
well [5]. For no-flux b.c. the inhomogeneous solutions appear
at system sizes greater than πlcr, while for the p.b.c. they appear
at system sizes greater than 2πlcr. This “coincidence” makes it
natural to suggest that at these system sizes the inhomogeneous
solutions become the attractors for the system’s evolution
in time instead of the uniform cooling states holding for
subcritical systems. This was proved in the limit of fast
sound [5].

Finally, we present the equation on the density in the IS in
the dilute limit. Setting F4 = κ0 in Eq. (15) one finds

ρ
1/2
0 − 〈

ρ
1/2
0

〉 − 2κ0

3�
∇2ρ

−3/2
0 = 0, (40)

while the pressure is given by Eq. (14) with 1/tc =
�〈ρ1/2

0 〉p1/2(0)/2. This equation and the numerical inhomo-
geneous solution for the spherically symmetric case were
presented in [6]. The Cauchy-Schwarz inequality implies
〈ρ1/2

0 〉 � 〈ρ0〉1/2, so the energy decay for the inhomogeneous
solutions is always slower than the one of the uniformly
cooling state, see Eq. (21).

The complete description of the solutions to the nonlinear
PDE (40) is likely to be available only numerically. Thus, even
in the limit of the dilute gas of inelastic hard spheres, neither
the complete description of the IS nor the understanding of
their relevance to the evolution of the system are available.
The case that allows progress is the case of fields depending
on only one spatial coordinate, to which we now turn. Though
the solutions that we describe below were obtained previously
[5,6], their consideration is necessary here. This is because
the thermodynamic limit was never considered in detail and
because these solutions are needed to consider the dense IS.

VIII. IS DEPENDING ON ONE COORDINATE FOR
DILUTE GRANULAR GAS

We now concentrate on the study of the solutions to Eq. (40)
that depend only on the coordinate x and obey

2κ0

3�

d2

dx2
ρ

−3/2
0 = ρ

1/2
0 − 〈

ρ
1/2
0

〉
. (41)

This equation is relevant for long channels with length L,
so it is considered in the interval (0,L). We consider two
kinds of boundary conditions, where the solutions are slightly
different—the p.b.c. and the no-heat-flux boundary condition.
For the considered solution with the spatially uniform pressure
the condition of no heat flux gives the condition of vanishing
derivative of ρ0 at the boundary. It is convenient to measure
the density in the units of average density ρ0 and the distance
in the units of lcr. We find that the rescaled density ρ ′ obeys in
the new coordinate x ′ the following equation:

ρ ′1/2 − 〈ρ ′1/2〉′ − 1

3

d2

dx2
ρ ′−3/2 = 0,

(42)

〈ρ ′〉′ ≡ 1

L

∫ L

0
ρ ′(x ′)dx ′ = 1,
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where the last condition follows from 〈ρ ′〉 = 1 and uniformity
of ρ ′ in the transversal directions. The rescaled length L =
L/lcr of the channel is

L = L

lcr
=

{
(
√

π/2)(1 − r2)1/2ρ0σL in 2D,√
16π/75 (1 − r2)1/2ρ0σ

2L in 3D.
(43)

Equation (42) and the solution to it were obtained in Ref. [5].
Here we reproduce the solution with the purpose of discussing
its thermodynamic limit. It is convenient to pass to the mass
coordinate

m(x ′) ≡
∫ x ′

0
ρ(x ′′)dx ′′, x ′(m) =

∫ m

0

dm′

ρ ′(m′)
, (44)

where the solution’s interval of definition is the same interval
(0,L) since in the rescaled variables, the rescaled length of the
channel L coincides with the rescaled total mass of the gas,∫ L

0 ρ ′(x ′) dx ′, cf. Eq. (42). In the mass coordinate frame the
condition that the average density is 1, given by equation (42),
becomes the condition that the “average length” equals 1,

1

L

∫ L

0

dm

ρ ′(m)
=

∫ L

0

dx

L = 1. (45)

We obtain the following equation for w ≡ ρ ′−1/2:

d2w

dm2
= w − w2〈w〉m, (46)

where the angular brackets with the subscript designate the
“spatial” average over m. Equation (46) is defined on the
interval 0 < m < L, at the ends of which we demand a
zero first derivative of w, which corresponds to the no-flux
boundary conditions. To get rid of the (a priori unknown)
factor 〈w〉m, we introduce a new variable,

f (m) = 〈w〉m w(m), (47)

and obtain

d2f

dm2
= f − f 2. (48)

Integrating the above equation from 0 to L, we find that, for
both p.b.c. and no-flux b.c., the averages of f and f 2 coincide.
Since 〈f 〉m = 〈w〉2

m and 〈f 2〉m = 〈w〉2
m 〈w2〉m we conclude

that the condition of conservation of “average length” 〈w2〉m =
1 is obeyed automatically once the b.c. are imposed on f . After
f is found, one can restore w via

w = f√〈f 〉m
. (49)

Equation (48) has appeared in numerous applications, and its
solutions are well known. We consider f as a coordinate of
a Newtonian particle of unit mass, moving in the potential
U (f ) = f 3/3 − f 2/2. The “total energy”

E = 1

2

(
df

dm

)2

+ f 3

3
− f 2

2
. (50)

is conserved. The boundary conditions can be obeyed only by
bounded solutions with −1/6 � E � 0, where we can write

f 3

3
− f 2

2
− E = (f − a[E])(f − b[E])(f − c[E])

3
, (51)

where a[E] > b[E] > c[E] are the real roots of the cubic
polynomial that give the turning points of the trajectory
where the velocity vanishes. Here we stressed that these roots
are functions of the “energy” E. The no-flux b.c. condition
demands that the “initial coordinate” f (0) and the “final
coordinate” f (L) are either a or b (since c < 0 these are
the only physically meaningful turning points). The solutions
obeying the p.b.c. can be obtained by gluing together the
solutions with no-flux b.c., so f (0) = f (L) is either a or b.
Thus we first consider the solutions obeying the no-flux b.c. A
bounded solution of Eq. (48) can be written as

m(f ) =
∫ a(E)

f

df ′√
2E − 2f ′3/3 + f ′2 . (52)

This solution obeys m[a(E)] = 0 and m′[a(E)] = ∞ so
the above solution satisfies the correct boundary condition
at m = 0,

df

dm
|m=0 = 0. (53)

This solution is constructed so f (m) reaches its maximal value
a(E) at m = 0. The first positive zero m1 of f ′(m) determined
by (52) is given by

m1 =
∫ a(E)

b(E)

df ′√
2E − 2f ′3/3 + f ′2 . (54)

In particular, if we consider the “fundamental” solution with
no zeros of f ′(m) at 0 < m < L, then the “energy” E(L) of
the solution corresponding to length L is determined from

L =
∫ a[E(L)]

b[E(L)]

df√
2E(L) − 2f 3/3 + f 2

, (55)

=
√

6

a[E(L)] − c[E(L)]
K

(√
a[E(L)] − b[E(L)]

a[E(L)] − c[E(L)]

)
,

(56)

where the value of the integral and the definition of the
complete elliptic integral K (x) can be found in Ref. [25].
The choice of the initial condition above corresponds to f (m)
that monotonously decreases from f (0) = a[E(L)] to f (L) =
b[E(L)]. The solution f̃ (m) for which f (m) monotonously
grows from f (0) = b[E(L)] to f (L) = a[E(L)] can be
obtained as f (L − m), which gives

L − m(f̃ ) =
∫ a[E(L)]

f̃

df ′√
2E(L) − 2f ′3/3 + f ′2 . (57)

Using Eq. (55) we may also write

m(f̃ ) = L −
∫ a[E(L)]

f̃

df ′√
2E(L) − 2f ′3/3 + f ′2

=
∫ f̃

b[E(L)]

df ′√
2E(L) − 2f ′3/3 + f ′2 . (58)

The above solution, of course, could also be obtained directly.
The usefulness of this solution is that it being glued with the
previous solution it gives the fundamental solution for the
p.b.c. This solution is also as relevant for the evolution toward
the IS as the previous solution.
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Returning to Eq. (52), using the formula from p. 234 of
Ref. [25] and the definition of the elliptic integral, we find√

a − c

6
m =

∫ arcsin
√

(a−f )/(a−b)

0

dα√
1 − (a−b) sin2 α

a−c

.

Next, using the definitions from p. 924 of Ref. [25], we find

f (m) = c + (a − c) dn2

(√
a − c

6
m,

√
a − b

a − c

)
, (59)

where dn is one of the Jacobi elliptic functions. To write the
solution for w(m) we use the value of the integral from p. 644
of Ref. [25],

〈f 〉m = c[E(L)] + (a[E(L)] − c[E(L)])
E(

√
s[E(L)])

K (
√

s[E(L)])

≡ C2(L), s[E(L)] ≡ a[E(L)] − b[E(L)]

a[E(L)] − c[E(L)]
, (60)

where E(x) is the complete elliptic integral of the second kind.
The function C(L) has a very important role for the IS because
it determines the decay rate of the pressure for these solutions.
We have〈

ρ
1/2
0

〉 = ρ̄1/2 1

L

∫ L

0
ρ ′1/2(x ′)dx ′ = ρ

1/2
0 〈w〉m

= ρ
1/2
0 〈f 〉1/2

m = ρ
1/2
0 C(L). (61)

It follows that the pressure for the IS is given by

p(t) = p(0)

[1 + t/tc]2
, tc ≡ 2

C(L)�ρ
1/2
0 p1/2(0)

.

Thus C(L) determines the deviations of the decay time from
the decay time of the uniformly cooling state, and as we
saw one must have C(L) � 1 with equality holding only for
uniformly cooling state. Finally, using Eqs. (49) and (52), we
write the solution for ρ ′(m) as follows:

1

ρ ′(m)1/2
=

c + (a − c) dn2
(√

a−c
6 m,

√
a−b
a−c

)
C(L)

. (62)

We now consider solutions derivable from the fundamental
solution above and the solutions’ limits for different system
sizes.

A. Periodic boundary conditions and solutions
with multiple reflections

We constructed above the solution that is monotonic in
(0,L). We called this solution “fundamental” as the rest of
the solutions can be obtained from it by gluing it to the
reflected solution. If we reflect the above solution and glue it
with w(2L − m) we get the fundamental periodic solution for
the system with length 2L. Further application of reflections
and gluing produce solutions with multiple reflections at the
turning points. Numerical simulations indicate the the solution
with the minimal possible number of the turning points is the
one which is stable, cf. Ref. [5]. Thus for no-flux boundary
conditions the solution that is stable is the fundamental solution
described above, while for the p.b.c. the stable solution is the
fundamental periodic solution described above.

B. The critical lower length for the existence of the IS

Clearly for any system sizeL there are solutions with f = 1
where the particle stands indefinitely at the potential minimum
at f = 1. This is the uniformly cooling state described above.
The inhomogeneous solutions correspond to the deviation of
the particle from the minimum of the potential and these
solutions have a minimal period corresponding to the harmonic
expansion of the potential near the minimum. The existence of
this minimal period signifies that inhomogeneous solutions
exist only for L larger than a certain critical length. This
length is fixed by considering E = −1/6 + δE, 0 < δE � 1.
In this limit, the effective “Newtonian” particle is a harmonic
oscillator with U (f ) ≈ −1/6 + (f − 1)2/2. It follows that
for no-flux b.c. the fundamental solution is f (m) = 1 +√

2δE cos m and w(m) = 1 + √
2δE cos m, where we noticed

〈f 〉m = 1. These solutions exist only above the critical length
L = π and are a small-amplitude sinusoidal modulation of
the uniformly cooling state w(m) = 1. For the p.b.c. the
solution has the same form and it exists above the critical
length L = 2π . The expressions for E(L) can be obtained by
considering the usual corrections to the independence of the
period of the amplitude.

The sinusoidal solutions for slightly supercritical systems
described above were checked numerically to provide the
universal state of the gas after a long time of evolution. The
description of the numerical results is provided later.

C. The IS in the thermodynamic limit

Our main interest here is the solution for large L. At L � 1
the correspondence between the energy E and length L is
|E| ≈ 72 exp[−2L]. This can be found by noting that at small
|E| we have a ≈ 3/2, b ≈ √

2|E|, and c ≈ −√
2|E|. Using

that at z close to unity

K(z) = − 1
2 ln(1 − z2) + ln 4 + . . . , (63)

where . . . vanish at z = 1, we find

K

(√
a − b

a − c

)
≈ −1

2
ln

(
b − c

a − c

)
+ ln 4

≈ −1

4
ln |E| + 1

4
ln 72. (64)

It follows from Eq. (56) that the relation between E and L at
large system size is |E| = 72 exp[−2L]. Note the difference
of the factor of 2 from Ref. [5]: It arises due to the use of
no-flux, rather than periodic, boundary conditions; see above.

Thus the thermodynamic limit of L → ∞ corresponds to
|E| → 0. To study this limit we consider the solution

m(f ) =
∫ a(E)

f

df ′√
2E(L) − 2f ′3/3 + f ′2 . (65)

at |E| → 0. In the lowest-order approximation we can set
E = 0. We have

m(f ) =
∫ 3/2

f

df ′

f ′√1 − 2f ′/3
= ln

(
1 + √

1 − 2f/3

1 − √
1 − 2f/3

)
.

(66)
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Inverting the above relation we obtain

f = 3

2 cosh2 (m/2)
, L − m � 1, (67)

where the condition follows from negligibility of the term
E in the denominator of Eq. (65). Due to L � 1 the above
asymptotic form covers almost all the interval (0,L); however,
there is a vicinity of m = L that is not described by Eq. (67).
This approximation used to derive Eq. (67) becomes invalid
as f approaches zero (f reaches b which is small), which is
signalled by the divergence of m(f )in Eq. (66) at f = 0. To
study the vicinity of f = 0 we write

m(f ) = L −
∫ f

b(E)

df ′√
2E(L) − 2f ′3/3 + f ′2 . (68)

At |E| → 0 we have b(E) ≈ √
2|E| → 0, so considering

b(E) � f � 1 we have

L − m(f ) ≈
∫ f

√
2|E|

df ′√
f ′2 − 2|E(L)|

= cosh−1 f√
2|E| . (69)

Using
√

2|E| ≈ 12 exp[−L] we find

f ≈ 12e−L cosh(L − m), m � 1. (70)

where the condition m � 1 corresponds to f � 1. It is
immediate from the expressions above that 〈f 〉 is determined
by m � L where one can use Eq. (67),

C2(L) = 〈f 〉 ≈ 3

L , (71)

which can also be obtained directly by expanding Eq. (60) at
small |E|. We find that in the limit L � 1, the pressure obeys

p(t) = p(0)

[1 + t/tc]2
, tc ≡ 2

√
L√

3lcr�ρ
1/2
0 p1/2(0)

.

We observe that the decay time grows with the system size
in contrast to the uniformly cooling state having decay time
which is local. This behavior can be traced to the power
law ρ(x) ∝ (L − x)−1 that holds in a wide region of scales.
This law would diverge in a nonintegrable way at x = L.
Thus the integral for the mass

∫
ρ(x)dx is determined by the

right cutoff of (L − x)−1 near x = L. In contrast
∫

ρ1/2dx,
which determines the decay time, converges at x = L, so it is
determined by the left cutoff of the (L − x)−1 law producing∫

ρ1/2dx ∼ L1/2, which corresponds to 〈ρ1/2〉 ∝ L−1/2.
Thus the IS are solutions where the system acts as a single

whole so local measurements would be affected by the global
structure of the solution. For w we find

w ≈
√

3L
2

1

cosh2(m/2)
, L − m � 1,

(72)
w ≈

√
48Le−L cosh(L − m), m � 1.

The two of the above asymptotic expressions overlap in the
wide interval and together they cover (0,L) completely. For

the density ρ ′ = w−2 we have

ρ ′ ≈ 4

3L cosh4(m/2), L − m � 1, (73)

ρ ′ ≈ e2L

48L cosh2(L − m)
, m � 1. (74)

In the joint asymptotic region the density grows exponentially
according to ρ ′ ≈ exp[2m]/12L.

In the thermodynamic limit L � 1 the solution for ρ ′ is
determined by Eq. (73). Indeed, the mass coordinate gives
directly the mass of the gas described by the corresponding
asymptotic expression. The condition L − m � 1 signifies
that, in the thermodynamic limit, a fixed, arbitrarily close to
unity, fraction y of the mass of the gas that obeysL(1 − y) � 1
is described by the asymptotic expression (73). To write the
corresponding expressions in real space we use the inverse
transformation x ′(m) from Eq. (44). We find

x ′ = 3L
2

∫ m/2

0

dm′

cosh4 m′ = 3L
2

[
tanh

(
m

2

)
− tanh3

(
m
2

)
3

]
.

Thus w(x ′) is determined implicitly by

2x ′

3L = tanh
(m

2

)
− tanh3

(
m
2

)
3

, (75)

2w√
3L

≈ 1 − tanh2
(m

2

)
. (76)

This formula can be made explicit using the substitution
tanh(m/2) = 2 sin φ. This solves explicitly the cubic polyno-
mial in the first line, changing it into x ′/L = sin 3φ, so the
distribution of mass in space obeys

tanh

[
m(x ′)

2

]
= 2 sin

(
arcsin(x/L)

3

)
, (77)

provided L − m(x ′) � 1. We obtain

m(x ′) ≈ 4x ′

3L , x � L,

m(x ′) ≈ 1

2
ln

(
6L

L − x ′

)
, exp[−2L] � 1 − x ′

L � 1, (78)

where we noted that the condition L − m(x ′) � 1 gives L +
ln[1 − x ′/L]/2 � 1 or 1 − x ′/L � exp[−2L]. It follows that
the mass of the system concentrates in the neighborhood of L,
defined by 1 − x ′/L � 1 (the mass in the region (0,L[1 − ε])
is proportional to ln 1/ε, which is negligible in comparison
with the total mass L if L � ln 1/ε, cf. below). Noting that
w/

√
3L + 1/2 = cos 2φ, we obtain in physical variables

ρ(x) = 4ρ0lcr

3L

[
2 cos

[
2

3
arcsin

( x

L

)]
− 1

]−2

,

(79)

1 − x

L
� exp

[
−2L

lcr

]
,

where the condition is equivalent to L − m(x ′) � 1. This
formula is equivalent to the formula provided in Ref. [5]. Note
that, as explained above, for large-enough L one can extend
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the above expression to such x ′ that the mass fraction m(x ′)/L
is close to unity and the expression describes the distribution
of the major part of the mass of the gas. In fact, Eq. (79) covers
almost all gas length (0,L), excluding the exponentially small
vicinity of x = L. Performing the expansion at x/L � 1 or
x/L ≈ 1 or directly differentiating m(x ′), one obtains

ρ(x) ≈ 4ρ0lcr

3L
, x � L/lcr,

ρ(x) ≈ ρ0lcr

2 (L − x)
, exp

[
−2L

lcr

]
� 1 − x

L
� 1.

It is illuminating to write the results in the form

ρ(x) = 4ρ0lcr

3L

[
2 cos

[
2

3
arcsin

( x

L

)]
− 1

]−2

, ρ � ρmax,

ρ(x) ≈ ρ0lcr

2 (L − x)
,

ρ0lcr

L
� ρ(x) � ρmax. (80)

This form shows clearly the behavior of the density. The
density field has large variation in space, changing from its
value 4ρ0lcr/3L in the dilute phase at x � L to ρ ∼ ρmax

in the vicinity of x = L. The interpolation between the two
regions follows a power law [L − x]−1.

The first of the equations above shows that the density
has self-similar scaling in L: One has ρ(x) = F̃ (x/L)/L. It
is nonobvious how this form can describe mass that grows
linearly with L (we keep ρ0 constant) since

∫ L
0 F̃ (x/L)dx/L

would give an L-independent quantity. The resolution to this
apparent paradox is that Eq. (79) applies roughly up to x =
L − L exp[−2L] and the integral would diverge at x = L,∫ L−L exp[−2L]

0

4dx ′

3L

[
2 cos

[
2

3
arcsin

(
x ′

L

)]
− 1

]−2

∼
∫ L−L exp[−2L]

0

dx ′

2L − 2x ′ ∼ 1

2
ln

2L
2L exp[−2L]

∼ L.

We now show that in fact the domain ρ � ρmax contains the
larger part of the system’s mass, while the neighborhood of
the maximum defined by ρ ∼ ρmax contains mass of order
one. This can be seen from Eq. (74), which shows that
the density decays away from the maximum exponentially.
Thus ρ ′(m) � ρ ′

max when L − m � 1, say, ρ ′ [m = L − 3] ≈
4 exp[−6]ρmax � ρmax. Since the difference of the mass
coordinates measures the mass in physical space, then we
conclude that the mass contained in the region ρ ∼ ρmax is of
order 1. This mass is much smaller than the total “mass” L in
the considered limit.

Finally, to describe the whole interval (0,L), we use
Eq. (74), employing the relation between x ′ and m in the
following form:

L − x ′ =
∫ L

m

dm′

ρ(m′)
. (81)

Confining the above expression to m � 1 we may use Eq. (74)
to find

L − x ′ = 48Le−2L
[L − m

2
+ sinh[2(L − m)]

4

]
. (82)

The above expression together with Eq. (74) determine
implicitly the profile of the density in the region not covered

by the previous asymptotic expressions. In the regions m � 1
and L − m � 1 the above equation reproduces the power-law
behavior of the density. In the region L − m � 1, not captured
by the previous results, we find

L − x = 48Le−2L(L − m). (83)

Using the above equation and Eq. (74) we find

ρ ≈ ρmax

cosh2[ρmax(L − x)]
, ρmax ≡ e2L

48L ,

ρmax(L − x) � 1.

Keeping above the cosh(L − m) term and not expanding it
at L − m � 1 is a matter of convenience. The above form
makes it obvious that the density has a maximum whose width
is inverse to the maximum.

To summarize, in the thermodynamic limit one can use
Eq. (79) in the major part of the system. This expression,
however, would diverge at x = L in a nonintegrable way, and
it needs to be cut off at the maximal density ρmax. The latter
grows exponentially with the system size, though the mass
contained in the region ρ ∼ ρmax is of order 1.

The indefinite growth of ρmax with the system size
shows that the consistent consideration of the thermodynamic
limit cannot be made within the frame of the dilute gas
approximation, even if the condition ρ0σ

3 � 1 is satisfied.
The consideration demands studying the IS of the dense
fluids introduced in the previous sections and their stability.
Nevertheless, the first step to understanding the stability of the
IS is to study that in the dilute gas approximation. Then, as
described in the Introduction, this can be used to derive the
stability of the dense IS. Thus we now discuss the analysis
of the question whether the IS constitute the final state of the
fluid in the dilute gas approximation.

IX. THE IS AS THE UNIVERSAL LONG-TIME
LIMIT OF EVOLUTION

It was shown in Ref. [5] that the IS is the attractor for the
long-time evolution of the gas in the limit of fast sound. Within
this limit the sound travel time through the system ts ∼ L/

√
T

is assumed to be much smaller than the characteristic time
scale of the cooling tc ∼ 1/�ρ0

√
T , so L � 1/�ρ0. Since

1/�ρ0 ∼ lcr/
√

1 − r2, then the fast sound limit is the case
L � lcr/

√
1 − r2. Thus the limit of the fast sound allows

nontrivial values of L � πlcr only for 1/
√

1 − r2 � 1, which
is a more restrictive inequality than the 1 − r2 � 1 needed for
the validity of the hydrodynamic approach as such. Due to the
assumption ts � tc, the pressure becomes uniform throughout
the gas faster than any effects due to inelasticity take place.
Thus the latter effects can be analyzed assuming they develop
on the background of a uniform pressure. Clearly this limit
does not allow us to address the thermodynamic limit L → ∞.

Thus we study the system behavior in the thermodynamic
limit, which is probably the most important physical question
about the considered system. As we argued, for long channels
the macroscopic fields depend on only one spatial coordinate
x. The evolution of these fields is then described by the
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corresponding reduction of the system (37) that reads

∂ρ

∂t
+ ∂(ρv)

∂x
= 0, (84)

ρ

(
∂v

∂t
+ v

∂v

∂x

)
= −∂p

∂x
+ ν0

∂

∂x

(√
p

ρ

∂v

∂x

)
, (85)

∂p

∂t
+ v

∂p

∂x
= −γp

∂v

∂x
− �ρ1/2p3/2 + κ0

∂

∂x

[√
p

ρ

∂

∂x

(
p

ρ

)]

+ ν0(γ − 1)
√

p

ρ

(
∂v

∂x

)2

. (86)

where ν0 = 4ν/3 in d = 3 and ν0 = ν in d = 2. The system is
considered for 0 < x < L where L ≡ L/lcr is the channel
length L measured in the units of lcr. The system should
be supplied with the appropriate boundary condition. We
will assume rigid, insulating walls when both particles and
heat flux vanish, v(x = 0) = v(x = L) = 0 and ∂xT (x = 0) =
∂xT (x = L) = 0, where the ideal gas relation T = p/ρ should
be used.

The above system needs to be solved at the average
value of the three-dimensional density equal to 1. Since the
density is uniform in transversal directions, then the average
one-dimensional density is also 1,

1

L

∫ L

0
ρ(x)dx = 1. (87)

This equation is a constraint on the solutions. The thermo-
dynamic limit corresponds to considering the limit L → ∞
at average one-dimensional density fixed at 1. We study if at
large times the solutions to the above system tend to the IS,

ρ = ρ0

(
x

lcr

)
, v = 0, p(t) = p(0)[

1 + C(L)t/t0
c

]2 , (88)

where t0
c is the decay time of the uniformly cooling states

and ρ0(x) is the IS’s density profile. The convergence to the
IS would signify that for the supercritical systems the density
profile saturates at large times at an inhomogeneous profile,

lim
t→∞ ρ(x,t) = ρ0(x). (89)

For the pressure we would like to check the existence of the
following limit:

lim
t→∞ p(x,t)

[
1 + C(L)t/t0

c

]2 = p0, (90)

with some effective constant p0. There is no need to check
separately the corresponding convergence of the velocity as it
is implied by the relations above.

Below we measure distances in the units of lcr and times
in the units of t0

c where instead of p(0) one uses p0. Thus we
assume that the IS is the attractor for the system evolution, so
there is a certain value of p0, and we check the self-consistency
of this assumption. We also consider dimensionless fields and
measure density in the units of ρ0, velocity in the units of lcr/t0

c ,
and pressure in the units of p0. Keeping with no ambiguity the
original notation for the fields and the coordinates we find
that the following dimensionless form of the system (84)–(86)

holds in d = 3,

∂ρ

∂t
+ ∂(ρv)

∂x
= 0,

ε1ρ

[
∂v

∂t
+ v

∂v

∂x

]
= −∂p

∂x
+ ε2

∂

∂x

[√
p

ρ

(
∂v

∂x

)]
,

∂p

∂t
+ v

∂p

∂x
= −γp

∂v

∂x
− 2ρ1/2p3/2 + 2

3

∂2

∂x2

(
p

ρ

)3/2

+ ε2(γ − 1)
√

p

ρ

(
∂v

∂x

)2

. (91)

where ε1 = κ0�/2 and ε2 = 2ν�/3. Note that ε1 ∼ ε2 ∼ 1 −
r2 � 1.

It is more convenient to study the solution ρ0 and its
attracting properties by using the mass coordinate frame. This
is defined by the passage from coordinates [x,t] to [m(x,t),t]
where

m(x,t) =
∫ x

0
ρ(x ′,t)dx ′, ∂tm + v∂xm = 0, (92)

where we used in the last equation that the gas velocity
vanishes at the boundary v(x = 0,t) ≡ 0 [of course, also
v(x = L,t) ≡ 0]. It follows from the above that the inverse
transformation x(m,t) is a Lagrangian coordinate,

∂x(m,t)

∂t
= v[x(m,t),t], (93)

which means simply that the end point of the interval
[0,x(m,t)] containing a given mass m moves with the fluid. The
equations take a somewhat simpler form in [m,t] coordinates,

∂

∂t

1

ρ
= ∂v

∂m
, (94)

ε1
∂v

∂t
= − ∂p

∂m
+ ε2

∂

∂m

(√
pρ

∂v

∂m

)
, (95)

∂p

∂t
= −γpρ

∂v

∂m
− 2ρ1/2p3/2 + ρ

∂

∂m

[√
pρ

∂

∂m

(
p

ρ

)]
.

+ ε2 (γ − 1) ρ3/2p1/2

(
∂v

∂m

)2

. (96)

By a transformation similar to the one described in Sec. IV
we now discuss the variables in which the IS solution is time
independent. We introduce fields p′ and v′ by

p = p′

[1 + C(L)t]2
, v = v′

1 + C(L)t
, (97)

and the new time variable

τ = 1

C(L)
ln[1 + C(L)t],

dτ

dt
= 1

1 + C(L)t
. (98)

In the new field and variables the system takes the form

∂

∂τ

1

ρ
= ∂v′

∂m
,

ε1
∂v′

∂τ
− ε1C(L)v′ = −∂p′

∂m
+ ε2

∂

∂m

(√
p′ρ

∂v′

∂m

)
,
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∂p′

∂τ
− 2C(L)p′ = −γp′ρ

∂v′

∂m
− 2ρ1/2p′3/2

+ ρ
∂

∂m

[√
p′ρ

∂

∂m

(
p′

ρ

)]
. (99)

The IS solution in these variables has a very simple form as
follows:

ρ = ρ0(m), p′ = 1, v′ = 0. (100)

These variables are significantly more convenient for numeri-
cal studies than the original variables for which the IS is time
dependent. We have performed the numerical studies of the
system of Eqs. (99). The studies of the thermodynamic limit
L → ∞ appear impossible due to the exponential growth of
the maximal density with the system size. We have succeeded
in performing simulations up to the system sizeL = 8. For this
size the maximal density is about 23 100. We have observed
that the IS is the global attractor of the system dynamics at large
times. Further increase in the system size appears impractical
within the frame of the direct numerical simulations. Say,
for system size L = 9, that the maximal density is already
about 152 000. Clearly, a special device is needed to study the
system’s relaxation to the IS for the decade of L � 1.

The simulations were performed for the no-flux boundary
conditions. We used the value of γ = 2 of the two-dimensional
gas and the values of ε1 = 1 − r2 and ε2 = (1 − r2)/4 for
r = 0.98. This value of r does not give a large value of
1/

√
1 − r2 and, consequently, there is no nontrivial region

of applicability of the fast sound regime in this case. Thus
no theoretical prediction on the relevance of the IS exists in
this case. The simulations showed that for the supercritical
systems with L > π , the IS are stable attractors for L � 8.
While the uniformly cooling state is the steady state of the
system at L < π , at π < L � 8, the place of the uniformly
cooling state is taken by the IS. These states are both linearly
and nonlinearly stable, that is, they are the universal attractors
of the system evolution in time for arbitrary initial conditions.
We now discuss the description of the results of the numerical
simulations.

FIG. 1. The evolution of the density to ρ0 for L = 4. The plot of
ρ0 is marked by circles.

FIG. 2. The evolution of the density to ρ0 for L = 6. The plot of
ρ0 is marked by circles.

X. RESULTS OF THE NUMERICAL SIMULATIONS

The results of the simulations for the system’s size L =
4, L = 6, L = 7, and L = 8 are shown in Figs. 1–4. The
evolution clearly brings the initial conditions to the IS. The
relaxation is exponential. In this section we use t instead of τ ,
so in physical time the relaxation is a power law.

The numerical simulations allow us to discuss the basic
fact of the relaxation of the initial conditions to the IS (which,
if it exists, is exponential by the equations), as well as the
dependence of the relaxation exponent on L. We studied the
exponents of relaxation of the density and the pressure. The
two exponents must correspond to the same eigenmode of
the linearized operator described in the previous section and,
hence, must be equal. This is confirmed by the results of the
numerical experiments where the exponents coincide with the
numerical accuracy.

The dependence of the exponent λ that describes the
exponential relaxation to the IS at large times exhibits
remarkably strong dependence on L. The exponent does not
change much from L = 4 (where λ ∼ 0.42) to L = 6 (where

FIG. 3. The evolution of the pressure to unity for L = 4.

052210-15



ITZHAK FOUXON PHYSICAL REVIEW E 89, 052210 (2014)

FIG. 4. The evolution of the pressure to unity for L = 6.

λ ∼ 0.42). However, at L = 7 the exponent jumps to λ ∼ 40
and at L = 8 one has λ ∼ 60. These numbers are given within
an accuracy of 10 to 20% and they are not an artifact of a
numerical problem: The decay fit to the exponential relaxation
is extremely good as is clear from the figures (Figs. 5–11).
Thus the decay exponent λ experiences a significant jump by
about a factor of 10 as one passes from L = 6 to L = 7. This
jump apparently signifies that between those values of L the
system enters the asymptotic region of large sizes L � 1 with
the corresponding change of the functional dependence of λ

on L. The study of λ(L) at large L is beyond the current
abilities of the numerical experiment and the explanation of
the jump is postponed for future work. Here we would only
like to establish the fundamental fact that the IS is the attractor
of the system’s evolution at large times.

XI. THE IS IN THE DENSE CASE

In this section we consider the IS in the dense case without
presuming that ρσ 3 � 1 holds everywhere. This is always the

FIG. 5. The evolution of the maximal density to the
steady-state value for L = 4. The best fit is ρmax = 12.3 −
3 925 814 exp(−t/2.39).

FIG. 6. The evolution of the maximal density to the
steady-state value for L = 6. The best fit is ρmax = 551 −
27 000 000 exp(−t/2.02).

case in the thermodynamic limit where the maximal density
grows exponentially with the system size. The properties of
the IS of the dilute gas that were derived in the previous
sections show that the dilute gas assumption breaks down when
the system size L obeys ρmax = ρ0lcr exp[2L/lcr]/48L ∼ ρp,
where ρp ≡ σ−3 is of the order of the density of close
packing. In this case in the region of maximal density the
diluteness breaks down. We describe the resulting changes in
the distributions of mass and energy throughout the system.

It is assumed that the total number of particles N obeys
Nσ 3/ = ρ0σ

3 � 1 so, on average the fluid is still dilute
(which is, in particular, the case of the clustering instability).
Then the conservation of mass implies that the dense, liquid
regions that form in the system occupy the volume’s fraction
that is much less than unity. It can be expected then that the ISs
that hold in the dilute case will be changed so the dilute gas
solution holds approximately in the interval 0 � x � lg while

FIG. 7. The evolution of the maximal pressure to unity forL = 6.
The best fit is pmax = 0.999 53 − 2298 exp(−t/2.44).

052210-16



INHOMOGENEOUS QUASISTATIONARY STATE OF DENSE . . . PHYSICAL REVIEW E 89, 052210 (2014)

FIG. 8. The long-time exponential relaxation of the maxi-
mal pressure to unity for L = 7. The best fit is pmax = 1 +
0.000 05 exp(−t/0.0227).

at x � lg the IS differs due to the density comparable with ρp.
This is proved below. Note that 1 − lg/L � 1.

We use that the solution can be described by K(x) that
obeys

d2K

dx2
= −∂U (K)

∂K
, (101)

where U (K) = U [ρ(K)] with

U (ρ) =
∫

F̃4(ρ)F̃ (ρ)

ρ5/2
dρ − 〈F̃ (ρ)〉

〈ρ/F1(ρ)〉
∫

F̃4(ρ)dρ

ρ3/2F1(ρ)
,

(102)

where ρ(K) is a monotonically decreasing function of K . The
corrections due to the finite size of the particles change the
dilute gas relation (36) for U (K) at small K ∼ K(ρp). Further
change in U (K) is caused by the changes in the averages
〈F̃ (ρ)〉 and 〈ρ/F1(ρ)〉 due to the deviation of the IS from the
dilute gas solution. We demonstrate that the change in the

FIG. 9. The long-time exponential relaxation of the maximal
density to the steady-state value for L = 7. The best fit is ρmax =
3546 + 2.8565 exp(−t/0.0276).

FIG. 10. The long-time exponential relaxation of the maxi-
mal pressure to unity for L = 8. The best fit is pmax = 1 +
0.000 03 exp(−t/0.0183).

latter is negligible. We observe that the ratio of the pressure to
the pressure of the dilute gas p/ρT is a growing function of
ρ. Thus ρ/F1(ρ) = ρT/p � 1. It follows that the integral of
ρ/F1(ρ) over the yet-to-be-found solution is the integral over a
positive function that equals 1 in almost all the volume except
the dense region of the liquid where this function is bounded
between zero and 1. We conclude that the contribution of
the dense region in the integral can be neglected producing
〈ρ/F1(ρ)〉 ≈ 1. Similarly, one can demonstrate that 〈F̃ (ρ)〉
taken on the IS with dense regions is close to the one that would
hold for the dilute gas. The reason is that in the case of the
dilute gas where F̃ (ρ) ∝ ρ1/2 the integral

∫
ρ1/2 is determined

by the dilute region far from the maximum (in which the liquid
forms). This will be shown below using self-consistency.

Thus we can confine the consideration of changes in U (K)
due to the formation of the liquid to the consideration of
the role of the changes in the functional form of U (K)
at small K ∼ K(ρp). First, we note that the functions that

FIG. 11. The long-time exponential relaxation of the maximal
density to the steady-state value for L = 8. The best fit is ρmax =
23 040 + 14.3 exp(−t/0.0156).
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appear in the definition (102) of U (ρ) remain bounded and
smooth when ρ approaches ρp. Consider first the function
F̃4(ρ) ≡ F4(ρ)F ′

1(ρ)ρ5/2/F
5/2
1 (ρ) that appears both in U (ρ)

and the definition of K(ρ). The heat conductivity of the fluid of
hard spheres F4 diverges in the limit of dense packed fluid like
pressure F1T ; see Ref. [26] and also Refs. [27,28]. In contrast,
the pressure described by F1 = p/T grows indefinitely when
the fluid gets denser. To see the impact of this divergence
we consider the most divergent term in the Carnahan-Starling
equation of state,

F1(ρ)/ρ = 1 + ρF ′(ρ) = 1

[1 − ρ/ρp]2
,

where the notation ρp is taken for clarity; see the definitions
(19) and (20). We observe that though F1 diverges at ρ = ρp,
F̃4 is still finite due to the division by F

5/2
1 . We assume that the

conclusion that F̃4(ρ) is finite holds for the true constitutive
relation. Finally, F̃ described by Eq. (20) remains finite in the
dense limit, too.

We conclude that the change in U (K) caused by the
finite density is finite. This change is such that K = 0
becomes a forbidden value of K(x), so K(x) cannot go to
unphysical values smaller than K(ρp). Further, we note that
in the thermodynamic limit the energy E will still approach
E = 0 since the divergence of the period of the particle’s
motion occurs in the region of large K or small density, see
Sec. VI (this follows from the fact that the major part of the
volume is occupied by the dilute gas so the time that the
particle spends at large K is infinite in the thermodynamic
limit). Thus U (K) has to increase at K ∼ K(ρp) so the
smaller turning point at zero energy, defined by U (K) = 0,
is given by a finite K of order K(ρp). Correspondingly we
assume that the change in U (K) is such that it increases
smoothly at K ∼ K(ρp) in comparison with the dilute gas
value but remains monotonously decreasing. Note that the
minimum of the potential is realized at K0 that diverges in
the thermodynamic limit and thus occurs at the density of
the dilute gas, so the finite-density changes only the behavior
of U (K) at K � K0, far from the potential’s minimum. We
assume that there is no new extremum of U (K) at small
K which seems physically necessary. Thus U (K) decreases
monotonously from U [K(ρp)] to its minimum at K = K0

where K0 belongs to the dilute gas region.
It follows that the qualitative structure of the solution

described in Sec. VI is not changed by the finite particles’ size.
These changes become relevant when the energy E of the so-
lution is such that the smallest positive solution to E = U (K)
is comparable with K(ρp). They change the correspondence
between L and E: the “particle” with coordinate K(x) spends
different times at small K . Thus we introduce Edense(L) as the
dependence of E on L determined by the condition that the
half the period of the periodic motion with energy Edense(L)
equals L. The solution is given by

x =
∫ K2[Edense(L)]

K

dK ′
√

2[Edense(L) − U (K ′)]
.

It follows that in the region of the dilute gas where U (K)
is the same as in the dilute case, the solution is the same as
in the dilute case. The only change is that instead of E(L)

that would correspond to the considered L in the dilute gas
limit σ → 0, one has to use Edense(L). Introducing Leff(L) by
E [Leff(L)] = Edense(L) [this is possible because both E(L)
and Edense(L) are monotonic] we can say that the solution in
the dilute region is like that for the dilute gas with the effective
length of the channel Leff(L).

Thus the solution in the dense case has the following
structure. The density profile starts from its minimum at
x = 0 where the dilute gas holds. The density increases
monotonously like it would for the dilute gas in the channel
with the length Leff(L) [note that Leff(L) tends to infinity in the
thermodynamic limit]. Then, at a certain scale lg , the dilute gas
assumption breaks down, so in the region (lg,L) the density
obeys ρσ−3 ∼ 1. Since there is no sharp boundary between the
phases, then lg is defined up to a factor of order 1, which will
be seen inessential for the final result. The total mass mg of the
dilute gas in the region (0,lg) can be described by the formula
(78) with Leff(L) instead of L. The condition mg + ml = L
that the total mass equals L gives (xg = lg/ lcr)

1

2
ln

(
6Leff

Leff − xg

)
+ (L − xg)[clρ0σ

3]−1 = L,

where ml = (L − xg)[clρ0σ
3]−1 is the mass of the liquid

contained in the region (lg,L) with cl a constant of order 1.
Since mg depends on L only logarithmically and ρ0σ

3 � 1,
then we find that at large L (one divides the equation by L and
takes the limit L → ∞)

1 − lg

L
≈ clρ0σ

3, lg ≈ L(1 − clρ0σ
3), (103)

that is, almost all the mass of the system is contained in the
liquid phase. To determine mg we note that since ρ(lg) ∼ σ−3,
then we can use for ρ(lg) the asymptotic form in Eq. (80). This
gives the self-consistency condition

ρ0(lg) ≈ ρ0lcr

2(Leff − lg)
∼ σ−3,

which gives

Leff − lg ∼ ρ0σ
3lcr.

Since lcr � lg , then Leff ≈ lg , that is, the effective length of
the channel is where the liquid phase starts. In other words, the
beginning of the liquid phase is like a wall boundary condition
for the gas. It follows that the mass of the gas phase is

mg ≈ 1

2
ln

(
6L

ρ0σ 3lcr

)
,

where the approximate equality holds with logarithmic accu-
racy. Thus the mass of the gas is infinite in the thermodynamic
limit; however, it is only logarithmically large in the system
size, demonstrating that the gas represents a vanishing fraction
of the total mass of the system.

The energy of the fluid is, however, determined by the gas
phase and not by the liquid phase. Indeed, the energy density
is given by ρT/(γ − 1). Throughout the region of the dilute
gas, which occupies most of the volume, this coincides with
p(t)/(γ − 1). It follows that the energy density is uniform
through most of the volume, deviating from the constant only
in the liquid region. In the latter region the energy density can
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be written as p(t)ρ/(γ − 1)F1(ρ), so it is bounded from above
by p(t)/(γ − 1). We find that the total energy E(t) obeys

E(t) = p(t)

γ − 1
〈ρ/F1(ρ)〉 ≈ p(t)

γ − 1
, (104)

where we used 〈ρ/F1(ρ)〉 ≈ 1 derived previously. It follows
that in the considered case where the gas is dilute on average,
ρ0σ

3 � 1, so the gas phase volume is close to , we have that
almost all the energy of the system is contained in the gaseous
phase.

The conclusion that, though the liquid phase contains the
fraction of the total mass that is close to unity, its energy is
negligible, can be understood by noting that the temperature
of the gas particles is much higher than that of the liquid
ones. Consider, for example, x � L, where ρ(x) ≈ 4ρlcr/3L,
so the temperature there T (x) ≈ 3Lp(t)/4ρlcr grows linearly
with the size of the system. Thus, though the gas particles are
few in number, their velocity is so high that they provide a
dominant contribution to the system’s energy.

Finally, we consider the decay time of the solution tc,

tc ≡ 2〈ρF−1
1 (ρ)〉

〈�(ρ)ρ3/2F−1
1 (ρ)〉p1/2(0)

, (105)

see Eq. (14). We observed previously that 〈ρF−1
1 (ρ)〉 ≈ 1, so

it remains to consider 〈�(ρ)ρ3/2F−1
1 (ρ)〉 = (γ − 1)〈F̃ 〉. We

saw previously that F̃ remains finite in the dense region, and,
hence, we can write∫ L

0
F̃ dx ∼

∫ lg

0
F̃ dx + clρ0σ

3LF̃ (lg), (106)

where we used Eq. (103) and noted that continuity and
finiteness of F̃ imply F̃ (lg) ∼ F̃ (L) (the latter is because
the density throughout the liquid phase preserves its order
of magnitude ρp). The first integral can be found using F̃ (x)
in the dilute phase,∫ lg

0
F̃ dx ≈ �

γ − 1

∫ lg

1

ρ
1/2
0 l

1/2
cr dx

21/2(lg − x)1/2
,

where one can write approximate equality because the integral
is determined by x � lg , that is, 〈�(ρ)ρ3/2F−1

1 (ρ)〉 is deter-
mined by x inside the dilute phase far from the boundary of
the liquid. In particular, this implies that 〈�(ρ)ρ3/2F−1

1 (ρ)〉 is
approximately the same as for the dilute IS with Leff instead
of L. Using that Leff ≈ L, we conclude that tc coincides with
the one of the dilute IS,

tc ≈ 2

C(L)�ρ
1/2
0 p1/2(0)

,

tc ≈ 2
√

L√
3lcr�ρ

1/2
0 p1/2(0)

, L � lcr.

Thus the result that tc diverges in the thermodynamic limit
is not changed by the finite particles’ size effects. The liquid
phase influences the solution in the dilute region only by a
minor correction to the effective length of the channel (the
wall becomes located not at the end of the channel but at
the beginning of the liquid phase); hence, the uniform decay
rate of the pressure which value can be found considering the
dilute phase is approximately the same as in the dilute case.

The study assumes that the solid phase does not form in
the system, so the fluid mechanics holds. Though this seems
reasonable due to the growth of the pressure when the density
becomes comparable with σ−3, cf. Refs. [18–20], this question
has to be studied. It is left for the future work.

We conclude that for large system sizes the evolution is
similar to the gas-liquid transition. If one starts with the
uniform initial state of the dilute gas, the formation of dense
regions starts due to the clustering instability. The system
develops the IS where the liquid condenses in a small part
of the total container that takes almost all the mass of the
system. The larger fraction of the system’s volume is occupied
by the dilute gas. At the boundary between the two phases the
no-heat flux b.c. holds approximately so the gas state is the
same as would hold if the liquid would be the wall. Though
the mass of the dilute gas is only logarithmic in the system
size, the gas phase carries most of the energy of the system via
the high velocity of its particles.

XII. FINITE-TIME SINGULARITY
REGULARIZED BY THE IS

In recent work [21] the numerical simulations of the
fluid-mechanical equations (37) of the dilute granular gas
was performed in two dimensions. The results indicate the
possibility of the finite-time singularity. This is quite plausible
physically since the heat conduction coefficient that counter-
balances the nonlinear growth of the density due to cooling
would tend to zero at such a presumed singularity. Indeed,
if the pressure remains finite at the singularity, which seems
to be the case, then the temperature tends to zero inversely
proportionally to the growth of the density. Although in the
one-dimensional case the heat conduction does stop the growth
of the density, in the higher-dimensional case, where there are
wider geometric possibilities for the formation of regions of
growing density, this might be not the case. In fact, this is
indicated by the analogy between the IS solutions and the
soliton solutions of nonlinear physics. Within the latter there
are cases where in dimensions higher than 1, the nonlinearity
produces finite-time singularities that cannot be stopped by the
Laplacian terms in the equations.

Thus the conjecture that the density of the dilute granular
gas becomes singular in finite time when the container’s
geometry is a box (which is described by fluid mechanics
of dimensions higher than 1) is reasonable. This increases
further the relevance of our derivation of the IS in the dense
case. The finite-time singularity signifies that the frame of the
dilute granular gas is inconsistent in dimensions higher than
1, so physical factors not included into that frame have to
be taken into account. The immediate factor is the finite size
of the particles and the related excluded volume effects. It
is clear that the fluid mechanics of (possibly) dense fluid of
hard spheres, described by Eqs. (1) and (11), does not have
finite-time singularities, becoming then the only consistent
framework of consideration in the higher-dimensional case.
The IS solutions (including the uniform dense solution)
become then highly important as the reference solutions
on which further theoretical and experimental study can
rely.
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XIII. COMPARISON WITH THE STEADY STATES
OF FORCED GRANULAR SYSTEMS

The formation of spatial profile of density via the interplay
of heat flux and inelastic cooling displayed in the freely cooling
granular system [5,6] was discussed first for forced systems.
In Ref. [7] the steady state of the granular system heated at one
of the walls was considered. In this case, due to the constant
input of energy, the steady state is formed. The pressure is
uniform, too, and the resulting equations on the density profile
are quite similar to those considered in this work: These are
Eqs. (13) with c = 0. Since c2 behaves inversely proportionally
to the size L of the system, then one could think that in the
thermodynamic limit L → ∞ the states of the freely cooling
and forced granular systems would coincide. This is further
reinforced by quasistationarity of the freely cooling system
holding in this limit.

In fact, the IS coincide with the steady states of forced
system in the supercritical regime L � lcr. It is readily seen
that 〈ρ1/2

0 〉2 ∼ ρ0lcr/L so the last term in Eq. (41) describing
c �= 0 can be dropped when ρ � ρ0lcr/L. The resulting
equation is solved by Eq. (80). It coincides with the steady-state
solution of Ref. [7].

XIV. CONCLUSION

We described the IS states of the dense fluids of inelastically
colliding hard-core particles. Though we used the fluid
mechanics, the IS are not really fluid mechanical: They involve
no flow. The inhomogeneity of the temperature is preserved by
the balance of heat conduction and inhomogeneous inelastic
cooling, cf. Refs. [5–7].

The IS are exact solutions: They solve the complete
system of the coupled PDE of the fluid mechanics of the
system. Though the precise form of the coefficients of those
equations is unknown in the dense region, we succeeded to
demonstrate the IS using only the special separable form of
those coefficients that holds for hard spheres with constant
coefficient of normal restitution.

The fluid mechanics of fluid of hard balls in the dense
region was used to describe the states of granular systems
previously, see e.g., Refs. [7,28–30]. The studies involved
the use of phenomenological relations in the dense region.
We introduced in this work the way of dealing with the
dense region exactly. Within this approach one relies only
on the possibility to determine the temperature dependence
of fluid-mechanical properties using the dimensional analysis.
We demonstrated that the resulting scaling form of the fluid
mechanics of hard balls admits the IS solutions. Our approach
can be used then to refine the previous results.

The IS have universal properties that hold independently
of the constitutive relations of the coefficients of the fluid-
mechanical equations. The pressure and the energy decay as
[1 + t/tc]−2 while the number of collisions that occurred in
the system and minus the entropy increase as ln(1 + t/tc). The
only unknown characteristic of the IS is the form of the density
field that does depend on the form of the coefficients. Thus the
IS exhibit many universal properties that make one suggest
that the displayed physical mechanisms can be important in
other situations.

The characteristic decay time tc in the power law [1 +
t/tc]−2 of inelastic cooling becomes infinite in the thermody-
namic limit. The growth of the cooling time (that by itself
is determined by the local density and temperature) with
the system’s size signifies that the whole system is strongly
correlated. The existence of the nontrivial steady state in the
dissipative system (the trivial one being the frozen particles)
is unusual. It poses for study the question regarding whether
self-organization and the minimization of the dissipation can
be related in the considered case. Furthermore, we demonstrate
that for supercritical systems, besides near the hot end of the
system, the IS coincides with the true steady state of the system
heated at that wall [7]. Thus the evolution of the free system
tries to build the steady state of the forced one.

The IS solutions depend on the absence of the characteristic
energy scale in the problem: The interaction of the hard
spheres involves no energy scale. The IS would not exist as
exact solutions for the finite interaction potential (instead of
the infinite step potential of the hard spheres) that possesses
a certain scale of energy or for inelasticity where its law
changes at a certain scale of the energy. In the former case
the coefficients of the fluid mechanics would have unknown
dependence on the temperature, while in the latter case
the coefficient of the inelastic energy-loss term would have
unknown dependence on the temperature. Nevertheless, it
seems that the considered model can describe realistically
certain regimes of evolution of the granular media, arising
as intermediate asymptotic regime.

We introduced a transformation that transforms the IS into
the time-independent solutions of a system of PDE that does
not depend on time explicitly. Thus there is natural “frame
of the IS” where the solutions are stationary. This is done by
using the time variable which is the number of collisions that
occurred in the system and rescaling the fields with time to
compensate for the decays due to inelasticity. In particular, the
transformation shows that the linear perturbations near the IS
obey the power-law behavior in time.

To consider the IS further we studied the dilute granular gas
in the channel, where the fluid-mechanical fields depend only
on the spatial coordinate along the channel (the microscopic
motion is still three dimensional for balls and two-dimensional
for disks). While the ISs in this case are known from previous
works [5,6], their stability was known only in the case of
channelsthat are not too long. In the limit of large sizes the
density field of the IS has large variation where it changes
from a small value (that vanishes in the thermodynamic limit
of infinite length of the channel) to a value ρmax that is
exponentially large in the channel’s length. The interpolation
between the two regions follows the inverse linear law. In
the region of the power law the equations solve those of
forced systems and the solution coincides with the one of
the system heated at the higher temperature wall [7]. The mass
contained in the neighborhood ρ ∼ ρmax is of order 1. These
solutions hold if the diluteness condition ρmaxσ

3 � 1 holds.
When the length of the channel is fixed, this condition holds
if the particles’ diameter σ is small.

We showed numerically that the ISs provide the universal
long-time limit of the evolution of the gas when the length
of the channel exceeds the critical length lcr. To consider
the thermodynamic limit for finite-size particles, where dense
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liquid regions appear in the fluid, we demonstrated the phase
separation in IS. In the limit of large system sizes, the fluid
separates into the liquid phase, which contains most of the
mass of system, and the gaseous phase, which contains most
of the energy of the system and occupies the volume’s fraction
close to unity. Since there is local stability in both phases, then
it follows that the IS is globally stable and constitutes the result
of the long-time evolution of the system. Thus the question of
the long-time limit of the granular gas is settled completely,
though for a special geometry of the container.

An additional question posed by the parallel between the
IS and the steady states of forced systems is the question
regarding the marginal stability of the IS. The steady states of
the forced systems can be unstable with respect to fluctuations
of macroscopic fields depending on the transversal coordinate
[30,31]. This question is left for further work.

Our study shows that the IS plays crucial role in the
behavior of the granular fluid of hard spheres in the channel.
However, there are higher-dimensional ISs that exist in any

geometry of the container [6], posing the question regarding
the IS relevance to the case where the fluid-mechanical fields
depend on two or three spatial variables. The numerical works
reported in Ref. [21] indicate that the dilute granular gas
develops infinite density in finite time if the density depends on
two coordinates. The ISs that take into account the excluded
volume effects do not have such singularities and become
important objects for the study of the evolution in the box
geometry of the container. This study is left for future work.
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