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Self-sustaining charging of identical colliding particles
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Recent experiments have demonstrated that identical material samples can charge one another after being
brought into symmetric contact. The mechanism for this charging is not known. In this article, we use a simplified
one-dimensional lattice model to analyze charging in the context of agitated particles. We find that the electric field
from a single weakly polarized grain can feed back on itself by polarizing its neighbors, leading to an exponential
growth in polarization. We show that, by incorporating partial neutralization between neighboring polarized
particles, either uniform alignment of dipoles or complex charge and polarization waves can be produced. We
reproduce a polarized state experimentally using identical colliding particles and raise several issues for future
study.
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I. INTRODUCTION

It has been known, at least since Faraday’s time [1], that
grains in desert sandstorms spontaneously generate multi-
million volt electrical discharges. This effect has been at-
tributed to differences in particle size or material [2]: Certainly
a plausible explanation. At the same time, however, work
spanning several decades in different laboratories and using
different experimental systems [3–7] has shown that even
identical samples of a material—including particles of the
same size, shape, and composition [8]—can spontaneously
break symmetry and transfer charge from one to another.
Moreover, once a charge has moved from one sample to
another, further contacts will transport additional charges of
the same sign in the same direction, against Coulomb forces,
to produce monotonically increasing charges and fields [4,6].

In the present article, we probe these findings through
the examination of a simplified one-dimensional (1D) lat-
tice of identical dielectric particles. We find that nonlinear
feedback between a particle and its neighbors can cause
a single infinitesimally small dipole to grow exponentially
rapidly in time. We confirm experimentally that identical
colliding particles do generate a self-sustaining dipole field.
Additionally, if adjacent particles in the lattice model are
allowed to partially neutralize one another as they might
through collisional interactions, we find that new states appear
in which domains of like polarization travel through the lattice.
These results provide a mechanism by which collisional flows
of identical grains can generate electric fields that grow and
travel in complex ways.

II. ANALYSIS

We begin by considering a 1D lattice of 1000 identical
particles of unit diameter, spaced a fixed distance, also one unit,
apart. The dynamics of this model consists of three essential
elements prescribing first, the polarization of each particle due
to its neighbors, second, partial neutralization of each adjacent
particle pair meant to mimic effects of collision, and third,
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boundary conditions applied to the top and bottom particles.
We define each element of the model here.

A. Polarization

Each particle i can host charges Q
top
i and Qbottom

i at a vertical
distance 0.375 from its center: In this manner, each particle
can sustain a dipole moment Pi = 3

4 (Qtop
i − Qbottom

i ). Each
particle feels an electric field Ei at its center due to the top
and bottom charges of all of its neighbors. We calculate Ei

directly using Coulomb’s law, i.e., Ei = ∑
j �=i Qj/r2

ij , where
rij is the distance from the center of the ith particle to the top
and bottom charges on each of the other j particles. We assume
that all particles are dielectric with the same susceptibility χe,
so that the ith particle will attain an induced dipole moment
χe · Ei . This moment is added to whatever preexisting dipole
may be present so that

Pi → 3
4

(
Q

top
i − Qbottom

i

) + χe · Ei. (1)

Explicitly, Eq. (1) combined with charge conservation implies
that the top and bottom charges become

Qbottom
i → Qbottom

i − 2
3χe · Ei,

(2)
Q

top
i → Q

top
i + 2

3χe · Ei.

Thus, the polarization of a particle consists of two parts:
A permanent ferroelectric polarization defined by its state
following a collision and a transient paraelectric polarization
slaved to the external field. We emphasize that except at the
boundaries (which we discuss shortly), charge is conserved
under all circumstances, however energy is not. That is,
increasing polarization involves no gain or loss in net charge,
however it does require an input of energy. Thus we imagine
that the lattice represents an agitated bed of grains in which
the energy required to polarize molecules in one grain is
provided by the mechanical energy needed to draw another
polarized grain closer. In this way, periodic mechanical input
of energy causes grains to repeatedly approach one another,
generating an increase in polarization every time step. In a
previous paper, we demonstrated that identical particles can
develop large charges in this way after repeated contacts
in the presence of a constant external electric field [8]. In
the present calculations, we use precisely the same scheme
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without applying any external field. Since the field is provided
by feedback between nearby particles according to Eq. (1),
in principle a particle’s polarization could either increase or
decrease, and indeed we will see from our simulations that
both can occur.

We remark that the feedback of Eq. (1) implies an ordering
to events: If particle A imparts a polarization on particle B

and then particle B interacts with a third particle C, then
the B-C interaction will produce a different result than if the
A-B interaction had occurred later. This can be dealt with
either by calculating all induced polarizations and then adding
polarizations to the preexisting values at the end of each time
step or by randomizing the order of interactions to eliminate
systematic bias. We will compare calculations with a vibrated
bed of nearly randomly [9] colliding particles, so we adopt the
second alternative here.

B. Neutralization

To mimic a collisional granular flow, once per time step we
allow each pair of adjacent particles, chosen in randomized
order, to collide once. During each collision, we permit charges
to partially neutralize with efficiency η. Explicitly,

Qbottom
i+1 →

(
1 − η

2

)
Qbottom

i+1 + η

2
Q

top
i ,

(3)

Q
top
i →

(
1 − η

2

)
Q

top
i + η

2
Qbottom

i+1 ,

so for η = 0, charges Q
top
i and Qbottom

i remain unchanged after
a simulated collision, and for η = 100%, both charges revert
to their average.

C. Boundary conditions

To close the description, we consider collisions on a
grounded surface with a free upper boundary—as occurs,
for example, in sandstorms or industrial dust clouds. So we
ground the bottom of the bottom-most charge: Qbottom

1 ≡ 0,
whereas the top of the topmost particle is treated like every
other charge, except that it never encounters a neighbor above.
As we have mentioned, charges are conserved in all collisions,
except at the bottom boundary where a charge is added or
removed to maintain the boundary condition Qbottom

1 ≡ 0. A
final embellishment to the model is that we include image
charges in the simplest possible way [10], as if the bottom
surface were a perfect conductor. Simulations without image
charges also were performed and do not differ noticeably from
what we present here.

We make a technical clarification and then present results.
Because we are ultimately interested in practical applications,
we constrain the polarization to always lie within a maximum
range, so |Pi | � Pmax. This is realistic insofar as any real
particle can sustain only a finite maximum charge separation
beyond which dielectric breakdown will occur, but we will
see momentarily that this is also computationally necessary
to prevent polarizations from diverging. We choose Pmax =
10, although other values have been found to produce nearly
identical results.

Maximum polarizationMaximum polarization

P

S

〈
〉

〈
〉

FIG. 1. (Color online) (a) Time evolution of polarizations of
1000 dielectric particles in a 1D array. Initially, the central particle is
polarized by a small amount 1.5 × 10−9 computational units. (b) The
mean polarization of all particles 〈P 〉 grows exponentially in time at
a rapid primary rate until the maximum polarization Pmax is reached,
then at a lower secondary rate. (c) Alternatively, if every particle
is initially randomly polarized, multiple coarsening domains form:
Light regions have 〈P 〉 = +Pmax; dark regions have 〈P 〉 = −Pmax.
(d) In the short term, 〈P 〉 grows exponentially with a faster rate than
for the single particle case of (a) and (b).

As a first test of this model, we consider the simplest case
without neutralization, so η = 0, and we start with all but
one of 1000 particles in the zero charge and polarization state,
Q

top
i = Qbottom

i = 0. We initialize the center particle with a tiny
polarization P500 = 1.5 × 10−9, so Q

top
i = −Qbottom

i = 10−9.
As shown in Fig. 1(a), the central particle’s polarization
grows along the solid curved line until it reaches Pmax. That
particle also recruits the polarizations of its neighbors, which
similarly rapidly reach Pmax. As shown in the semilogarithmic
plot of Fig. 1(b), the cumulative sum of the particles’
polarizations grows exponentially with two regimes: First a
steep growth as the central particle’s polarization escalates and
then a more moderate, but still exponential, growth as further
particle polarizations are recruited. Reasonably enough, as the
susceptibility increases, so does the rate at which polarization
grows: This is shown in Fig. 1(d).

Apparently, in the simple case without neutralization a
small initial polarization grows exponentially rapidly until
the entire lattice becomes uniformly polarized. This is not
mysterious: The exponential growth is a predictable con-
sequence of the nonlinear feedback produced by adding
an induced polarization χe · Ei due to neighboring charges
to every particle. Every particle obeys the same rule, so
with each time step polarization must grow by a constant
factor: A well-established formula for exponential growth.
We emphasize that the η = 0 case produces an exponential
growth in polarization, but as prescribed by Eq. (3) no transfer
in charge occurs. So every particle remains charge neutral,
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FIG. 2. (Color online) (a) Phase diagram showing distinct spa-
tiotemporal patterns of polarization and charge dynamics. Asterisks
indicate parameter values at which spatiotemporal plots beneath are
taken. (b)–(d) Color-coded plots of the polarization and charge of
the 1D cellular automata lattice vs time. Arrowheads in (b) identify
upward motion of charge waves; solid arrows in (c) identify upward
transient waves, and open arrows in (c) identify abrupt cooperative
stopping of downward polarization waves discussed in the text.

whereas the polarizations of each particle in a stack rapidly
approach Pmax. We will return to this point at the conclusion
of this article.

To examine a more general case, instead of beginning with
a single polarized charge, we investigate the lattice dynamics
if we initialize the lattice by choosing each particle’s charges
Q

top
i = −Qbottom

i randomly to be −1, 0, or 1. We then obtain
a result as shown in Fig. 1(c) in which polarizations again
grow exponentially rapidly so that adjacent regions almost
immediately approach the maximum polarization ±Pmax

(shown as black and beige in the figure). Thereafter, domains
coarsen until a uniformly polarized state is ultimately adopted:
In our simulations of 1000 particles, this takes over 107 time
steps.

We turn next to the case of finite neutralization, η �= 0,
as defined by Eq. (3). In this case, more complex behaviors
appear, summarized in the phase diagram of Fig. 2(a). In this
diagram, we identify the dynamics observed at 10% increments
of susceptibility χe and neutralization η. For each pair of
χe and η, the state is chosen by majority vote from three
trials performed using zero charge and randomized initial
polarizations for every particle as well as randomly chosen
collision ordering events as described previously. Criteria for
establishing what pattern is present for these votes follow: In
each case, the criteria are applied after a transient period of

time steps needed to dissipate upward-moving waves (at least
500 time steps, in some cases up to 2000 time steps).

A uniformly polarized state is defined to have identical
polarizations Pi = ±Pmax. This is similar to the aligned state
produced by long-range ferromagnetic interactions in a 1D
lattice, predicted in 1969 by Dyson [11]. In practice, as we
have mentioned, we have in mind applying our lattice model to
agitated granular beds, which necessarily differs from Dyson’s
system in several ways. First, granular beds are intrinsically
nonequilibrium, so our system is not Hamiltonian. Second,
dipole moments are continuous-valued rather than discrete.
Third, as described in Eq. (1) we use both paraelectric and
ferroelectric moments. Finally, technically Dyson’s long-range
interactions go as 1/rα for 1 < α < 2, whereas our electric
field ∼1/r2 is just outside of this range. Nevertheless, in
recognition of the parallel with Dyson’s earlier predictions,
in Fig. 2 we term η = 0 the Dyson state.

For nonzero but small neutralizations, nearly uniform
downward-traveling waves of polarization ±Pmax appear,
modulated by weak and nearly orthogonal upward-traveling
waves of charge. In this “uniform waves” regime shown in
Fig. 2(b), widths of polarization waves vary by up to 50%, but
fewer than five instances of merging of waves (discussed next)
are seen. All simulations are performed using 1000 particles
over 4000 time steps, and again every particle pair collides
once during each time step: This duration was chosen because
transient behaviors seen in the spatiotemporal plots of Fig. 2
appear to have dissipated by 4000 time steps.

As neutralization grows, increasingly irregular patterns are
found. The weak modulation in downward waves [Fig. 2(b)]
gives way at about η = 20% to waves with widths that oscillate
until they merge into a uniformly polarized region, and above
η = 20%, the merging behavior travels upward in time to
produce large regions of uniform polarization as shown in
Fig. 2(c). Polarizations again reach ±Pmax, and we term this
a “global merging” state. We note that in the middle of a
large lattice of particles effects of boundaries are small, and
so predictably waves travel as readily upward as, downward
as indicated by solid arrows in Fig. 2(c). Both waves die at the
boundaries, but the upward waves are replaced by downward
waves at the free top boundary, whereas the downward waves
simply end at the grounded bottom boundary. We discuss
effects of boundaries shortly.

The speed of upward merging waves, identified by open
arrows in Fig. 2(c), is midway between the more rapid upward
transient wave speed [solid arrows in Fig. 2(c)] and the slower
upward net charge speed, identified by arrowheads in Fig. 2(b).
We discuss wave speeds shortly but emphasize that the root
causes of these three different speeds are not understood.

At still higher η, three additional states emerge. At lowχe,
the lattice rapidly approaches zero charge and polarization
irrespective of the initial condition: This is logical since
particles are weakly coupled together but strongly neutralize.
We term this state “death.” At η ≈ 1, sufficiently large χe’s can
sustain nonzero charges, but these change rapidly and show no
coherent motion: We call this “noise.” Finally, for large χe’s
and moderate η’s, a state emerges in which both downward-
traveling waves and upward-traveling merging events are seen,
each traveling at different speeds. We term this state, shown
in Fig. 2(d), “start-stop” waves. The polarization here remains
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small, never approaching Pmax, but coherent traveling waves
are readily identifiable. We remark that the global merging
state transitions gradually to start-stop waves as χe grows.
As we have described, the lines demarking this transition are
obtained from a majority vote of three trials, however, it is
likely that another set of trials would result in slightly different
transition lines.

Evidently there is a rich variety of patterns in this simple
system, and these patterns exhibit several distinct traveling
speeds. Despite its simplicity, the model involves two coupled
and nonlinear fields, one for the net charge on each particle and
one for its polarization, and from that perspective, perhaps the
variety of behaviors is not surprising. We begin an analysis of
these complex states by focusing on the simplest of the lattice
dynamics, the uniform wave state.

As shown in Fig. 2(b), polarization waves tend to travel
down the lattice rather than up. This asymmetry can only
originate from the boundaries, for within the lattice the rules for
charge dynamics are entirely symmetric—and for this reason,
waves can travel both up and down until they hit the boundaries
[as in the example of the solid arrows of Fig. 2(c)]. At the
boundaries, symmetry is broken: As we have mentioned, the
bottom boundary is grounded, whereas the top boundary is
free. Without this asymmetry, for example if both boundaries
are grounded, the model produces no net transport of charge
or polarization.

Behavior at the bottom boundary can easily be understood.
Consider the case in which the bottom-most few particles are
polarized up (with plus on top). The bottom-most charge is
always zero, so the bottom particle must be net positively
charged to conform with the polarized-up ansatz. This will
tend to induce the next particle to be more negative below and
more positive above—thus, reinforcing the up-polarized state.
Consequently, the bottom boundary condition strengthens the
existing polarization and cannot cause the flip in polarization
seen in Fig. 2(b).

Since the bottom-most charge never varies from zero, let
us examine the topmost charge, whose value can change
as a result of induction from the field of particles beneath.
Again, consider the case of up-polarized particles. Since the
topmost N th particle is induced to be polarized up, the topmost
charge Q

top
N will be positive, and after collision all contacting

charges beneath will partially neutralize. But Q
top
N has no

upper neighbor and so will grow monotonically due to the
polarizations of particles beneath. A positive Q

top
N will tend

to induce particles beneath to be polarized down, and since
Q

top
N grows monotonically, at some point this topmost charge

will grow until it induces the N − 1st particle to flip signs: This
occurs when the field due to Q

top
N exceeds Pmax/χe. This begins

a cascade: Once the N − 1st particle has flipped, the particle
beneath (the N − 2nd particle) will be sandwiched between
particles with opposite polarizations, and with Q

top
N positive,

this too contributes to a flip of the N − 2nd particle. This, of
course, is not inevitable, and as shown in Fig. 2, a number
of other outcomes are possible; nevertheless, this appears to
be the mechanism by which symmetry is broken to produce
down-moving polarization waves.

We confirm that waves emanate from the top free surface
of the lattice by perturbing only the topmost charge with

FIG. 3. (Color online) (a) Upper portion of polarization pattern
from Fig. 2(b). The open arrow in the enlargement identifies time
To = 1475. (b) The same pattern when a positive charge of +10
units is added to the topmost particle at To = 1475. Notice that this
provokes a premature flip from polarization up (light) to down (dark);
also note that upstream perturbation causes downstream termination
of the stripe (indicated by the circle). (c) The same situation when a
negative charge −10 is added at To = 1475, causing a broadening of
the light stripe. (d) Wavelength and speed for χe for η ≡ 10%. Note
that the wavelength more than doubles as χe is increased, whereas
the wave speed changes by about 60%. (e) Growth in η increases the
speed by more than an order of magnitude but causes a nonmonotonic
change in wavelength as described in text. χe ≡ 30% in this panel.

parameters in the uniform wave regime χe = 0.3,η = 0.2.
As shown in Figs. 3(a)–3(c), artificially adding a positive
charge to Q

top
N causes the polarizations beneath to prematurely

flip, whereas subtracting the same charge causes the flip to
be delayed. This effect is repeatable for charge injections
at the top of the stack, however trials (not shown) in which
equivalent charges are added to or subtracted from particles
within the bed do not produce a change in polarization or
charge waves. Apparently, the downward-moving polarization
waves emanate from induced charges at the top of the stack
of particles and are passively absorbed by the grounded
bottom of the stack. Moreover, as identified by the circle in
Fig. 3(b), pattern variations also are convected downstream
by disturbances near the top of the stack—so the topmost
particle affects dynamics significantly downstream as well.
So the instability leading to traveling waves appears to be
convective and not absolute in this system.

Evidently, the simplest dynamics, the downward-traveling
polarization waves, are to some degree analytically tractable,
so we continue exploiting these waves by evaluating how
their wavelength λ and speed v depend on system parameters.
Technically, we measure λ directly and obtain the speed using
v =λ/T, where T is the measured wave period, and we evaluate
λ and v during a transient period starting from random initial
conditions. In this way, even if the state does not asymptotically
become uniform, we can determine λ and v. Uncertainties
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inevitably result over multiple measurements, and error bars
are shown in Figs. 3(d)–3(e), although these are typically
smaller than the plot symbols.

Beginning with Fig. 3(d), we find that λ depends strongly
on χe at fixed η, more than doubling over the admissible range
in χe. Wave speed changes less: by about 60%. So increasing
the susceptibility or coupling between particle polarizations
chiefly extends the range of collective motion (λ) and modestly
increases the traveling speed of disturbances (v). Particle
neutralization η, on the other hand, strongly affects traveling
speed, increasing v by nearly an order of magnitude, as shown
in Fig. 3(e). All of this could have been anticipated: Coupling
between electric fields (χe) is bound to affect the range of
particles affected by local charges, and the only way in which
charges can be transported from one location in the lattice
to another is through charge transfer from one particle to
another—mediated by η.

The effect of η on the wavelength shown in Fig. 3(e) is,
however, a surprise. Apparently, λ grows rapidly at either low
or high η. At low η, this could have been anticipated since
η = 0 must lead to the case shown in Fig. 1(c) in which the
entire lattice is uniformly polarized. At high η, something else
occurs: This appears to be the global merging state shown
in Fig. 2(c). The cause of this and the start-stop waves state
remains to be clarified in future studies. Likewise, the multiple
different wave speeds identified by arrows in Figs. 2(b) and
2(c) are unexpected and merit further investigation.

III. EXPERIMENT

To test whether the predicted growth in polarization occurs
in real agitated beds of identical grains, we have performed
experiments as follows. It is difficult to create a truly 1D
experiment since agitating grains require boundaries of some
kind and boundaries unavoidably produce spurious influences
such as tribocharging. To minimize potential charging at
boundaries, we glued 1530 ± 40 μm diameter glass particles
inside a tall narrow (7 cm inside diameter) glass container
[12], and we then filled the container to a height of 12 cm
with the same glass particles and vibrated the assembly. This
arrangement is not ideal—for example, the glued particles
make contact only on a small area of exposed glass, whereas
the free particles can make contact anywhere on their surfaces.
In this context, we note that it has been known for many years
that asymmetric contact between similar materials [3]—for
example, between a flat surface and a round particle—can
generate contact charging. Nevertheless, within the constraints
of what can realistically be achieved, this configuration permits
us to test whether particles do polarize as expected.

In these experiments, we first dried the particles by blowing
near-zero humid air (produced by a Dryex 80 air drier) for
2 minutes prior to each experimental trial. Separate trials
show humidity measured using a digital psychrometer (Extech
RH300) drops to 5% relative humidity (RH) within 1 minute
under these conditions. During each trial, after drying the
particles we vibrate the container in a mechanical shaker at
an amplitude of 2.5 ± 0.5 mm and frequency of 17 ± 3 Hz.
The dry air is introduced through a plastic tube, and to prevent
triboelectrification against the tube from generating spurious
voltages, we removed the tube prior to each experimental trial.

FIG. 4. (Color online) Voltage vs time from five trials in which
glass beads are shaken beneath a noncontact voltage probe. The solid
bold lines (red online) show running averages over 100 data points.
The dashed bold curve (red online) indicates an outlier. The thick
translucent line (green online) shows comparative simulation results
beginning with random initial charges as in Fig. 2, here using η = 0,
χe = 0.025.

We have performed experiments at other vibrating amplitudes
and frequencies; additionally we have turned the vibration on
and off multiple times to establish whether material relaxation,
humidity changes, or other systematic changes occur over
time. All of these tests produce similar results.

Qualitatively, we find that, provided the humidity is below
RH � 45%, the particles invariably stick to a grounded intruder
inserted above the vibrating bed, such as a metal rod or a finger
as shown in the inset of Fig. 4 (see also Ref. [13]). Significantly,
the grains stick to an intruder only so long as it is kept close to
the vibrating bed: As the intruder is raised above the bed, the
beads fall off. This indicates that the beads are kept in place
by the presence of a strong electric field from the vibrating
bed and not because of a persistent charge on the sticking
beads themselves. Similarly, we have never observed beads to
stick to the surface of the vibrating container, which we would
expect if the beads became charged (cf. Ref. [8]). Since our
experiment is at close to zero humidity, in a glass container on a
wooden platform with no grounded surface or potential source
of charge, it is not surprising that the particles do not acquire
net charge. On the other hand, the apparent lack of charge on
particles indicates that, despite the unavoidable nonideality of
the experiment, tribocharging is not significant.

Quantitatively, we measure the voltage near of the vibrating
bed as shown in the main plot of Fig. 4 by fixing a voltage
probe above the vibrated bed and monitoring the voltage as
the shaking is turned on. Measurements are taken using a
Trek, Inc. (Medina, NY) model 344 voltmeter equipped with
a 6000B-7C noncontact probe secured to a rod 11 ± 1 cm
above the free surface of the stationary bed. At this distance,
beads that bounce when the bed is vibrated never reach closer
than about 2 cm from the probe. We overlay expected results
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from the model described above for perfectly insulating low
susceptibility particles using fit parameters η = 0, χe = 0.025.

These experiments have been performed under a variety of
conditions, including using different size and shape containers
with and without glued particles. The container shape change
consisted of using a convex glass vase, which has been
reported to reverse or reduce granular convection; similarly,
experiments were performed without glued particles because
smooth boundaries reduce the extent of convection [14]. We
have also performed experiments to more closely mimic our
simulations in which the bottom boundary was grounded
by inserting a grounded plate into the bottom of the glass
container,. The data we show in Fig. 4 do not use a grounded
bottom since a metal surface could tribocharge the glass
particles, however all of these experiments produced similar
results as those shown in Fig. 4.

We have also performed experiments using beads of
different mean sizes. We find that voltages similar to those
shown in Fig. 4 are obtained in those experiments, however
beads significantly larger than the nominal 1530 μm diameter
shown in Fig. 4 (e.g., 1800 μm beads) do not stick to an
intruder, and beads significantly smaller (e.g., 630 μm beads)
stick only in a monolayer. We have not evaluated charges
on individual beads as a function of size, but we interpret
these results to mean that by virtue of their increased mass
m, larger beads have a prohibitively large Bond number
Bo = mg/Fa > 1, where g is gravity and Fa is the cohesive
electrostatic force. Smaller beads similarly produce Bo > 1
because they can sustain only a small induced polarization by
virtue of their small diameters.

IV. OUTLOOK

In conclusion, a simplified 1D model for agitated insulating
particles produces a rich variety of polarized and charged states
that we hope may shed light on more general cases of charging
of identical materials. At its simplest, when collisions are
random and insulation between agitated particles is perfect,
particle polarizations grow exponentially rapidly in time,
resulting in a uniformly polarized state. A simple experiment
using insulating particles produces results consistent with both
the uniformly polarized state and its growth.

We close by identifying several avenues for future inves-
tigation that seem to be indicated by our results. First, the
model predicts that if particles are permitted to transfer charge
by neutralization at their points of contact, then as described in
Fig. 2, the uniform state should give way to traveling waves that

become increasingly complex as the neutralization efficiency
grows. However, such dynamic states have not yet been found
experimentally. On the one hand, this may simply indicate
that the neutralization η is very low in our experiments: A
notion confirmed by the fit shown in Fig. 4 using η = 0. On
the other hand, the wavelike states are a concrete prediction
of the model, and future experiments engineered to more
closely approximate 1D motion may reveal these states. By the
same token, the 1D simplification in our model intrinsically
neglects effects of particle rotation that are likely present
in three-dimensional (3D) experiments, so investigations to
assess how the results found in 1D change when particles
rotate and interact in 3D are clearly called for.

Second, this model is restricted to the specific problem of
charging of identical particles in the absence of external fields.
Yet field data taken during sandstorms indicate that smaller
particles tend to predominantly charge negatively [15] and
that sandstorm lightning tends to occur in the presence of
fields from nearby thunderstorms [16]. Expanding our model
to include polydisperse particles and external fields similarly
seems worth pursuing.

Third, we note that a 1D lattice of N particles with small
individual polarizations pi will cumulatively generate a total
polarization Ptotal = ∑N

i=1 pi , which obviously can become
quite large as N grows. This leads us to speculate that voltages
in excess of the Paschen breakdown limit may be achievable
even in perfectly insulating particles that never individually
become charged. This possibility would turn the analysis of
particle charging on its head—that is, if polarization of neutral
charges produces a breakdown, for example, in dry desert
environments, then a breakdown could be produced in neutral
grains, and charge transfer could actually follow as a result
of this breakdown, rather than the breakdown occurring from
particle charging as is currently assumed. This speculation
seems to merit future investigation.

Finally, in all of our experiments the polarization measured
is negative upwards, so that as shown in Fig. 4, shaking always
produces a negative voltage above the granular bed. Possibly
a difference between electron states [2,5] in freely moving
beads at the top of the bed and trapped beads beneath causes
this symmetry breaking, however precisely how this might
occur also remains to be determined.
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