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Collapsing granular beds: The role of interstitial air
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A prefluidized sand bed consisting of fine particles compactifies when it is subjected to a shock. We observe
that the response depends on both the shock strength and the ambient pressure, where, counterintuitively, at high
ambient pressure the compaction is larger, which we connect to a decrease of the static friction inside the bed.
We find that the interstitial air is trapped inside the bed during and long after compaction. We deduce this from
measuring the pressure changes above and below the bed: The top pressure decreases abruptly, on the time scale
of the compaction, whereas that below the bed slowly rises to a maximum. Subsequently, both gently relax to
ambient values. We formulate a one-dimensional diffusion model that uses only the change in bed height and
the ambient pressure as an input, and we show that it leads to a fully quantitative understanding of the measured
pressure variations.
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I. INTRODUCTION

The presence of air as an interstitial fluid is known to have
a significant influence on the dynamics of a granular medium
consisting of small grains (diameter d < 1 mm). Well-known
examples include the Brazil nut effect, in which air may cause
an intruder to rise instead of sink [1,2]; Faraday heaping, where
the presence of air leads to the formation of heaps in a vibrated
layer of grains [3–6]; inverse Chladni patterns, where air drag
pushes small particles on a resonating plate to the antinodes
rather than to the nodal lines [3,7,8]; the so-called blown air
effect, when a cylindrical shell penetrates into a sand bed [9];
and the impact of an object on a prefluidized bed of fine sand,
where the presence of air has a profound influence on the
splash shape, bed response, and jet formation [10–15].

The understanding of the precise role the air plays is partial
at most, due to the complexity of the above experiments
together with the infeasibility of measuring the airflow inside
the granular medium. We therefore turn to a well-defined
experiment in which the role of air can be measured and quanti-
tatively understood, namely the compaction of a homogeneous
and loose sand bed after being subjected to a single shock.

Previous compaction research focused on density change
as a function of the number of compaction pulses, generally
applied by a shaker [16–22]. There the experiments are almost
exclusively carried out under vacuum to minimize cohesion
forces and to avoid the influence of the interstitial fluid [23]. It
was found that compaction decreases with the amount of taps,
eventually leading to a static state in which the bed no longer
compactifies.

In this work, we study the influence of the air during a
single compaction event of an initially loosely packed sand
bed. Here the grains have just enough contacts to form a
stable configuration, but the slightest shock will destroy this
fragile state and compactify the system. If the grains are
sufficiently small—as in our experiment—the role played by
the air within the pores is crucial. We show that the interstitial
air is trapped upon compaction: The pressures above and
below the bed are measured during and after the collapse
and subsequently connected to a one-dimensional diffusion
model to fully understand the behavior of the air inside the
sand.

II. EXPERIMENT

The common way to compactify a sand bed is by tapping or
shaking the bed. We choose to apply a controlled shock using
a metal ball connected to a string forming a pendulum, which
is attached close to a container filled with sand [see Fig. 1(a)].
By releasing the ball a certain distance (d) from the container
wall, the impact strength can be varied.

The container (14 × 14 × 100 cm3) is filled up to height
H = 40 cm with sand, which is polydisperse with sizes
ranging from 20 to 60 μm and a sphericity between 0.2 and
0.6. Pressurized air is blown from below into the container
to fluidize the bed. Subsequently, this airflow is very slowly
turned off, resulting in a packing fraction φ of the bed of around
0.41 [24]. Using a vacuum pump, the pressure P0 inside the
container can be lowered by slowly pumping out air from
above and below the bed, such that the packing of the sand bed
remains unchanged [11].

The pendulum’s mass equals 520 g and is released from
a maximum distance of d = 32 cm. For every d, the impact
velocity of the ball is measured (0.14–0.77 m/s), leading to
an impulse imparted on the container between 0.073 and 0.40
N s. The shock velocity in the sand is of the order of 100 m/s
[25], such that it would take approximately 1 ms for the shock
to reach the other side of the container. As soon as the ball
hits the container wall, the sand bed starts to collapse, and
the surface level is monitored during the experiment using a
high-speed camera. The bed is observed to collapse as a whole,
i.e., the surface of the bed remains flat and the change in bed
height is well-defined.

The bed level decreases almost linearly with time and takes
a typical time of 30 ms to reach its final height H ; see Fig. 2(a).
The collapse time is much larger than the time it takes for
information to travel through the bed, so we can assume a
homogeneous bed collapse. For higher impact speeds, there
are small, damped oscillations visible around this final height,
possibly triggered by a vibration of the whole container after
the impact or a stick-slip motion of the bed during collapse
[26]. Larger impact strengths of the ball result, naturally, in
a larger drop of the bed and a faster bed height decrease
[Figs. 2(c) and 2(a), respectively], indicating a more violent
collapse.
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(a) (b)

FIG. 1. (a) Schematic view of the experimental setup. A container
filled with sand is fluidized from below by pressurized dry air
(4 bar). When the airflow is turned off slowly, the sand settles
toward a height H0. A metal ball hanging from a wire is released
at a distance d , hitting the container wall and collapsing the fragile
sand bed. Meanwhile the pressure above (P1) and below (P2) the bed
is measured relative to the ambient pressure P0, which can be lowered
using a vacuum pump. (b) To model the effect of the compaction, as
an initial condition the sand bed is collapsed over a distance �H to
a height H , causing a pressure drop above the bed (�P−) and an
increase of the air pressure within it (�P+). The excess air will relax
until there is no remaining pressure difference in the setup.

During and after the impact, the pressure above and below
the bed is measured. Both high-speed, differential pressure
sensors (SENSIRION SPD600) compare the pressure in the
closed-off parts of the container above or below the bed with
an external reservoir that is brought to the same initial ambient
pressure (P0) and then sealed.

As soon as the ball hits the container wall, the pressure
�P1 above the bed decreases sharply, as indicated by any of
the light grey (orange) lines in Fig. 3(a). This happens on a
time scale of 30 ms, comparable to the time the bed needs to
collapse. The pressure �P2 below the bed (dark grey (blue)
lines) increases, and at a much slower pace. After the initial
pressure drop (�P1) and rise (�P2), the pressure differences
relax back to zero. The different lines in Fig. 3(a) represent
measurements done for various impact strengths. The extrema
of both �P1 and �P2 increase linearly with the height change
�H—and therefore also with d—whereas the relaxation of
the total pressure difference over the bed is independent of
impact speed.

The inset in Fig. 3(a) shows the signal above the bed just
after a strong impact (d = 30 cm). There are clear oscillations
that are consistent with the top volume oscillation caused by
the oscillating bed height.

In the second set of experiments, the impact strength is
kept constant (d = 30 cm), but the container is brought to
lower ambient pressures. The change in bed height is plotted
as a function of ambient pressure in Fig. 2(c) (green squares).
Here we find that the bed collapses slightly less for lower

(a)

(c)

(b)

FIG. 2. (Color online) (a) Change in bed height �h(t) as a
function of time for three different release distances of the ball:
d = 10, 20, and 30 cm. (b) Bed compaction for experiments with the
same release distance (d = 30 cm) but at different ambient pressures
(P0 = 150, 350, and 950 mbar). (c) The final bed height change
�H increases linearly with the release distance d of the impacting
object [red (bottom) axis, circles], whereas the bed compaction is
slightly less for lower ambient air pressures P0 [green (top) axis,
open squares].

ambient pressures, while the collapse speed is independent of
the pressure [Fig. 2(b)].

The magnitude of the differential pressure signals decreases
significantly for lower ambient pressures: The pressure drop
above the bed is less, and also the maximum pressure reached
below the bed decreases. A big difference with results obtained
from varying the shock strength lies in the time constant of the
relaxation: In Fig. 3(b), a log-lin plot of the total pressure
difference �P ≡ �P2 − �P1 over the bed for measurements
performed at different ambient pressures is shown. Over a
fairly large time interval, the signals are linear, indicating
an exponential decay. The line bends at the end because the
setup is never perfectly airtight, causing a slight increase in
the container pressure during the experiment. In addition,
the sensors are leaking air into the reservoir due to the
measurement method, which also contributes to this effect.
The slope decreases when lowering the ambient pressure,
indicating a larger relaxation time.

III. MODEL

We will now analyze the above results using a model based
on Darcy’s law, details of the derivation can be found in the
Appendix. The starting point is a sand bed of height H0 with a
certain initial packing fraction φ0. During the very fast collapse
of the bed over a distance �H to a new height H and packing
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FIG. 3. (Color online) (a) Pressure changes �P1 (orange) and �P2 (blue) in the container above and below the bed vs time for different
values of the release distance (d = 10, 15, 20, 25, and 30 cm). Inset: When zooming in on �P1 for d = 30 cm, we see oscillations upon impact
that correlate with those in Fig. 2(a). (b) Logarithm of the pressure difference �P = �P2 − �P1 over the entire bed for different ambient
pressures (P0 = 200, 400, 600, 800, and 1000 mbar). (c) Dimensionless pressure change �P1,2/� as a function of dimensionless time t/τ

including all curves in (a) and (b). The data collapse nicely onto a single curve. The dashed and solid black lines represents the dimensionless
model without and with corrections for the sensor leak, respectively. The inset shows the logarithm of the dimensionless pressure difference
(�P2 − �P1)/� vs t/τ , again in comparison to the model.

fraction φ, air has insufficient time to leave the bed and is
therefore trapped within the sand. From the experiments we
learn that this is a good assumption, because the bed collapses
in typically 30 ms, whereas pressure variations occur in the
time scale of seconds. When the bed collapses, the packing
fraction of the sand increases, and the pressure of the air
within the sand has to rise with an amount �P+, since it is
confined to a smaller volume. As a consequence, the volume
above the sand increases and the pressure drops with �P−.
Quantitatively, since the interstitial volume decreases from
(1 − φ0)H0A to (1 − φ)HA and the total volume occupied
by the sand particles is unchanged (φ0H0A = φHA), �P+
and �P− are (to linear order in �H and assuming isothermal
compression)

�P+ = P0
�H

(1 − φ)H
, �P− = −P0

A�H

V1
, (1)

where V1 is the volume above the collapsed sand bed. In
the nonchanging volume below the bed, the pressure remains
initially ambient. These initial conditions are illustrated in
Fig. 1(b).

The factor that limits the dynamics, i.e., the slow flow of
the air inside the sand bed, is governed by Darcy’s law, �q =
−(κ/μ) �∇P , where �q is the volume flux, κ ≈ 5.5 × 10−12 m2

is the (measured) permeability of the sand bed [27], and μ =
1.98 × 10−5 Pa s is the dynamic viscosity of air. Combining
Darcy’s law with the ideal gas law and linearizing around P0

leads to a diffusion equation for the pressure rise �Ps inside
the sand,

∂�Ps

∂t
= D ∇2(�Ps) , (2)

where the diffusion coefficient is given by D = κP0/[μ(1 −
φ)]. We assume the surface of the bed remains flat during
the collapse, and we neglect the effect of the container walls
such that the problem can be described by a one-dimensional
form of Eq. (2) for �Ps(z,t). This equation needs to be

supplemented by mass conservation in the top and bottom
part of the container (with volume V2),

d�P1

dt
= − A

V1

κP0

μ

∂�Ps

∂z

∣∣∣∣
z=H

,

(3)
d�P2

dt
= A

V2

κP0

μ

∂�Ps

∂z

∣∣∣∣
z=0

,

together with the initial conditions from Eq. (1): �P1(0) =
�P−, �Ps(z,0) = �P+, and �P2(0) = 0.

This boundary value problem can be nondimensionalized
using bed height ζ ≡ H , diffusion time τ ≡ H 2/D, and initial
pressure in the sand bed � ≡ �P+ as the typical length, time,
and pressure scale, respectively (see the Appendix), leaving us
with a problem that contains two parameters only:

α ≡ (1 − φ)AH

V1
≈ 0.39, β ≡ V1

V2
≈ 4.0, (4)

which are the ratio of the interstitial volume within the
collapsed sand bed to that above it, and the ratio of the volumes
above and below the bed, respectively. Most importantly,
since �H � 4 mm is much smaller than H = H0 − �H ≈
400 mm, both α and β are fixed, such that there is no free
parameter in this problem.

First we rescale all experiments, including those of
Figs. 3(a) and 3(b), using the pressure and time scales τ and
� [Fig. 3(c)]. Indeed all measurements (for various shock
strengths and different ambient pressures) collapse onto a
single master curve. The variation largely originates from the
difficult measurement of �H where the height decrease of the
entire bed has to be estimated from its decrease along one of
the side walls. In addition, given that for every experiment the
sand bed has to be prepared separately, slight deviations in the
final state cause part of the variation. Curves that do not tend
to zero but to a constant correspond to experiments at very
low ambient pressure, where likely some air was leaking into
the container during the measurements. The inset of Fig. 3(c)
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shows that also the decay behavior is neatly collapsed. This
is due to the diffusion time τ = H 2/D = (1 − φ)μH 2/(κP0)
being inversely proportional to the ambient pressure P0.

Secondly, we numerically solve the dimensionless bound-
ary value problem corresponding to Eqs. (1)–(3), and we
compare it to the experiments. This leads to the black dashed
line in Fig. 3(c). Both above and below the bed, the agreement
is quite good. In particular, the starting value �P− of �P1 and
the maximum in �P2 are nicely predicted. The time scale of
the relaxation below the bed, however, seems to be slightly
underestimated by the model [Fig. 3(c)]. This can be traced
back to the fact that the sensors are leaky [28]. This (known)
leak is readily incorporated into the model by adjusting the
mass balance of Eqs. (3), leading to a much better agreement
[solid line in Fig. 3(c)].

IV. CONCLUSION

We studied the response of a fine and loose sand bed during a
single compaction event. Whereas the visible collapse appears
to be concluded within 50 ms, we show that the compaction
process continues until all of the excess air manages to escape
from the bed, at a time interval exceeding 5 s, i.e., two orders
of magnitude larger.

We found that applying a stronger shock compactifies the
bed more and faster. The collapse traps air inside the bed and
decreases the pressure above it almost instantly, whereafter,
on a much larger time scale, the air slowly flows back from
and through the bed into the upper container. The pressure
below the bed is initially unchanged, but excess pressure of
the interstitial air inside the bed causes it to increase. After it
reaches a maximum, the pressure will decrease until there is no
pressure change left in the bed. The magnitude of the pressure
signals in the container increases linearly with the change in
bed height caused by stronger shocks.

By varying the ambient air pressure, we obtain a better
understanding of the influence of air. Reducing the pressure
decreases the measured pressure differences above and below
the bed, and it increases the time it takes for the buildup
pressure difference to decay. All pressure observations are
fully accounted for by a model based on Darcy’s flow inside
the sand bed.

We observed a small but measurable increase of compaction
of the sand bed for increasing ambient air pressures, which
is counterintuitive: If pressure-driven forces in the air were
counteracting compaction, then they would be increasing with
P0, and thus they would lead instead to a compaction decrease.
So how can the presence of air amplify the compaction
process? Part of the answer could lie in air working as a
lubrication layer between the particles. Friction between grains
eventually stops the grains from falling down and helps it
to form a new packing. In a tilt table experiment, we have
measured, after the fluidization procedure, the angle of repose
θ at which the sand started to flow at atmospheric and reduced
pressure, giving θ = 15.8 ± 0.9◦ at 1 bar and θ = 18.5 ± 0.8◦
at 100 mbar. For low ambient pressure, the grains start to flow
at a higher angle, indicating a larger friction between the sand
grains when there is very little air. This is in agreement with
the larger collapse for high ambient pressures: If air reduces
the friction between the grains, they will be slowed down less

and therefore the bed will be more compactified when the
grains have found their final position. The precise mechanism
by which this happens remains to be elucidated.
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APPENDIX: DERIVATION OF THE MODEL

In this Appendix, we derive the diffusion model based on
Darcy’s law for air flow in a collapsed sand bed that has been
used in the main text of the paper. In doing so, we assume
that the compaction of the bed will have occurred uniformly,
leading to a uniform compression of the air within the pores
between the sand grains, and that as a result flow will take
place in the vertical (z) direction only.

1. Linearized porous media equation

For an infinitesimally small cube of sand of volume (dV =
dx dy dz), the mass balance equation for a one-dimensional
flow in the z direction reads

dm

dt
= ρQz − ρQz+dz, (A1)

where ρQz and ρQz+dz give the in- and outflow of mass at the
bottom and the top of the volume. Here, the air density ρ may
vary with pressure. The in- and outflow can be calculated using
Darcy’s law, which describes the volume flow rate through a
porous medium,

�Q = −A
κ

μ
�∇Ps , (A2)

where A is the area perpendicular to the flow (in this case
dx dy), κ is the permeability of the porous material, μ is the
viscosity of the flowing medium (in our case air), and Ps is
the pressure of the air in the control volume. Inserting Darcy’s
law into Eq. (A1) and expanding around z leads to

dm

dt
= κ

μ

∂

∂z

[
ρ

∂Ps

∂z

]
dV. (A3)

The volume of air in the cube depends on the packing
fraction φ of the porous material. If we assume that the packing
fraction is not changing, we can rewrite the left-hand side of
Eq. (A3) as

dm

dt
= (1 − φ)

∂ρ

∂t
dV . (A4)

From the ideal gas law, we know that ρ = Ps/(RT ), such that
we can replace the density in Eqs. (A3) and (A4) with Ps .
Assuming that the temperature T is constant, due to the good
thermal contact of the gas with the porous media, which has a
relatively large heat capacity, this then leads to

∂Ps

∂t
= κ

2μ(1 − φ)

∂2P 2
s

∂z2
, (A5)
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which is the well-known porous media equation in the limit
we are discussing now. Writing Ps as a constant ambient
pressure plus a small pressure difference (Ps = P0 + �Ps)
and linearizing around P0 leads to a diffusion equation for
flow in a porous material,

∂�Ps

∂t
= κP0

μ(1 − φ)

∂2�Ps

∂z2
, (A6)

with diffusivity D ≡ κP0/[μ(1 − φ)]. Note that �Ps/P0 ≈
0.005 for our experiments, which justifies neglecting the
nonlinear terms in Eq. (A5).

2. Initial conditions after bed collapse

The diffusion equation describes the dynamics of the air in
the sand in the presence of pressure gradients. For the current
problem, these gradients arise from the collapse of the bed,
as a result of which the pressure above the bed decreases and
the pressure inside the bed increases. The volume occupied
by the sand grains is constant, which, if we assume the
bed compactifies homogeneously, relates the packing fraction
before (φ0) and after the collapse (φ) as

φ = φ0
H0

H
= φ0

H + �H

H
, (A7)

where H0 and H = H0 − �H are the bed height before and
after collapse, respectively. The interstitial volume changes
from (1 − φ0)AH0 before to (1 − φ)AH after collapse, with
A the cross-sectional area of the container. Now, assuming that
the collapse of the bed is so fast that air has no time to escape,
the (isothermal) ideal gas law has to be satisfied before and
after the collapse:

(1 − φ0)AH0P0 = (1 − φ)AH (P0 + �P+). (A8)

Combining relations (A7) and (A8) leads to an equation for
the initial pressure rise �P+ inside the bed:

�P+ = P0�H

(1 − φ)H
. (A9)

Simultaneously, the (initially ambient) pressure P1 = P0

in the container volume V1 above the bed will decrease by
an amount �P− due to an increase in the volume: P0V1 =
(P0 + �P−)(V1 + A�H ). This leads to

�P− ≈ −A�H

V1
P0, (A10)

where we neglect the higher-order terms in A�H/V1 because
the volume of the top part of the container is of the order
of the total volume of the sand bed (V1 ∼ AH ) such that
A�H/V1 ≈ �H/H ≈ 0.01. Finally, the pressure below the
bed will not change during the collapse. The initial conditions
are illustrated in the right half of Fig. 1(b).

3. Boundary conditions

Now that we have introduced a pressure difference in the
setup, the pressure will be equalized by air moving from the
sand bed into the top and bottom part of the container. Using
Darcy’s law [Eq. (A2)], the time rate of change of the amount
of air m1 in the volume V1 above the bed is proportional with

the inflow from the bed,

dm1

dt
= ρ1Q = −ρ1A

κ

μ

∂Ps

∂z

∣∣∣∣
z=H

, (A11)

and proportional to the time rate of change of the density ρ1

given that the volume (V1) remains constant,

dm1

dt
= ∂

∂t
(ρ1V1) = V1

dρ1

dt
. (A12)

Combining Eqs. (A11) and (A12) with the isothermal ideal
gas law ρ1 = P1/RT , writing P1 = P0 + �P1, and linearizing
around P0 leads to the boundary condition at the top of the sand
bed,

d�P1

dt
= − A

V1

κP0

μ

∂�Ps

∂z

∣∣∣∣
z=H

. (A13)

For the container volume V2 below the sand bed, we find
similarly that

d�P2

dt
= A

V2

κP0

μ

∂�Ps

∂z

∣∣∣∣
z=0

. (A14)

4. Nondimensionalization

To nondimensionalize the preceding set of equations, we
define a typical length, time, and pressure scale as

ζ = H, τ = H 2

D
= μ(1 − φ)H 2

κP0
,

(A15)

� = �P+ = P0�H

(1 − φ)H
,

such that we can rewrite the boundary value problem con-
sisting of Eqs. (A6), (A9), (A10), (A13), and (A14) in
terms of the nondimensional variables z̃ = z/ζ , t̃ = t/τ , and
�P̃ = �P/�. This leads to the following partial differential
equation:

∂�P̃s

∂t̃
= ∂2�P̃s

∂z̃ 2
, (A16)

together with the initial conditions

�P̃s( z̃,0) = 1, �P̃1(0) ≈ −α, �P̃2(0) = 0, (A17)

and the boundary equations

d�P̃1

dt̃
= −α

∂�P̃s

∂z̃

∣∣∣∣̃
z=1

,
d�P̃2

dt̃
= αβ

∂�P̃s

∂z̃

∣∣∣∣̃
z=0

. (A18)

This set of equations contains two parameters only, α and β,
which are the ratio of the free volume within the sand to V1 and
the ratio of the volumes above and below the bed, respectively,

α = (1 − φ)AH

V1
, β = V1

V2
. (A19)

From the dimensions of the setup, both are readily computed.
Using the measured values V1 = 1.22 × 10−2 m3, V2 =
3.05 × 10−3 m3, A = 2.03 × 10−2 m2, H = 0.40 m, and φ =
0.42, we find α = 0.39 and β = 4.0. This fixes the (numerical)
solution of the boundary value problem completely.
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5. Large-time limit

Long after the collapse, the trapped interstitial air will
have largely flown out of the sand bed, such that the pressure
gradient ∂�Ps/∂z inside the sand approaches a constant value,
i.e., (�P1 − �P2)/H , such that

∂�P̃s

∂z̃
≈ �P̃1 − �P̃2. (A20)

Inserting the above approximation into Eqs. (A18) and
subtracting the second expression from the first leads to

∂(�P̃1 − �P̃2)

∂t̃
≈ −α(β + 1)(�P̃1 − �P̃2), (A21)

which is readily solved as

�P̃1 − �P̃2 ∝ exp[−α(β + 1)̃t]. (A22)

The exponential decay of �P̃1 − �P̃2 in the large-time limit
predicted by Eq. (A22) is clearly observable as the linear
behavior in the inset of Fig. 3(c).

6. Corrections

The effect of the porous plate can be incorporated into the
equations with the introduction of three additional dimension-
less parameters, namely the dimensionless thickness of the
plate h̃p = hp/H , the ratio γ of the permeabilities of the sand
and plate (γ = κ/κp), and the ratio δ of the porosities of the
sand and plate [δ = (1 − φ)/(1 − φp)]. For realistic values of
the parameters, however, this leads to minor corrections in the
numerical solution to the boundary value problem.

A more significant correction stems from the fact that the
(SENSIRION SPD600) pressure sensors that were used are leaky

due to the measurement method on which they are based,
which uses a flow rate measurement to obtain the pressure drop
over a capillary. According to the manufacturer, the sensors
leak 150 mL/min [= 2.5 × 10−6 m3/s at full scale (±500
Pa)], which leads to a volume flow rate Qleak = −σ�Pi with
σ = 5.0 × 10−9 m3/Pa s for both the top (i = 1) and bottom
(i = 2) part of the container. This leads to a modification of
Eq. (A11): dm/dt = ρQ + ρQleak, the incorporation of which
finally amounts to the addition of a term to both boundary
conditions (A13) and (A14) which in dimensionless form reads

d�P̃1

dt̃
= −α

∂�P̃s

∂z̃

∣∣∣∣̃
z=1

− λ�P̃1,

(A23)
d�P̃2

dt̃
= αβ

∂�P̃s

∂z̃

∣∣∣∣̃
z=0

− λβ�P̃2,

with

λ = τP0

V1
σ = μ(1 − φ)H 2

κV1
σ. (A24)

Again, λ is not a free parameter but is completely fixed
by measurable properties of the experiment. Using κ ≈
5.5 × 10−12 m2, μ = 1.98 × 10−5 Pa s, H = 0.40 m, V1 =
1.22 × 10−2 m3, and φ = 0.42, we find λ = 0.14. Note that
the magnitude of the correction term in Eq. (A23) is of order
λ/α ≈ 0.3 and therefore much larger than the effects of the
linearization of the porous media equation and the neglecting
of higher-order terms in �H/H .
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over the bed while a constant flow rate was applied through
it.

[28] According to the manufacturer, the sensors leak 150 mL/min
at full scale (500 Pa) due to the measurement method, which

uses a flow rate measurement to obtain the pressure drop over a
capillary. This method is faster and more accurate than others,
but it introduces a small leak. The incorporation of this leak into
the model is discussed in the Appendix.
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